AMD Raven Ridge Performance Leaks - APU with GeForce MX150 Performance

Subject: Graphics Cards, Processors | October 16, 2017 - 05:07 PM |
Tagged: amd, raven ridge, APU, ryzen 7 2700u, Ryzen 5 2500U, ryzen 7 pro 2700u

Hot on the heels of the HP leak that showed the first AMD Raven Ridge based notebook that may be hitting store shelves later this year, another leak of potential Raven Ridge APU performance is cycling through. The AMD Ryzen 7 2700U with integrated Vega-based graphics architecture, and also rumored to have a ~35-watt TDP, is showing 3DMark11 graphics scores near that of the discrete NVIDIA GeForce MX150.

ravenridge3dm11.jpg

With a graphics score of 4072, the integrated graphics on the upcoming AMD APU is slightly behind the score of 4570 from the MX150, a difference of 11.5%. Interestingly, the Physics score on the Raven Ridge APU of 6419 is solid as well, and puts an interesting light on the 8th gen KBL-R processors. As you can see in the graph below, from two systems we already have in-house with quad-core parts, CPU performance is going to vary dramatically from one machine to the next depending on the thermal headroom of the physical implementation.

3dmark11.png

The HP Spectre x360 with the Core i7-8550U and the MX150 GPU is able to generate a Physics score of 8278, well above the leaked result of the Raven Ridge APU. However, when we ran the 3DMark11 on the ASUS Zenbook 3 UX490UA with the same Core i7-8550U, the Physics score was 6627, a 19% drop! Clearly there are configurability shifts that will adjust the performance of the 8th gen Intel parts. We are diving more into this effect in a couple of upcoming reviews.

Though the true power consumption of these Ryzen 7 2700U systems is still up in the air, AMD has claimed for some time that it would have the ability to compete with Intel for the first time in several generations. If these solutions turn out to be in the 35-watt range, which would be at or lower than the typical 15-watt Intel CPU and 25-watt NVIDIA discrete GPU combined, AMD may have a winning combination for mobile performance users to entertain.

How hot is your Coffee?

Subject: Processors | October 10, 2017 - 06:35 PM |
Tagged: Intel, coffee lake, i7 8700k

The Tech Report addresses two questions about Intel's i7-8700K in their latest review, how to keep it running cool and how the multi-core enhancement feature changes that answer.  Multi-core enhancement is a BIOS level overclocking feature which allows all cores on Coffee Lake processors to hit the full boost clock instead of only a single core.  In this example, a single core could hit 4.7 GHz while the other cores are being limited to 4.3GHz, however with multi-core enhancement enabled that limit is removed and all cores can hit 4.7GHz simultaneously.  As with any type of overclock this produces significantly more heat and requires more cooling.

This enhancement means there are two answers to the question about cooling your Coffee.  With the enhancement feature disabled you should be just fine with a CM Hyper 212 Evo or equivalent heatsink, however with MCE enabled even a Corsair H115i shows a 90° C package temperature with core temps between 84-90C.  Keep this in mind when shopping for parts; it is nice to have all cores running at their full Boost Clock but you will need to be able to cool them or else see throttling as the chip sense Tjunction temps in excess of 100C.

mce.png

"Intel's Core i7-8700K proved an exceptionally well-rounded chip in our testing, but the company's choice of thermal interface material has left many wondering whether the Coffee Lake flagship will prove a challenge to keep cool. We establish a handy baseline for what might make a chip "difficult" to cool and see whether the Core i7-8700K falls on the wrong side of the line."

Here are some more Processor articles from around the web:

Processors

 

Extreme Overclockers Fill Coffee Lake With Liquid Nitrogen

Subject: Processors | October 6, 2017 - 11:44 PM |
Tagged: Extreme Overclocking Competition, overclocking, liquid nitrogen, coffee lake, i7 8700k

A new CPU means new overclocking challenges and with it comes a new batch of refreshed Z370 motherboards. At the high end, the current frequency record for the Core i7 8700K is 7,405.1 MHz obtained by Hovan Yang using a MSI Z370 Godlike Gaming motherboard.

