Ryzen powered PC pre-orders

Subject: Processors | February 22, 2017 - 03:32 PM |
Tagged: Cyberpower, maingear, origin, ncix

I am not one to recommend preordering anything but there are plenty of consumers out there that are, as you can tell by how quickly the new Ryzen processors are selling.  Here is a quick look at three of the system builders offerings you can order as of today.

CyberPower

unnamed.jpg

maingear.png

They offer four different systems, with all but their new Hyper Liquid model using a Corsair H60 CLC for cooling and 8GB of dual channel DDR4.  All systems come with a 3-year limited warranty and lifetime tech support
 

Maingear

really maingear.PNG

Maingear is more cooling focused, with custom watercooling available in traditional soft tubing and hardline options.  They also offer MAINGEAR Redline Overclocking, so your Ryzen powered system will arrive already running at higher that reference frequencies.  You will pay a little more but they do put effort into the paint and aesthetics.

Origin

0222-ryzen-presale-2.png

Origin's systems start shipping on March 12th, with NEURON, MILLENNIUM and GENESIS desktops which come with free lifetime US-based 24/7 support.  They offer  Variable Mounting which allows you a choice between four motherboard mounting orientations, choose the appropriate one based on your preferred cooling solution.  You can also add remote controlled LEDs and in some models, up to 34 drives can be installed.

NCIX

amd_ryzen_preorder_950x300.jpg

boards.png

Last but not least is NCIX who not only offer several choices of custom systems but also list a wide variety of AM4 motherboards and compatible coolers for you to order individually.  The lower end B350 boards look to retail around $150 while some of the high end X370 boards are over $400.  The X370 above features two M.2 NVMe PCIe x4 slots with heatshields while the B350 has only one, exposed to the world. 

 

AMD Ryzen Pre-order Starts Today, Specs and Performance Revealed

Subject: Processors | February 22, 2017 - 09:00 AM |
Tagged: Zen, ryzen, preorder, pre-order, handbrake, Cinebench, amd

I know that many of you have been waiting months and years to put your money down for the Zen architecture and Ryzen processors from AMD. Well that day is finally here: AMD is opening pre-orders for Ryzen 7 1800X, Ryzen 7 1700X and Ryzen 7 1700 processors.

That’s the good news. The bad news? You’ll be doing it without the guidance of independent reviews.

For some of you, that won’t matter. And I can respect that! Getting your hands on Ryzen and supporting the disruption that it offers is something not only AMD fans have been preparing for, but tens of thousands of un-upgraded enthusiasts as well.

slides1wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Proudly announced at our meeting with AMD this week, Zen not only met the 40% IPC goals it announced more than a year ago, but exceeded it! AMD claims more than a 52% increase in instructions per clock over Excavator and that is a conservative metric based on side conversations. This does a couple of things for the CPU market immediately: first it resets performance expectations for what Ryzen will offer when reviews do go live and second, it may actually put some worry into Intel.

AMD is allowing us to share baseline specifications of the processors, including clock speeds and core counts, as well as some selected benchmarks that show the Ryzen CPUs in an (obviously) favorable light.

  Ryzen R7 1800X Ryzen R7 1700X Ryzen R7 1700 Core i7-6900K Core i7-6800K Core i7-7700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts
Price $499 $399 $329 $1050 $450 $350

AMD is being extremely aggressive with these prices and with the direct comparisons. The flagship Ryzen 7 1800X will run you just $499, the 1700X at $399 and the 1700 at $329. For AMD’s own comparisons, they pitted the Ryzen 7 1800X against the Core i7-6900K from Intel, selling for more than 2x the cost. Both CPUs have 8 cores and 16 threads, the AMD Ryzen part has higher clock speeds as well. If IPC is equivalent (or close), then it makes sense that the 1800X would be a noticeably faster part. If you care about performance per dollar even more…you should be impressed.

For the other comparisons, AMD is pitting the Ryzen 7 1700X with 8 cores and 16 threads against the Core i7-6800K, with 6 cores and 12 threads. Finally, the Ryzen 7 1700, still with an 8C/16T setup, goes against the Core i7-7700K with just 4 cores and 8 threads.

Here is a summary of the performance comparisons AMD is allowing to be showed.

perf1-wm.jpg

perf2-wm.jpg

Though it's only a couple of benchmarks, and the results are highly siloed to show Ryzen in the best light, the results are incredibly impressive. In Cinebench R15, the Ryzen 1800X is 9% faster than the Core i7-6900K but at half the price; even the Ryzen R7 1700X is beating it. The 1700X is 34% faster than the Core i7-6800K, and the 1700 is 31% faster than the quad-core Core i7-7700K. The only single threaded result AMD gave us shows matching performance from the Core i7-6900K based on the Intel Broadwell architecture and the new Ryzen R7 1800X. This might suppress some questions about single threaded performance of Ryzen before reviews, but Broadwell is a couple generations old in Intel’s lineup, so we should expect Kaby Lake to surpass it.

The Handbrake benchmark results only included Core i7-7700K and the Ryzen R7 1700, with the huge advantage going to AMD. Not unexpected considering the 2x delta in core and thread count.

perf3-wm.jpg

Finally, the performance per dollar conversion on the Cinebench scores is a substantially impactful visual. With a more than 2x improvement from the Ryzen 7 1800X to the Core i7-6900K, power-hungry users on a budget will have a lot to think about.

slides2wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Clearly, AMD is very proud of the Ryzen processor and the Zen architecture, and they should be. This is a giant leap forward for the company compared to previous desktop parts. If you want to buy in today and pre-order, we have links below. If you’d rather wait for a full review from PC Perspective (or other outlets), you only have to wait until March 2nd.

Update Feb 22 @ 4:27am: An official Intel spokesman did respond to today's AMD news with the following: 

“We take any competition seriously but as we’ve learned, consumers usually take a ‘wait and see’ approach on performance claims for untested products. 7th Gen Intel® Core™ delivers the best experiences, and with 8th Gen Intel Core and new technologies like Intel® Optane™ memory coming soon, Intel will not stop raising the bar.” ­

While nothing drastic, the Intel comment is interesting in a couple of ways. First, the fact that Intel is responding at all means that they are rattled to some degree. Second, mention of the 8th Gen Core processor series indicates that they want potential buyers to know that something beyond Kaby Lake is coming down the pipe, a break from Intel's normally stoic demeanor.

Source: AMD

Report: Leaked AMD Ryzen 7 1700X Benchmarks Show Strong Performance

Subject: Processors | February 21, 2017 - 10:54 AM |
Tagged: ryzen, rumor, report, R7, processor, leak, IPC, cpu, Cinebench, benchmark, amd, 1700X

VideoCardz.com, continuing their CPU coverage of the upcoming Ryzen launch, has posted images from XFASTEST depicting the R7 1700X processor and some very promising benchmark screenshots.

AMD-Ryzen-7-1700X.jpg

(Ryzen 7 1700X on the right) Image credit XFASTEST via VideoCardz

The Ryzen 7 1700X is reportedly an 8-core/16-thread processor with a base clock speed of 3.40 GHz, and while overall performance from the leaked benchmarks looks very impressive, it is the single-threaded score from the Cinebench R15 run pictured which really makes this CPU look like major competition for Intel with IPC.

AMD-Ryzen-7-1700X-Cinebench.jpg

Image credit XFASTEST via VideoCardz

An overall score of 1537 is outstanding, placing the CPU almost even with the i7-6900K at 1547 based on results from AnandTech:

AnandTech_Benchmarks.png

Image credit AnandTech

And the single-threaded performance score of the reported Ryzen 7 1700X is 154, which places it above the i7-6900K's score of 153. (It is worth noting that Cinebench R15 shows a clock speed of 3.40 GHz for this CPU, which is the base, while CPU-Z is displaying 3.50 GHz - likely indicating a boost clock, which can reportedly surpass 3.80 GHz with this CPU.)

