Author:
Manufacturer: Intel

Overview and CPU Performance

When Intel announced their quad-core mobile 8th Generation Core processors in August, I was immediately interested. As a user who gravitates towards "Ultrabook" form-factor notebooks, it seemed like a no-brainer—gaining two additional CPU cores with no power draw increase.

badge.jpg

However, the hardware reviewer in me was skeptical. Could this "Kaby Lake Refresh" CPU provide the headroom to fit two more physical cores on a die while maintaining the same 15W TDP? Would this mean that the processor fans would have to run out of control? What about battery life?

Now that we have our hands on our first two notebooks with the i7-8550U in, it's time to take a more in-depth look at Intel's first mobile offerings of the 8th Generation Core family.

IMG_4938.JPG

Click here to continue reading our look at performance with Intel 8th Generation mobile processors!

Author:
Subject: Processors, Mobile
Manufacturer: AMD

A potential game changer?

I thought we were going to be able to make it through the rest of 2017 without seeing AMD launch another family of products. But I was wrong. And that’s a good thing. Today AMD is launching the not-so-cleverly-named Ryzen Processor with Radeon Vega Graphics product line that will bring the new Zen processor architecture and Vega graphics architecture onto a single die for the ultrathin mobile notebook platforms. This is no minor move for them – just as we discussed with the AMD EPYC processor launch, this is a segment that has been utterly dominated by Intel. After all, Intel created the term Ultrabook to target these designs, and though that brand is gone, the thin and light mindset continues to this day.

ryzenmobile-3.jpg

The claims AMD makes about its Ryzen mobile APU (combination CPU+GPU accelerated processing unit, to use an older AMD term) are not to be made lightly. Right up front in our discussion I was told this is going to be the “world’s fastest for ultrathin” machines. Considering that AMD had previously been unable to even enter those markets with previous products, both due to some technological and business roadblocks, AMD is taking a risk by painting this launch in such a light. Thanks to its ability combine CPU and GPU technology on a single die though, AMD has some flexibility today that simply did not have access to previously.

From the days that AMD first announced the acquisition of ATI graphics, the company has touted the long-term benefits of owning both a high-performance processor and graphics division. By combining the architectures on a single die, they could become greater than the sum of the parts, leveraging new software directions and the oft-discussed HSA (heterogenous systems architecture) that AMD helped create a foundation for. Though the first rounds of APUs were able to hit modest sales, the truth was that AMD’s advantage over Intel’s on the graphics technology front was often overshadowed by the performance and power efficiency advantages that Intel held on the CPU front.

ryzenmobile-10.jpg

But with the introduction of the first products based on Zen earlier this year, AMD has finally made good on the promises of catching up to Intel in many of the areas where it matters the most. The new from-the-ground-up design resulted in greater than 50% IPC gains, improved area efficiency compared to Intel’s latest Kaby Lake core design, and enormous gains in power efficiency compared to the previous CPU designs. When looking at the new Ryzen-based APU products with Vega built-in, AMD claims that they tower over the 7th generation APUs with up to 200% more CPU performance, 128% more GPU performance, and 58% lower power consumption. Again, these are bold claims, but it gives AMD confidence that it can now target premium designs and form factors with a solution that will meet consumer demands.

ryzenmobile-14.jpg

AMD is hoping that the release of the Ryzen 7 2700U and Ryzen 5 2500U can finally help turn the tides in the ultrathin notebook market.