image_id_1912600.jpeg

He’s not the only one testing the limits of Intel’s new six core processors though. Asus held an overclocking event a few weeks ago where renowned overclockers Alex@ro, elmor, der8auer, Rsannino, and shamino battled it out. Der8auer got a pre-release crack at the i7 8700K at the event and after de-lidding and replacing the TIM with liberal amounts of Kryonaut thermal paste managed to achieve 6.8 GHz using 1.8 volts and a 68x multiplier (and bumping the cache speed up to 6.3 GHz). With these settings on the monster Maximus X Apex motherboard, he scored 299 in single threaded and 2253 in multithreaded in Cinebench R15. Der8auer compared this benchmark result to Skylake X at 5.5 GHz scoring 237 in the single threaded test. Following the benchmark run, he went for the highest CPU-z validated clockspeed he could hit and managed to push the chip to 7300 MHz (100MHzx73). From there overclocker Alex from Romania was able to overclock his i7 8700K to 6844 MHz and scored 2306 in Cinebench R15.

150720533466.jpg

The overclockers broke 10 new records in the six core CPU category and also managed to break a DDR4 clockspeed record by pushing a single 8GB G.Skill DIMM to 5529.2 MHz at 24-31-31-63-3 timings!

Also of note is that Coffee Lake does not depend of FIVR so overclockers are able to use a full pot of liquid nitrogen (or liquid helium) to cool the processor down to much lower temperatures so that they can crank up the voltage and achieve much higher clockspeeds than Skylake-X which cannot boot if temperatures are too low.

While the ASUS team does not hold the clockspeed record anymore (though they might regain it with some Liquid Helium), der8auer has an interesting video and Asus has a blog post with photos talking about the process, setup, and everything that goes into these extreme overclocking sessions including pre-binning the chips, preparing the IHS and motherboard for the super cold (-185°C to -190°C) temperatures, and keeping the processors and motherboards running. For example, and Josh will be interested in this, part of the process of preparing the motherboard involves slathering it in Vaseline!

If you are interested in this extreme overclocking stuff it gives a bit of insight into all the fun to be had!

Source: Asus

Grab a cuppa, you may be looking at the Lake for a while

Subject: Processors | October 5, 2017 - 12:47 PM |
Tagged: Intel, core i5, coffee lake, 8600K, i5-7600K, ryzen 7

[H]ard|OCP had an opportunity to try a different Coffee Lake CPU than Ryan, who provided our initial results on the i7-8700K and Core i5-8400.  In this review, they took a Core i5-8600K and immediately overclocked the chip to 5GHz so they could directly compare Coffee Lake to a Kaby Lake i5-7600K clock for clock, if not for core.  The tests show both CPUs at 5GHz locked clocks, 3600MHz RAM clocks with the exact same timings of 18-19-19-39@2T; they do not show a major improvement in performance between the two chips although it is there.  What it does illustrate is that the performance increased you see on Coffee Lake are from higher clock speeds, which are a good thing.  There will be many who feel the lack of IPC improvement speaks poorly of the new chipset and incompatible socket and they do have a point.   There is fun for AMD fans in this review as well, the Ryzen 7 takes top spot even when running at a mere 4GHz, so start with this one and then take a gander through the rest.

1507184097w6igx0tfz2_1_3_l.jpg

"If you were waiting for huge IPC gains out of the new Coffee Lake CPU from Intel, you might be waiting for a very long time. We take the Intel Coffee Lake Core i5-8600K CPU and match it up GHz to GHz with the Intel Core i5-7600K Kaby Lake processor. And we throw in a Ryzen 7 at 4GHz just for fun."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP
Author:
Subject: Processors
Manufacturer: Intel

Specifications and Summary

As seems to be the trend for processor reviews as of late, today marks the second in a two-part reveal of Intel’s Coffee Lake consumer platform. We essentially know all there is to know about the new mainstream and DIY PC processors from Intel, including specifications, platform requirements, and even pricing; all that is missing is performance. That is the story we get to tell you today in our review of the Core i7-8700K and Core i5-8400.

Coffee Lake is the second spoke of Intel's “8th generation” wheel that began with the Kaby Lake-R release featuring quad-core 15-watt notebook processors for the thin and light market. Though today’s release of the Coffee Lake-S series (the S is the designation for consumer desktop) doesn’t share the same code name, it does share the same microarchitecture, same ring bus design (no mesh here), and same underlying technology. They are both built on the Intel 14nm process technology.