Other results from the reported leak include 3DMark Fire Strike, with a physics score of 17,916 with Ryzen 7 1700X clocking in at ~3.90 GHz:

AMD-Ryzen-7-1700X-Fire-Strike-Physics.png

Image credit XFASTEST via VideoCardz

We will know soon enough where this and other Ryzen processors stand relative to Intel's current offerings, and if Intel will respond to the (rumored) price/performance double whammy of Ryzen. An i7-6900K retails for $1099 and currently sells for $1049 on Newegg.com, and the rumored pricing (taken from Wccftech), if correct, gives AMD a big win here. Competition is very, very good!

wccftech_chart.PNG

Chart credit Wccftech.com

Source: VideoCardz
Author:
Subject: Processors
Manufacturer: AMD

Get your brains ready

Just before the weekend, Josh and I got a chance to speak with David Kanter about the AMD Zen architecture and what it might mean for the Ryzen processor due out in less than a month. For those of you not familiar with David and his work, he is an analyst and consultant on processor architectrure and design through Real World Tech while also serving as a writer and analyst for the Microprocessor Report as part of the Linley Group. If you want to see a discussion forum that focuses on architecture at an incredibly detailed level, the Real World Tech forum will have you covered - it's an impressive place to learn.

zenpm-4.jpg

David was kind enough to spend an hour with us to talk about a recently-made-public report he wrote on Zen. It's definitely a discussion that dives into details most articles and stories on Zen don't broach, so be prepared to do some pausing and Googling phrases and technologies you may not be familiar with. Still, for any technology enthusiast that wants to get an expert's opinion on how Zen compares to Intel Skylake and how Ryzen might fare when its released this year, you won't want to miss it.

AMD Details Zen at ISSCC

Subject: Processors | February 8, 2017 - 09:38 PM |
Tagged: Zen, Skylake, Samsung, ryzen, kaby lake, ISSCC, Intel, GLOBALFOUNDRIES, amd, AM4, 14 nm FinFET

Yesterday EE Times posted some interesting information that they had gleaned at ISSCC.  AMD released a paper describing the design process and advances they were able to achieve with the Zen architecture manufactured on Samsung’s/GF’s 14nm FinFETT process.  AMD went over some of the basic measurements at the transistor scale and how it compares to what Intel currently has on their latest 14nm process.

icon.jpg

The first thing that jumps out is that AMD claimes that their 4 core/8 thread x86 core is about 10% smaller than what Intel has with one of their latest CPUs.  We assume it is either Kaby Lake or Skylake.  AMD did not exactly go over exactly what they were counting when looking at the cores because there are some significant differences between the two architectures.  We are not sure if that 44mm sq. figure includes the L3 cache or the L2 caches.  My guess is that it probably includes L2 cache but not L3.  I could be easily wrong here.

Going down the table we see that AMD and Samsung/GF are able to get their SRAM sizes down smaller than what Intel is able to do.  AMD has double the amount of L2 cache per core, but it is only about 60% larger than Intel’s 256 KB L2.  AMD also has a much smaller L3 cache as well than Intel.  Both are 8 MB units but AMD comes in at 16 mm sq. while Intel is at 19.1 mm sq.  There will be differences in how AMD and Intel set up these caches, and until we see L3 performance comparisons we cannot assume too much.

Zen-comparison.png

(Image courtesy of ISSCC)

In some of the basic measurements of the different processes we see that Intel has advantages throughout.  This is not surprising as Intel has been well known to push process technology beyond what others are able to do.  In theory their products will have denser logic throughout, including the SRAM cells.  When looking at this information we wonder how AMD has been able to make their cores and caches smaller.  Part of that is due to the likely setup of cache control and access.

One of the most likely culprits of this smaller size is that the less advanced FPU/SSE/AVX units that AMD has in Zen.  They support AVX-256, but it has to be done in double the cycles.  They can do single cycle AVX-128, but Intel’s throughput is much higher than what AMD can achieve.  AVX is not the end-all, be-all but it is gaining in importance in high performance computing and editing applications.  David Kanter in his article covering the architecture explicitly said that AMD made this decision to lower the die size and power constraints for this product.

Ryzen will undoubtedly be a pretty large chip overall once both modules and 16 MB of L3 cache are put together.  My guess would be in the 220 mm sq. range, but again that is only a guess once all is said and done (northbridge, southbridge, PCI-E controllers, etc.).  What is perhaps most interesting of it all is that AMD has a part that on the surface is very close to the Broadwell-E based Intel i7 chips.  The i7-6900K runs at 3.2 to 3.7 GHz, features 8 cores and 16 threads, and around 20 MB of L2/L3 cache.  AMD’s top end looks to run at 3.6 GHz, features the same number of cores and threads, and has 20 MB of L2/L3 cache.  The Intel part is rated at 140 watts TDP while the AMD part will have a max of 95 watts TDP.

If Ryzen is truly competitive in this top end space (with a price to undercut Intel, yet not destroy their own margins) then AMD is going to be in a good position for the rest of this year.  We will find out exactly what is coming our way next month, but all indications point to Ryzen being competitive in overall performance while being able to undercut Intel in TDPs for comparable cores/threads.  We are counting down the days...

Source: AMD

Jump into Kaby Lake naked

Subject: Processors | February 8, 2017 - 01:16 PM |
Tagged: kaby lake, i5-7600K, Intel

[H]ard|OCP followed up their series on replacing the TIM underneath the heatspreader on Kaby Lake processors with another series depicting the i5-7600K in the buff.  They removed the heatspreader completely and tried watercooling the die directly.  As you can see in the video this requires more work than you might immediately assume, it was not simply shimming which was involved, some of the socket on the motherboard needed to be trimmed with a knife in order to get the waterblock to sit directly on the core.  In the end the results were somewhat depressing, the risks involved are high and the benefits almost non-existent.  If you are willing to risk it, replacing the TIM and reattaching the heatspreader is a far better choice.

getimage.jpg

"After our recent experiments with delidding and relidding our 7700K and 7600K to see if we could get better operating temperatures, we decided it was time to go topless! Popping the top on your CPU is one thing, and getting it to work in the current processor socket is another. Get out your pocket knife, we are going to have to make some cuts."

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

Report: AMD Ryzen Performance in Ashes of the Singularity Benchmark

Subject: Processors | February 3, 2017 - 08:22 PM |
Tagged: titan x, ryzen, report, processor, nvidia, leak, cpu, benchmark, ashes of the singularity, amd

AMD's upcoming 8-core Ryzen CPU has appeared online in an apparent leak showing performance from an Ashes of the Singularity benchmark run. The benchmark results, available here on imgur and reported by TechPowerUp (among others today) shows the result of a run featuring the unreleased CPU paired with an NVIDIA Titan X graphics card.

Ryzen_Ashes_Screenshot.jpg

It is interesting to consider that this rather unusual system configuration was also used by AMD during their New Horizon fan event in December, with an NVIDIA Titan X and Ryzen 8-core processor powering the 4K game demos of Battlefield 1 that were pitted against an Intel Core i7-6900K/Titan X combo.

It is also interesting to note that the processor listed in the screenshot above is (apparently) not an engineering sample, as TechPowerUp points out in their post:

"Unlike some previous benchmark leaks of Ryzen processors, which carried the prefix ES (Engineering Sample), this one carried the ZD Prefix, and the last characters on its string name are the most interesting to us: F4 stands for the silicon revision, while the 40_36 stands for the processor's Turbo and stock speeds respectively (4.0 GHz and 3.6 GHz)."

March is fast approaching, and we won't have to wait long to see just how powerful this new processor will be for 4K gaming (and other, less important stuff). For now, I want to find results from an AotS benchmark with a Titan X and i7-6900K to see how these numbers compare!

Source: TechPowerUp

Living dangerously; delidding your i7-7700k

Subject: Processors | January 30, 2017 - 02:29 PM |
Tagged: kaby lake, core i7 7700k, overclocking, delidding, risky business

Recently [H]ard|OCP popped the lid off of an i7-7700k to see if the rumours that once again Intel did not use high quality thermal interface material underneath the heatspreader.  The experiment was a success in one way, the temperatures dropped 25.28%, from 91C to 68C. However the performance did not change much, they still could not reach a stable 5GHz overclock.  They did not let that initial failure discourage them and spent some more time with their enhanced Kaby Lake processor to find scenarios in which they could reach or pass the 5GHz mark. They met with success when they reduced the RAM frequency to 2666MHz, by disabling Hyperthreading they could reach 5GHz with 3600MHz RAM but only when they increased the VCore did they manage to break 5GHz. 

Of course you must exercise caution when tweaking to this level, a higher VCore will certainly reduce the lifespan of your chip and delidding can have a disastrous outcome even if done carefully.  If you are interested in trying this, The Tech Report has a link to a 3D printed tool to help you in your endeavours.

kaby2.jpg

"Last week we shared our overclocking results with our retail purchased Core i7-7700K Kaby Lake processor. We then took the Integrated Heat Spreader off, replaced the Thermal Interface Material and tried again for 5GHz with 3600MHz memory and failed. This time, less RAM MHz and more core voltage!"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

Shall we keep hanging out under the Sandy Bridge or head on down to Kaby Lake?

Subject: Processors | January 16, 2017 - 04:11 PM |
Tagged: kaby lake, sandy bridge

Not too long ago the release of a new processor family meant a noticeable improvement from the previous generation and the only question was how to upgrade, not if you should upgrade.  Like many other things, that has passed on into the proverbial good old days and now we need reviews like this one published by [H]ard|OCP.  Is there any noticeable performance difference between the two chips outside of synthetic benchmarks? 

The test systems are slightly different as the memory has changed, the 7700K has 2666MHz DDR4 while the 2600K has 2133MHz DDR3; both CPUs are clocked at 4.5GHz however.  Their results show actual performance deltas in productivity software such as HandBrake and Blender, justifying the upgrade for those who focus on content creation.  As for gaming, if you have no GPU then you will indeed see performance increases; but nothing compared to buying a GPU.

1484259750Ex0fKuOcpc_1_1.jpg

"There are many HardOCP readers that are still running Sandy Bridge CPUs and have been waiting with anticipation of one day upgrading to a new system. One of the biggest things asked in the last month is just how the 2600K stacks up against the new 7700K processor. So we got hold of one of our readers 2600K systems and put it to the test."

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

High Bandwidth Cache

Apart from AMD’s other new architecture due out in 2017, its Zen CPU design, there is no other product that has had as much build up and excitement surrounding it than its Vega GPU architecture. After the world learned that Polaris would be a mainstream-only design that was released as the Radeon RX 480, the focus for enthusiasts came straight to Vega. It’s been on the public facing roadmaps for years and signifies the company’s return to the world of high end GPUs, something they have been missing since the release of the Fury X in mid-2015.

slides-2.jpg

Let’s be clear: today does not mark the release of the Vega GPU or products based on Vega. In reality, we don’t even know enough to make highly educated guesses about the performance without more details on the specific implementations. That being said, the information released by AMD today is interesting and shows that Vega will be much more than simply an increase in shader count over Polaris. It reminds me a lot of the build to the Fiji GPU release, when the information and speculation about how HBM would affect power consumption, form factor and performance flourished. What we can hope for, and what AMD’s goal needs to be, is a cleaner and more consistent product release than how the Fury X turned out.

The Design Goals

AMD began its discussion about Vega last month by talking about the changes in the world of GPUs and how the data sets and workloads have evolved over the last decade. No longer are GPUs only worried about games, but instead they must address profession workloads, enterprise workloads, scientific workloads. Even more interestingly, as we have discussed the gap in CPU performance vs CPU memory bandwidth and the growing gap between them, AMD posits that the gap between memory capacity and GPU performance is a significant hurdle and limiter to performance and expansion. Game installs, professional graphics sets, and compute data sets continue to skyrocket. Game installs now are regularly over 50GB but compute workloads can exceed petabytes. Even as we saw GPU memory capacities increase from Megabytes to Gigabytes, reaching as high as 12GB in high end consumer products, AMD thinks there should be more.

slides-8.jpg

Coming from a company that chose to release a high-end product limited to 4GB of memory in 2015, it’s a noteworthy statement.

slides-11.jpg

The High Bandwidth Cache

Bold enough to claim a direct nomenclature change, Vega 10 will feature a HBM2 based high bandwidth cache (HBC) along with a new memory hierarchy to call it into play. This HBC will be a collection of memory on the GPU package just like we saw on Fiji with the first HBM implementation and will be measured in gigabytes. Why the move to calling it a cache will be covered below. (But can’t we call get behind the removal of the term “frame buffer”?) Interestingly, this HBC doesn’t have to be HBM2 and in fact I was told that you could expect to see other memory systems on lower cost products going forward; cards that integrate this new memory topology with GDDR5X or some equivalent seem assured.

slides-13.jpg

Continue reading our preview of the AMD Vega GPU Architecture!