  Core i7-8650U Core i7-8550U Core i5-8350U Core i5-8250U Ryzen 7 2700U Ryzen 5 2500U
Architecture Kaby Lake Refresh Kaby Lake Refresh Kaby Lake Refresh Kaby Lake Refresh Zen+Vega Zen+Vega
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm
Socket BGA1356 BGA1356 BGA1356 BGA1356 ? ?
Cores/Threads 4/8 4/8 4/8 4/8 4/8 4/8
Base Clock 1.9 GHz 1.8 GHz 1.7 GHz 1.6 GHz 2.2 GHz 2.0 GHz
Max Turbo Clock 4.2 GHz 4.0 GHz 3.8 GHz 3.6 GHz 3.8 GHz 3.6 GHz
Memory Tech DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3 DDR4 DDR4
Memory Speeds 2400/2133 2400/2133 2400/2133 2400/2133 2400 2400
Cache 8MB 8MB 6MB 6MB 6MB 6MB
System Bus DMI3 - 8.0 GT/s DMI3 - 8.0 GT/s DMI2 - 6.4 GT/s DMI2 - 5.0 GT/s N/A N/A
Graphics UHD Graphics 620 UHD Graphics 620 UHD Graphics 620 UHD Graphics 620 Vega (10 CUs) Vega (8 CUs)
Max Graphics Clock 1.15 GHz 1.15 GHz 1.1 GHz 1.1 GHz 1.3 GHz 1.1 GHz
TDP 15W 15W 15W 15W 12-25W
15W Nominal
12-25W
15W Nominal
MSRP $409 $409 $297 $297 ? ?

The Ryzen 7 2700U will run 200 MHz higher on the base and boost clocks for the CPU and 200 MHz higher on the peak GPU core clock. Though both systems have 4-cores and 8-threads, the GPU on the 2700U will have two additional CUs / compute units.

Continue reading our preview of the new AMD Ryzen Mobile Processor!

ARM Introduces PSA (Platform Security Architecture)

Subject: Processors | October 24, 2017 - 02:12 AM |
Tagged: arm, cortex, mali, PSA, security, TrustZone, Platform Security Architecture, amd, cortex-m, Armv8-m

It is no wonder that device security dominates news.  Every aspect of our lives is approaching always connected status.  Whether it is a major company forgetting to change a default password or an inexpensive connected webcam that is easily exploitable, security is now more important than ever.

arm_secure_01.PNG

ARM has a pretty good track record in providing solutions to their partners to enable a more secure computing experience in this online world.  Their first entry to address this was SecurCore which was introduced in 2000.  Later they released their TrustZone in 2003.  Eventually that technology made it into multiple products as well as being adopted by 3rd party chip manufacturers.

Today ARM is expanding the program with this PSA announcement.  Platform Security Architecture is a suite of technologies that encompasses software, firmware, and hardware.  ARM technology has been included in over 100 billion chips shipped since 1991.  ARM expects that another 100 billion will be shipped in the next four years.  To get a jump on the situation ARM is introducing this comprehensive security architecture to enable robust security features for products from the very low end IoT to the highest performing server chips featuring ARM designs.

arm_secure_02.PNG

PSA is not being rolled out in any single product today.  It is a multi-year journey for ARM and its partners and it can be considered a framework to provide enhanced security across a wide variety of products.  The first products to be introduced using this technology will be the Armv8-M class of processors.  Cortex-M processors with Trusted Firmware running on the Mbed OS will be the start of the program.  Eventually it will branch out into other areas, but ARM is focusing much of its energy on the IoT market and ensuring that there is a robust security component to what could eventually scale out to be a trillion connected products.

There are two new hardware components attached to PSA.  The first is the CryptoIsland 300 on-die security enclave.  It is essentially a second layer of hardware security beyond that of the original TrustZone.  The second is the SDC-600.  This is a secure debug port that can be enabled and disabled using certificates.  This cuts off a major avenue for security issues.  These technologies are integrated into the CPUs themselves and are not offered as a 3rd party chip.

arm_secure_hardware.PNG

If we truly are looking at 1 trillion connected devices over the next 10 years, security is no longer optional.  ARM is hoping to get ahead of this issue by being more proactive in developing these technologies and working with their partners to get them implemented.  This technology will evolve over time to include more and more products in the ARM portfolio and hopefully will be adopted by their many licensees.