IMG_4888.JPG

And much like Kaby Lake-R in the notebook front, Coffee Lake is here to raise the core count and performance profile of the mainstream Intel CPU playbook. When AMD first launched the Ryzen 7 series of processors that brought 8-cores and 16-threads of compute, it fundamentally shook the mainstream consumer markets. Intel was still on top in terms of IPC and core clock speeds, giving it the edge in single and lightly threaded workloads, but AMD had released a part with double the core and thread count and was able to dominate in most multi-threaded workloads compared to similar Intel offerings.

Much like Skylake-X before it, Coffee Lake had been on Intel’s roadmap from the beginning, but new pressure from a revived AMD meant bringing that technology to the forefront sooner rather than later in an effort stem any potential shifts in market share and maybe more importantly, mind share among investors, gamers, and builders. Coffee Lake, and the Core i7, Core i5, and Core i3 processors that will be a part of this 8000-series release, increase the core count across the board, and generally raise clock speeds too. Intel is hoping that by bumping its top mainstream CPU to 6-cores, and coupling that with better IPC and higher clocks, it can alleviate the advantages that AMD has with Ryzen.

But does it?

That’s what we are here to find out today. If you need a refresher on the build up to this release, we have the specifications and slight changes in the platform and design summarized for you below. Otherwise, feel free to jump on over to the benchmarks!

Continue reading our review of the Intel Core i7-8700K and Core i5-8400!!

The price competition is Ryzen even before the Coffee is poured

Subject: General Tech, Processors | October 4, 2017 - 01:05 PM |
Tagged: amd, ryzen, price cuts

AMD is slashing prices on their Ryzen line of CPUs, and not just in the UK.   A Ryzen 7 1800X in the US will cost you only $400 if you skip out on the Wraith cooler, or $500 if you are in Canada.  If that is a little too rich a 1700X is $295 or $415 in Canada, though the 1700 with Wraith cooler at $370 might be a better deal.  The price cuts come just before the launch of Intel's Coffee Lake processors so you might want to wait a day or so for reviews to appear.  The price cuts could also signal AMD's desire to move stock before the launch of Pinnacle in a few months.

Wasn't that much more pleasant than finding out the IRS plans to crowd source their tax fraud investigations by awarding a $7m contract to Equifax who can count on everyone who grabbed your leaked personal information to do their work for them?

51bG36hujfL._SL1001_.jpg

"They also coincide with rumours that AMD plans to launch a new series of Ryzen parts in February, based on 12nm process technology. The AMD Ryzen ‘Pinnacle' parts will be part of a shift of both CPUs and GPUs to GlobalFoundries 12nm LP [leading performance] process during 2018."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer
Subject: Processors, Mobile
Manufacturer: Apple

A New Standard

With a physical design that is largely unchanged other than the addition of a glass back for wireless charging support, and featuring incremental improvements to the camera system most notably with the Plus version, the iPhone 8 and 8 Plus are interesting largely due to the presence of a new Apple SoC. The upcoming iPhone X (pronounced "ten") stole the show at Apple's keynote annoucement earlier this month, but the new A11 Bionic chip powers all 2017 iPhone models, and for the first time Apple has a fully custom GPU after their highly publicized split with Imagination Technologies, makers of the PowerVR graphics found in previous Apple SoCs.

A11_Bionic_Keynote.jpg

The A11 Bionic powering the 2017 iPhones contains Apple’s first 6-core processor, which is comprised of two high performance cores (code-named ‘Monsoon’) and four high efficiency cores (code-named ‘Mistral’). Hugely important to its performance is the fact that all six cores are addressable with this new design, as Apple mentions in their description of the SoC:

"With six cores and 4.3 billion transistors, A11 Bionic has four efficiency cores that are up to 70 percent faster than the A10 Fusion chip, and two performance cores that are up to 25 percent faster. The CPU can even harness all six cores simultaneously when you need a turbo boost."