 

Source: ARM

Flipping the lid on the i5-8600K

Subject: Processors | October 23, 2017 - 05:22 PM |
Tagged: i5-8600K, Intel, delidding, coffee lake

[H]ard|OCP have once again voided a warranty in the goal of better overclocking.  The past several generations of Intel chips have sparked debate on the effectiveness of their thermal solutions, prompting numerous users to delid their processor to replace the thermal compound inside to improve cooling performance.  With the results of the tests it is clear that the TIM in Coffee Lake is limiting the processor, temperatures decreased by 10C or more at stock and [H] could reach higher stable overclocks once they replaced the TIM that Intel used.  Delidding is not for the faint of heart however, many a CPU has met its death during the process so do be aware of that.  Let us hope this trend does not continue for much longer.

1507657308tk6v6181eo_1_3_l.jpg

"We've gotten to spend some quality time with our Intel Core i5-8600K Coffee Lake CPU, and of course we have spent our time finding out just how far we could push the processor's clock under both Air Cooling and Water Cooling. We relid and delid as well. The results look to be very promising for the overclocking enthusiast and gamer."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

AMD Raven Ridge Performance Leaks - APU with GeForce MX150 Performance

Subject: Graphics Cards, Processors | October 16, 2017 - 05:07 PM |
Tagged: amd, raven ridge, APU, ryzen 7 2700u, Ryzen 5 2500U, ryzen 7 pro 2700u

Hot on the heels of the HP leak that showed the first AMD Raven Ridge based notebook that may be hitting store shelves later this year, another leak of potential Raven Ridge APU performance is cycling through. The AMD Ryzen 7 2700U with integrated Vega-based graphics architecture, and also rumored to have a ~35-watt TDP, is showing 3DMark11 graphics scores near that of the discrete NVIDIA GeForce MX150.

ravenridge3dm11.jpg

With a graphics score of 4072, the integrated graphics on the upcoming AMD APU is slightly behind the score of 4570 from the MX150, a difference of 11.5%. Interestingly, the Physics score on the Raven Ridge APU of 6419 is solid as well, and puts an interesting light on the 8th gen KBL-R processors. As you can see in the graph below, from two systems we already have in-house with quad-core parts, CPU performance is going to vary dramatically from one machine to the next depending on the thermal headroom of the physical implementation.

3dmark11.png

The HP Spectre x360 with the Core i7-8550U and the MX150 GPU is able to generate a Physics score of 8278, well above the leaked result of the Raven Ridge APU. However, when we ran the 3DMark11 on the ASUS Zenbook 3 UX490UA with the same Core i7-8550U, the Physics score was 6627, a 19% drop! Clearly there are configurability shifts that will adjust the performance of the 8th gen Intel parts. We are diving more into this effect in a couple of upcoming reviews.

Though the true power consumption of these Ryzen 7 2700U systems is still up in the air, AMD has claimed for some time that it would have the ability to compete with Intel for the first time in several generations. If these solutions turn out to be in the 35-watt range, which would be at or lower than the typical 15-watt Intel CPU and 25-watt NVIDIA discrete GPU combined, AMD may have a winning combination for mobile performance users to entertain.

How hot is your Coffee?

Subject: Processors | October 10, 2017 - 06:35 PM |
Tagged: Intel, coffee lake, i7 8700k

The Tech Report addresses two questions about Intel's i7-8700K in their latest review, how to keep it running cool and how the multi-core enhancement feature changes that answer.  Multi-core enhancement is a BIOS level overclocking feature which allows all cores on Coffee Lake processors to hit the full boost clock instead of only a single core.  In this example, a single core could hit 4.7 GHz while the other cores are being limited to 4.3GHz, however with multi-core enhancement enabled that limit is removed and all cores can hit 4.7GHz simultaneously.  As with any type of overclock this produces significantly more heat and requires more cooling.

This enhancement means there are two answers to the question about cooling your Coffee.  With the enhancement feature disabled you should be just fine with a CM Hyper 212 Evo or equivalent heatsink, however with MCE enabled even a Corsair H115i shows a 90° C package temperature with core temps between 84-90C.  Keep this in mind when shopping for parts; it is nice to have all cores running at their full Boost Clock but you will need to be able to cool them or else see throttling as the chip sense Tjunction temps in excess of 100C.

mce.png

"Intel's Core i7-8700K proved an exceptionally well-rounded chip in our testing, but the company's choice of thermal interface material has left many wondering whether the Coffee Lake flagship will prove a challenge to keep cool. We establish a handy baseline for what might make a chip "difficult" to cool and see whether the Core i7-8700K falls on the wrong side of the line."

Here are some more Processor articles from around the web:

Processors

 

Extreme Overclockers Fill Coffee Lake With Liquid Nitrogen

Subject: Processors | October 6, 2017 - 11:44 PM |
Tagged: Extreme Overclocking Competition, overclocking, liquid nitrogen, coffee lake, i7 8700k

A new CPU means new overclocking challenges and with it comes a new batch of refreshed Z370 motherboards. At the high end, the current frequency record for the Core i7 8700K is 7,405.1 MHz obtained by Hovan Yang using a MSI Z370 Godlike Gaming motherboard.

image_id_1912600.jpeg

He’s not the only one testing the limits of Intel’s new six core processors though. Asus held an overclocking event a few weeks ago where renowned overclockers Alex@ro, elmor, der8auer, Rsannino, and shamino battled it out. Der8auer got a pre-release crack at the i7 8700K at the event and after de-lidding and replacing the TIM with liberal amounts of Kryonaut thermal paste managed to achieve 6.8 GHz using 1.8 volts and a 68x multiplier (and bumping the cache speed up to 6.3 GHz). With these settings on the monster Maximus X Apex motherboard, he scored 299 in single threaded and 2253 in multithreaded in Cinebench R15. Der8auer compared this benchmark result to Skylake X at 5.5 GHz scoring 237 in the single threaded test. Following the benchmark run, he went for the highest CPU-z validated clockspeed he could hit and managed to push the chip to 7300 MHz (100MHzx73). From there overclocker Alex from Romania was able to overclock his i7 8700K to 6844 MHz and scored 2306 in Cinebench R15.

150720533466.jpg

The overclockers broke 10 new records in the six core CPU category and also managed to break a DDR4 clockspeed record by pushing a single 8GB G.Skill DIMM to 5529.2 MHz at 24-31-31-63-3 timings!

Also of note is that Coffee Lake does not depend of FIVR so overclockers are able to use a full pot of liquid nitrogen (or liquid helium) to cool the processor down to much lower temperatures so that they can crank up the voltage and achieve much higher clockspeeds than Skylake-X which cannot boot if temperatures are too low.

While the ASUS team does not hold the clockspeed record anymore (though they might regain it with some Liquid Helium), der8auer has an interesting video and Asus has a blog post with photos talking about the process, setup, and everything that goes into these extreme overclocking sessions including pre-binning the chips, preparing the IHS and motherboard for the super cold (-185°C to -190°C) temperatures, and keeping the processors and motherboards running. For example, and Josh will be interested in this, part of the process of preparing the motherboard involves slathering it in Vaseline!

If you are interested in this extreme overclocking stuff it gives a bit of insight into all the fun to be had!

Source: Asus

Grab a cuppa, you may be looking at the Lake for a while

Subject: Processors | October 5, 2017 - 12:47 PM |
Tagged: Intel, core i5, coffee lake, 8600K, i5-7600K, ryzen 7

[H]ard|OCP had an opportunity to try a different Coffee Lake CPU than Ryan, who provided our initial results on the i7-8700K and Core i5-8400.  In this review, they took a Core i5-8600K and immediately overclocked the chip to 5GHz so they could directly compare Coffee Lake to a Kaby Lake i5-7600K clock for clock, if not for core.  The tests show both CPUs at 5GHz locked clocks, 3600MHz RAM clocks with the exact same timings of 18-19-19-39@2T; they do not show a major improvement in performance between the two chips although it is there.  What it does illustrate is that the performance increased you see on Coffee Lake are from higher clock speeds, which are a good thing.  There will be many who feel the lack of IPC improvement speaks poorly of the new chipset and incompatible socket and they do have a point.   There is fun for AMD fans in this review as well, the Ryzen 7 takes top spot even when running at a mere 4GHz, so start with this one and then take a gander through the rest.