It was left to improvments to IPC and clock speed to boost the per-core performance of previous Apple SoCs, such as the previous A10 Fusion part, which contained a quad-core CPU split in an even arrangement of 2x performance + 2x efficiency cores. Apple's quad-core effort did not affect app performance beyond the two performance cores, with additional cores limited to background tasks in real-world use (though the A10 Fusion did not provide any improvement to battery life over previous efforts, as we saw).

A11_iFixit.jpg

The A11 Bionic on the iPhone 8 system board (image credit: iFixit)

Just how big an impact this new six-core CPU design will have can be instantly observed with the CPU benchmarks to follow, and on the next page we will find out how Apple's in-house GPU solution compare to both the previous A10 Fusion PowerVR graphics, and market-leading Qualcomm Adreno 540 found in the Snapdragon 835. We will begin with the CPU benchmarks.

Continue reading our look at the performance of Apple's A11 SoC!

Intel Core i9-7980XE Pushed to 6.1 GHz On All Cores Using Liquid Nitrogen

Subject: Processors | September 25, 2017 - 09:36 PM |
Tagged: skylake-x, overclocking, Intel Skylake-X, Intel, Cinebench, 7980xe, 3dmark, 14nm

Renowned overclocker der8auer got his hands on the new 18-core Intel Core i9-7980XE and managed to break a few records with more than a bit of LN2 and thermal paste. Following a delid, der8auer slathered the bare die and surrounding PCB with a polymer-based (Kryonaut) TIM and reattached the HIS to prepare for the extreme overclock. He even attempted to mill out the middle of the IHS to achieve a balance between direct die cooling and using the IHS to prevent bending the PCB and spread out the pressure from the LN2 cooler block, but ran into inconsistent results between runs and opted not to proceed with that method.

Core i9-7980xe LN2 overclock.png

Using an Asus Rampage VI Apex X299 motherboard and the Core i9-7980XE at an Asus ROG event in Taiwan der8auer used liquid nitrogen to push all eighteen cores (plus Hyper-Threading) to 6.1 GHz for a CPU-Z validation. To get those clockspeeds he needed to crank up the voltage to 1.55V (1.8V VCCIN) which is a lot for the 14nm Skylake X processor. Der8auer noted that overclocking was temperature limited beyond this point as at 6.1 GHz he was seeing positive temperatures on the CPU cores despite the surface of the LN2 block being as low as -100 °C! Perhaps even more incredible is the power draw of the processor as it runs at these clockspeeds with the system drawing as much as 1,000 watts (~83 amps) on the +12V rail with the CPU being responsible for almost all of that number! That is a lot of power running through the motherboard VRMs and the on-processor FIVR!

For comparison, at 5.5 GHz he measured 70 amps on the +12V rail (840W) with the chip using 1.45V vcore under load.

7980xe CPU-Z overclock 6GHz.png

For Cinebench R15, the extreme overclocker opted for a tamer 5.7 GHz where the i9-7980XE achieved a multithreaded score of 5,635 points. He compared that to his AMD Threadripper overclock of 5.4 GHz where he achieved a Cinebench score of 4,514 (granted the Intel part was using four more threads and clocked higher).

To push things (especially his power supply heh) further, the overclocker added a LN2 cooled NVIDIA Titan Xp to the mix and managed to overclock the graphics card to 2455 MHz at 1.4V. With the 3840 Pascal cores at 2.455 GHz he managed to break three single card world records by scoring 45,705 in 3DMark 11, 35,782 in 3DMark Fire Strike, and 120,425 in 3DMark Vantage!

Der8auer also made a couple interesting statements regarding overclocking at these levels including the issues of cold bugs not allowing the CPU and/or GPU to boot up if the cooler plate is too cold. On the other side of things, once the chip is running the power consumption can jump drastically with more voltage and higher clocks such that even LN2 can’t maintain sub-zero core temperatures! The massive temperature delta can also create condensation issues that need to be dealt with. He mentions that while for 24/7 overclocking liquid metal TIMs are popular choices, when extreme overclocking the alloy actually works against them because the sub-zero temperatures reduce the effectiveness and thermal conductivity of the interface material which is why polymer-based TIMs are used when cooling with liquid nitrogen, liquid helium, or TECs. Also, while most people apply a thin layer of thermal paste to the direct die or HIS, when extreme overclocking he “drowns” the processor die and PCB in the TIM to get as much contact as possible with the cooler as every bit of heat transfer helps even the small amount he can transfer through the PCB. Further, FIVR has advantages such as per-core voltage fine tuning, but it also can hold back further overclocking from cold bugs that will see the processor shut down past -100 to -110 °C temperature limiting overclocks whereas with an external VRM setup they could possibly push the processor further.

For the full scoop, check out his overclocking video. Interesting stuff!

Also read:

Source: der8auer

Double the price; not so much performance though ... Skylake-X versus ThreadRipper

Subject: Processors | September 25, 2017 - 03:19 PM |
Tagged: skylake-x, Skylake, Intel, Core i9, 7980xe, 7960x

You cannot really talk about the new Skylake-X parts from Intel without bringing up AMD's Threadripper as that is the i9-7980XE and i9-7960X's direct competition.   From a financial standpoint, AMD is the winner, with a price tag either $700 or $1000 less than Intel's new flagship processors.  As Ryan pointed out in his review, for those whom expense is not a consideration it makes sense to chose Intel's new parts as they are slightly faster and the Xtreme Edition does offer two more cores.  For those who look at performance per dollar the obvious processor of choice is ThreadRipper; for as Ars sums up in their review AMD offers more PCIe lanes, better heat management and performance that is extremely close to Intel's best.

DSC02984.jpg

"Ultimately, the i9-7960X raises the same question as the i9-7900X: Are you willing to pay for the best performing silicon on the market? Or is Threadripper, which offers most of the performance at a fraction of the price, good enough?"

Here are some more Processor articles from around the web:

Processors

Source: Ars Technica
Author:
Subject: Processors
Manufacturer: Intel

Specifications and Architecture

It has been an interesting 2017 for Intel. Though still the dominant market share leader in consumer processors of all shapes and sizes, from DIY PCs to notebooks to servers, it has come under attack with pressure from AMD unlike any it has felt in nearly a decade. It started with the release of AMD Ryzen 7 and a family of processors aimed at the mainstream user and enthusiast markets. That followed by the EPYC processor release moving in on Intel’s turf of the enterprise markets. And most recently, Ryzen Threadripper took a swing (and hit) at the HEDT (high-end desktop) market that Intel had created and held its own since the days of the Nehalem-based Core i7-920 CPU.

pic1.jpg

Between the time Threadripper was announced and when it shipped, Intel made an interesting move. It decided to launch and announce its updated family of HEDT processors dubbed Skylake-X. Only available in a 10-core model at first, the Core i9-7900X was the fastest tested processor in our labs, at the time. But it was rather quickly overtaken by the likes of the Threadripper 1950X that ran with 16-cores and 32-threads of processing. Intel had already revealed that its HEDT lineup would go to 18-core options, though availability and exact clock speeds remained in hiding until recently.

  i9-7980XE i9-7960X i9-7940X i9-7920X i9-7900X  i7-7820X i7-7800X TR 1950X TR 1920X TR 1900X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24 8/16
Base Clock 2.6 GHz 2.8 GHz 3.1 GHz 2.9 GHz 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz 3.8 GHz
Turbo Boost 2.0 4.2 GHz 4.2 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 4.4 GHz 4.4 GHz 4.4 GHz 4.4 GHz 4.5 GHz 4.5 GHz N/A N/A N/A N/A
Cache 24.75MB 22MB 19.25MB 16.5MB 13.75MB 11MB 8.25MB 40MB 38MB ?
Memory Support DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2666 Quad Channel
PCIe Lanes 44 44 44 44 44 28 28 64 64 64
TDP 165 watts 165 watts 165 watts 140 watts 140 watts 140 watts 140 watts 180 watts 180 watts 180 watts?
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799 $549

Today we are now looking at both the Intel Core i9-7980XE and the Core i9-7960X, 18-core and 16-core processors, respectively. The goal from Intel is clear with the release: retake the crown as the highest performing consumer processor on the market. It will do that, but it does so at $700-1000 over the price of the Threadripper 1950X.

Continue reading our review of the Intel Core i9-7980XE and Core i9-7960X!