1507184097w6igx0tfz2_1_3_l.jpg

"If you were waiting for huge IPC gains out of the new Coffee Lake CPU from Intel, you might be waiting for a very long time. We take the Intel Coffee Lake Core i5-8600K CPU and match it up GHz to GHz with the Intel Core i5-7600K Kaby Lake processor. And we throw in a Ryzen 7 at 4GHz just for fun."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP
Author:
Subject: Processors
Manufacturer: Intel

Specifications and Summary

As seems to be the trend for processor reviews as of late, today marks the second in a two-part reveal of Intel’s Coffee Lake consumer platform. We essentially know all there is to know about the new mainstream and DIY PC processors from Intel, including specifications, platform requirements, and even pricing; all that is missing is performance. That is the story we get to tell you today in our review of the Core i7-8700K and Core i5-8400.

Coffee Lake is the second spoke of Intel's “8th generation” wheel that began with the Kaby Lake-R release featuring quad-core 15-watt notebook processors for the thin and light market. Though today’s release of the Coffee Lake-S series (the S is the designation for consumer desktop) doesn’t share the same code name, it does share the same microarchitecture, same ring bus design (no mesh here), and same underlying technology. They are both built on the Intel 14nm process technology.

IMG_4888.JPG

And much like Kaby Lake-R in the notebook front, Coffee Lake is here to raise the core count and performance profile of the mainstream Intel CPU playbook. When AMD first launched the Ryzen 7 series of processors that brought 8-cores and 16-threads of compute, it fundamentally shook the mainstream consumer markets. Intel was still on top in terms of IPC and core clock speeds, giving it the edge in single and lightly threaded workloads, but AMD had released a part with double the core and thread count and was able to dominate in most multi-threaded workloads compared to similar Intel offerings.

Much like Skylake-X before it, Coffee Lake had been on Intel’s roadmap from the beginning, but new pressure from a revived AMD meant bringing that technology to the forefront sooner rather than later in an effort stem any potential shifts in market share and maybe more importantly, mind share among investors, gamers, and builders. Coffee Lake, and the Core i7, Core i5, and Core i3 processors that will be a part of this 8000-series release, increase the core count across the board, and generally raise clock speeds too. Intel is hoping that by bumping its top mainstream CPU to 6-cores, and coupling that with better IPC and higher clocks, it can alleviate the advantages that AMD has with Ryzen.

But does it?

That’s what we are here to find out today. If you need a refresher on the build up to this release, we have the specifications and slight changes in the platform and design summarized for you below. Otherwise, feel free to jump on over to the benchmarks!

Continue reading our review of the Intel Core i7-8700K and Core i5-8400!!

The price competition is Ryzen even before the Coffee is poured

Subject: General Tech, Processors | October 4, 2017 - 01:05 PM |
Tagged: amd, ryzen, price cuts

AMD is slashing prices on their Ryzen line of CPUs, and not just in the UK.   A Ryzen 7 1800X in the US will cost you only $400 if you skip out on the Wraith cooler, or $500 if you are in Canada.  If that is a little too rich a 1700X is $295 or $415 in Canada, though the 1700 with Wraith cooler at $370 might be a better deal.  The price cuts come just before the launch of Intel's Coffee Lake processors so you might want to wait a day or so for reviews to appear.  The price cuts could also signal AMD's desire to move stock before the launch of Pinnacle in a few months.

Wasn't that much more pleasant than finding out the IRS plans to crowd source their tax fraud investigations by awarding a $7m contract to Equifax who can count on everyone who grabbed your leaked personal information to do their work for them?

51bG36hujfL._SL1001_.jpg

"They also coincide with rumours that AMD plans to launch a new series of Ryzen parts in February, based on 12nm process technology. The AMD Ryzen ‘Pinnacle' parts will be part of a shift of both CPUs and GPUs to GlobalFoundries 12nm LP [leading performance] process during 2018."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer