Is the GPU in Intel Kaby Lake-G More Polaris than Vega?

Subject: Graphics Cards, Processors | April 9, 2018 - 04:25 PM |
Tagged: Vega, Polaris, kaby lake-g, Intel, amd

Over the weekend, some interesting information has surfaced surrounding the new Kaby Lake-G hardware from Intel. A product that is officially called the “8th Generation Intel Core Processors with Radeon RX Vega M Graphics” is now looking like it might be more of a Polaris-based GPU than a Vega-based one. This creates an interesting marketing and technology capability discussion for the community, and both Intel and AMD, that is worth diving into.

PCWorld first posted the question this weekend, using some interesting data points as backup that Kaby Lake-G may in fact be based on Polaris. In Gordon’s story he notes that in AIDA64 the GPU is identified as “Polaris 22” while the Raven Ridge-based APUs from AMD show up as “Raven Ridge.” Obviously the device identification of a third party piece of software is a suspect credential in any situation, but the second point provided is more salient: based on the DXDiag information, the GPU on the Hades Canyon NUC powered by Kaby Lake-G does not support DirectX 12.1.

dx_diag_comparo-100754201-orig.jpg

Image source: PCWorld

AMD clearly stated in its launch of the Vega architecture last year that the new GPUs supported DX 12.1, among other features. The fact that the KBL-G part does NOT include support for it is compelling evidence that the GPU might be more similar to Polaris than Vega.

Tom’s Hardware did some more digging that was posted this morning, using a SiSoft Sandra test that can measure performance of FP16 math and FP32. For both the Radeon RX Vega 64 and 56 discrete graphics cards, running the test with FP16 math results in a score that is 65% faster than the FP32 results. With a Polaris-based graphics card, an RX 470, the scores between FP32 and FP16 were identical as the architecture can support FP16 math functions but doesn’t accelerate it with AMD’s “rapid packed math” feature (that was a part of the Vega launch).

tomsmath.jpg

Image source: Tom's Hardware

And you guessed it, the Kaby Lake-G part only runs essentially even in the FP16 mode. (Also note that AMD’s Raven Ridge APU that integrated Vega graphics does get accelerated by 61% using FP16.)

What Kaby Lake-G does have that leans toward Vega is support for HBM2 memory (which none of the Polaris cards have) and “high bandwidth memory cache controller and enhanced compute units with additional ROPs” according to the statement from Intel given to Tom’s Hardware.

It should be noted that just because the benchmarks and games that can support rapid packed math don’t take advantage of that capability today, does not mean they won’t have the capability to do so after a driver or firmware update. That being said, if that’s the plan, and even if it’s not, Intel should come out and tell the consumers and media.

The debate and accusations of conspiracy are running rampant again today with this news. Is Intel trying to pull one over on us by telling the community that this is a Vega-based product when it is in fact based on Polaris? Why would AMD allow and promote the Vega branding with a part that it knows didn’t meet the standards it created to be called a Vega architecture solution?

Another interesting thought comes when analyzing this debate with the Ryzen 7 2400G and Ryzen 5 2200G products, both of which claim to use Vega GPUs as a portion of the APU. However, without support for HBM2 or the high-bandwidth cache controller, does that somehow shortchange the branding for it? Or are the memory features of the GPU considered secondary to its design?

This is the very reason why companies hate labels, hate specifications, and hate having all of this tracked by a competent and technical media. Basically every company in the tech industry is guilty of this practice: Intel has 2-3 architectures running as “8th Generation” in the market, AMD is selling RX 500 cards that were once RX 400 cards, and NVIDIA has changed performance capabilities of the MX 150 at least once or twice.

The nature of semi-custom chips designs is that they are custom. Are the GPUs used in the PS4 and Xbox One or Xbox One X called Polaris, Vega, or something else? It would be safer for AMD and its partners to give each new product its own name, its own brand—but then the enthusiasts would want to know what it was most like, and how did it compare to Polaris, or Vega, etc.? It’s also possible that AMD was only willing to sell this product to Intel if it included some of these feature restrictions. In complicated negotiations like this one surely was, anything is feasible.

These are tough choices for companies to make. AMD loves having the Vega branding in more products as it gives weight to the development cost and time it spent on the design. Having Vega associated with more high-end consumer products, including those sold by Intel, give them leverage for other products down the road. From Intel’s vantage point using the Vega brand makes it looks like it has the very latest technology in its new processor and it can benefit from any cross-promotion that occurs around the Vega brand from AMD or its partners.

Unfortunately, it means that the devil is in the details, and the details are something that no one appears to be willing to share. Does it change the performance we saw in our recent Hades Canyon NUC review or our perspective on it as a product? It does not. But as features like Rapid Packed Math or the new geometry shader accelerate in adoption, the capability for Kaby Lake-G to utilize them is going to be scrutinized more heavily.

Source: Various

Intel Unveils More 8th Generation Mobile Processors, 6-Core Mobile CPUs

Subject: Processors, Chipsets, Mobile | April 3, 2018 - 03:01 AM |
Tagged: Intel, Core i9-8950HK, coffee lake h, 8th generation

Intel's rollout of their "8th Generation" processors has been glacial compared to other generations, and overall a bit confusing when it comes to trying to decode what processor belongs to what architecture. 

8th Gen Intel Core i9 Badge.png

Past the 8th generation Kaby Lake-R 15W quad-core mobile processors in August of last year, the Coffee Lake-S desktop CPU launch in October, and the recent Kaby Lake-G launch combining Intel processors with AMD graphics, there has still been one big missing market—high performance mobile processors.

6.png

Today, Intel is finally rounding out it's 8th Generation Mobile processor line-up with the addition of Coffee Lake-H processors. 

1.png

The biggest change with Intel's new mobile lineup is the delightful addition of more cores. All i7 and Xeon-based SKUs will now have 6 cores with Hyper-threading enabled for a total of 12 threads. In addition, the entire i5 lineup is gaining Hyper-threading support, bringing them to 4 cores and 8 threads. 

Coffee Lake-H also marks the introduction of Intel's first "i9" branded processor, the i9-8950HK. Taking the top spot of the mobile lineup previously held by the i7-7920HQ, the i9-8950HK is fully unlocked, with a turbo frequency of up to 4.8GHz. 

In addition, all of these new 8th generation mobile processors will bring support for Optane Memory caching to mobile for the first time.

2.png

Intel is achieving the 4.8GHz single core turbo boost on the i9-8950HK through what they are calling "Intel Velocity Boost." While there aren't a lot of details about exactly how this technology will work yet, Intel has told us that essentially it's a way of providing extra frequency if there is thermal headroom on a given notebook design.

Below the 50 degrees C target temperature, we were told to expect about a 200MHz single-core boost and a 100MHz multi-core boost. With factory overclocking, Intel says they expect to see OEMs hit 5GHz and beyond, thanks in part to Velocity Boost.

3.png

In addition to new processors, Intel is also unveiling their new 300-series mobile chipsets today. The major additions include the adoption of USB 3.1 Gen 2 ports directly from the chipset, as well as the integration of an 802.11ac radio.

The all-new wireless radio is said to be capable of Gigabit speeds using 2x2 MIMO at 160MHz, which is part of the Wave 2 specification. While routers that support the 160MHz band are few and far between today, hopefully, Intel's adoption of this technology into its chipset will help spur faster adoption.

5.png

In addition to the H-series processors, Intel also unveiled several new U-series parts today with Iris Plus graphics.

While the 28W notebook processors combining Intel U-series parts with Iris graphics containing 128MB of eDRAM have been available for generations, the only major customer for these parts historically is Apple. I fully expect these processors to make it into a revised 13" MacBook Pro later this year.

These new U-series parts will also be able to take advantage of the new 300-series chipsets with the integrated 802.11ac and USB 3.1 Gen 2 connectivity. It will be interesting to see if Intel finally integrating Wi-Fi capability directly into the chipset will cause Apple to ditch Broadcom on their MacBook lineup.

Stay tuned for more announcements from Intel today, as well of announcements from notebook vendors utilizing these new processors!

Source: Intel

Intel Adds New Processors and Chipsets to 8th Generation Desktop Lineup

Subject: General Tech, Processors, Chipsets | April 3, 2018 - 03:01 AM |
Tagged: Intel, H370, H310, coffee lake, B360, 8700k

Since the Coffee Lake-S desktop processor launch with the i7-8700K in October of last year, the processor lineup has remained a bit bare compared to previous generations.

While we are used to an Intel processor platform launch having several SKUs covering the entire spectrum of consumers, from Pentium all the way to up Core i7, Coffee Lake currently sits at just 6 different processor options.

1.png

Today, Intel is rounding out the rest of the Coffee Lake desktop lineup with the addition of more traditional desktop SKUs, as well as low-power "T-series" CPUs.

Filling out the i5-lineup, we have two more 6 core options without hyper-threaded in the i5-8600 and i5-8400. The Core i3-8300 provides a 100MHz boost to the existing quad-core i3-8100, while staying in the same 65W TDP.

The little-known T-Series are Intel's lower frequency desktop chips that are configured to run at just 35W while remaining desktop-level performance. Traditionally, these CPUs are used in OEM configurations, but enthusiasts looking for ultra-small form factor and quiet PCs have been known to use these CPUs in the past.

Overall, these CPU announcements are difficult to get too excited about, but help round out the 8th Generation lineup into more available price points, which is always good for consumers looking to build a PC.

2.PNG

Even better news for anyone looking to build an 8th Generation-based PC is the addition of new, lower cost chipsets. Previously, only expensive Z370-based boards were compatible with Coffee Lake processors.

Now, joining the Z370 chipset for consumers, we have the H370, and B360 chipsets. While sacrificing I/O options and overclocking availability, motherboards based on these chipsets should provide a much greater value for consumers looking to build a lower-end Coffee Lake system. The H370, Q370, and B360 chipsets also provide USB 3.1 Gen 2 connectivity directly from the chipset.

In addition, Intel has also added built-in 802.11ac support into all of these new chipsets, providing a solid wireless solution without any additonal peripherals. 

No exact word on availability of these new processors or chipsets, but we expect them to start hitting the market very soon!

Source: Intel
Author:
Manufacturer: Intel

System Overview

Announced at Intel's Developer Forum in 2012, and launched later that year, the Next Unit of Computing (NUC) project was initially a bit confusing to the enthusiast PC press. In a market that appeared to be discarding traditional desktops in favor of notebooks, it seemed a bit odd to launch a product that still depended on a monitor, mouse, and keyboard, yet didn't provide any more computing power.

Despite this criticism, the NUC lineup has rapidly expanded over the years, seeing success in areas such as digital signage and enterprise environments. However, the enthusiast PC market has mostly eluded the lure of the NUC.

Intel's Skylake-based Skull Canyon NUC was the company's first attempt to cater to the enthusiast market, with a slight stray from the traditional 4-in x 4-in form factor and the adoption of their best-ever integrated graphics solution in the Iris Pro. Additionally, the ability to connect external GPUs via Thunderbolt 3 meant Skull Canyon offered more of a focus on high-end PC graphics. 

However, Skull Canyon mostly fell on deaf ears among hardcore PC users, and it seemed that Intel lacked the proper solution to make a "gaming-focused" NUC device—until now.

8th Gen Intel Core processor.jpg

Announced at CES 2018, the lengthily named 8th Gen Intel® Core™ processors With Radeon™ RX Vega M Graphics (henceforth referred to as the code name, Kaby Lake-G) marks a new direction for Intel. By partnering with one of the leaders in high-end PC graphics, AMD, Intel can now pair their processors with graphics capable of playing modern games at high resolutions and frame rates.

DSC04773.JPG

The first product to launch using the new Kaby Lake-G family of processors is Intel's own NUC, the NUC8i7HVK (Hades Canyon). Will the marriage of Intel and AMD finally provide a NUC capable of at least moderate gaming? Let's dig a bit deeper and find out.

Click here to continue reading our review of the Intel Hades Canyon NUC!

The Ryzen rumours are 2 hard to ignore

Subject: General Tech, Processors | March 26, 2018 - 03:20 PM |
Tagged: Ryzen 7 2700X, Ryzen 5 2600, ryzen 2, rumour, amd

TechARP published some leaked benchmarks which seem to show the performance of two as of yet unreleased AMD processors the 8-core Ryzen 7 2700X and 6-core Ryzen 5 2600.  The benchmarks contrast their performance against the current Ryzen 7 1700X as well as Intel's i7 6700K and the results look good.  The new chips outperform their predecessors by a noticeable margin and are able to top the Intel part as well.  These leaked benchmarks are all productivity software, so we don't have gaming results nor have we seen these two chips paired with extremely highly clocked DDR4 yet but it does give us a glimpse at performance; assuming these are accurate of course.

AMDRyzen-580x358.jpg

"Can't wait to find out how fast the 2nd Generation AMD Ryzen processors are? We present to you - the leaked benchmark results and findings of the AMD Ryzen 7 2700X and Ryzen 5 2600 processors!"

Here is some more Tech News from around the web:

Tech Talk

 

Source: TechARP

AMD finalizing fixes for Ryzen, EPYC security vulnerabilities

Subject: Processors | March 20, 2018 - 04:33 PM |
Tagged: ryzenfall, masterkey, fallout, cts labs, chimera, amd

AMD’s CTO Mark Papermaster released a blog today that both acknowledges the security vulnerabilities first shown by a CTS Labs report last week, while also laying the foundation for the mitigations to be released. Though the company had already acknowledged the report, and at least one other independent security company validated the claims, we had yet to hear from AMD officially on the potential impact and what fixes might be possible for these concerns.

In the write up, Papermaster is clear to call out the short period of time AMD was given with this information, quoting “less than 24 hours” from the time it was notified to the time the story was public on news outlets and blogs across the world. It is important to detail for some that may not follow the security landscape clearly that this has no relation to the Spectre and Meltdown issues that are affecting the industry and what CTS did find has nothing to do with the Zen architecture itself. Instead, the problem revolves around the embedded security protocol processor; while an important distinction moving forward, from a practical view to customers this is one and the same.

amd_02.jpg

AMD states that it has “rapidly completed its assessment and is in the process of developing and staging the deployment of mitigations.” Rapidly is an understatement – going from blindsided to an organized response is a delicate process and AMD has proven its level of sincerity with the priority it placed on this.

Papermaster goes on to mention that all these exploits require administrative access to the computer being infected, a key differentiator from the Spectre/Meltdown vulnerabilities. The post points out that “any attacker gaining unauthorized administrative access would have a wide range of attacks at their disposal well beyond the exploits identified in this research.” I think AMD does an excellent job threading the needle in this post balancing the seriousness of these vulnerabilities with the overzealous hype that was created upon their initial release and the accompanying financial bullshit that followed.

AMD provides an easy to understand table with a breakdown of the vulnerabilities, the potential impact of the security risk, and what the company sees as its mitigation capability. Both sets that affect the secure processor in the Ryzen and EPYC designs are addressable with a firmware update for the secure unit itself, distributed through a standard BIOS update. For the Promontory chipset issue, AMD is utilizing a combination of a BIOS update and further work with ASMedia to further enhance the security updates.

amdsec1.png

amdsec2.png

That is the end of the update from AMD at this point. In my view, the company is doing a satisfactory job addressing the problems in what must be an insanely accelerated time table. I do wish AMD was willing to offer more specific time tables for the distribution of those security patches, and how long we should expect to wait to see them in the form of BIOS updates for consumer and enterprise customers. For now, we’ll monitor the situation and look for other input from AMD, CTS, or secondary security firms to see if the risks laid out ever materialize.

For what could have been a disastrous week for AMD, it has pivoted to provide a controlled, well-executed plan. Despite the hype and hysteria that might have started with stock-shorting and buzzwords, the plight of the AMD processor family looks stable.

Source: AMD

Intel promises 2018 processors with hardware mitigation for Spectre and Meltdown

Subject: Processors | March 15, 2018 - 10:29 AM |
Tagged: spectre, meltdown, Intel, cascade lake, cannon lake

In continuing follow up from the spectacle that surrounded the Meltdown and Spectre security vulnerabilities released in January, Intel announced that it has provided patches and updates that address 100% of the products it has launched in the last 5 years. The company also revealed its plan for updated chip designs that will address both the security and performance concerns surrounding the vulnerabilities.

Intel hopes that by releasing new chips to address the security and performance questions quickly it will cement its position as the leader in the enterprise compute space. Customers like Amazon, Microsoft, and Google that run the world’s largest data centers are looking for improved products to make up for the performance loss and assurances moving forward that a similar situation won’t impact their bottom line.

security-wafer-2x1.jpg

For current products, patches provide mitigations for the security flaws in the form operating system updates (for Windows, Linux) and what are called microcode updates, a small-scale firmware that helps provide instruction processing updates for a processor. Distributed by Intel OEMs (system vendors and component providers) as well as Microsoft, the patches have seemingly negated the risks for consumers and enterprise customer data, but with a questionable impact on performance.

The mitigations cause the processors to operate differently than originally designed and will cause performance slowdowns on some workloads. These performance degradations are the source of the handful of class-action lawsuits hanging over Intel’s head and are a potential sore spot for its relationship with partners. Details on the performance gaps from the security mitigations have been sparse from Intel, with only small updates posted on corporate blogs. And because the problem has been so widespread, covering the entire Intel product line of the last 10 years, researchers are struggling to keep up.

The new chips that Intel is promising will address both security and performance considerations in silicon rather than software, and will be available in 2018. For the data center this is the Cascade Lake server processor, and for the consumer and business markets this is known as Cannon Lake. Both will include what Intel is calling “virtual fences” between user and operating system privilege levels and will create a significant additional obstacle for potential vulnerabilities.

The chips will also lay the ground work and foundation for future security improvement, providing a method to more easily update the security of the processors through patching.

By moving the security mitigations from software (both operating system and firmware) into silicon, Intel is reducing the performance impact that Spectre and Meltdown cause on select computing tasks. Assurances that future generations of parts won’t suffer from a performance hit is good news for Intel and its customer base, but I don’t think currently afflicted customers will be satisfied at the assertion they need to buy updated Intel chips to avoid the performance penalty. It will be interesting to see how, if at all, the legal disputes are affected.

meltdown-spectre-kernel-vulnerability.png

The speed at which Intel is releasing updated chips to the market is an impressive engineering feat, and indicates at top-level directive to get this fixed as quickly as possible. In the span of just 12 months (from Intel’s apparent notification of the security vulnerability to the expected release of this new hardware) the company will have integrated fairly significant architectural changes. While this may have been a costly more for the company, it is a drop in the bucket compared to the potential risks of lowered consumer trust or partner migration to competitive AMD processors.

For its part, AMD has had its own security issues pop up this week from a research firm called CTS Labs. While there are extenuating circumstances that cloud the release of the information, AMD does now have a template for how to quickly and effectively address a hardware-level security problem, if it exists.

The full content of Intel's posted story on the subject is included below:

Hardware-based Protection Coming to Data Center and PC Products Later this Year

By Brian Krzanich

In addressing the vulnerabilities reported by Google Project Zero earlier this year, Intel and the technology industry have faced a significant challenge. Thousands of people across the industry have worked tirelessly to make sure we delivered on our collective priority: protecting customers and their data. I am humbled and thankful for the commitment and effort shown by so many people around the globe. And, I am reassured that when the need is great, companies – and even competitors – will work together to address that need.

But there is still work to do. The security landscape is constantly evolving and we know that there will always be new threats. This was the impetus for the Security-First Pledge I penned in January. Intel has a long history of focusing on security, and now, more than ever, we are committed to the principles I outlined in that pledge: customer-first urgency, transparent and timely communications, and ongoing security assurance.

Today, I want to provide several updates that show continued progress to fulfill that pledge. First, we have now released microcode updates for 100 percent of Intel products launched in the past five years that require protection against the side-channel method vulnerabilities discovered by Google. As part of this, I want to recognize and express my appreciation to all of the industry partners who worked closely with us to develop and test these updates, and make sure they were ready for production.

With these updates now available, I encourage everyone to make sure they are always keeping their systems up-to-date. It’s one of the easiest ways to stay protected. I also want to take the opportunity to share more details of what we are doing at the hardware level to protect against these vulnerabilities in the future. This was something I committed to during our most recent earnings call.

While Variant 1 will continue to be addressed via software mitigations, we are making changes to our hardware design to further address the other two. We have redesigned parts of the processor to introduce new levels of protection through partitioning that will protect against both Variants 2 and 3. Think of this partitioning as additional “protective walls” between applications and user privilege levels to create an obstacle for bad actors.

These changes will begin with our next-generation Intel® Xeon® Scalable processors (code-named Cascade Lake) as well as 8th Generation Intel® Core™ processors expected to ship in the second half of 2018. As we bring these new products to market, ensuring that they deliver the performance improvements people expect from us is critical. Our goal is to offer not only the best performance, but also the best secure performance.

But again, our work is not done. This is not a singular event; it is a long-term commitment. One that we take very seriously. Customer-first urgency, transparent and timely communications, and ongoing security assurance. This is our pledge and it’s what you can count on from me, and from all of Intel.

Source: Intel

All in the wrist? Fingering your Threadripper's TIM

Subject: Cases and Cooling, Processors | March 9, 2018 - 02:45 PM |
Tagged: amd, Threadripper, tim, ryzen

If you are looking for advice on how to install and cool a Threadripper. [H]ard|OCP have quickly become the site to reference.  They've benchmarked the majority of waterblocks which are compatible with AMD's big chip as well as publishing videos on how to install it on your motherboard.  Today the chip is out again, this time it is getting a manually applied TIM facial.  Check out Kyle's tips on getting ready to coat your chip and the best way to spread the TIM to ensure even cooling.

gooey.PNG

"AMD's Threadripper has shown to be a very different CPU in all sorts of ways and this includes how you install the Thermal Interface Material as well should you be pushing your Threadripper's clocks beyond factory defaults. We show you what techniques we have found to give us the best temperatures when overclocking. "

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP
Author:
Manufacturer: AMD

Overview

It's clear by now that AMD's latest CPU releases, the Ryzen 3 2200G and the Ryzen 5 2400G are compelling products. We've already taken a look at them in our initial review, as well as investigated how memory speed affected the graphics performance of the internal GPU but it seemed there was something missing.

Recently, it's been painfully clear that GPUs excel at more than just graphics rendering. With the rise of cryptocurrency mining, OpenCL and CUDA performance are as important as ever.

Cryptocurrency mining certainly isn't the only application where having a powerful GPU can help system performance. We set out to see how much of an advantage the Radeon Vega 11 graphics in the Ryzen 5 2400G provided over the significantly less powerful UHD 630 graphics in the Intel i5-8400.

DSC04637.JPG

Test System Setup
CPU AMD Ryzen 5 2400G
Intel Core i5-8400
Motherboard Gigabyte AB350N-Gaming WiFi
ASUS STRIX Z370-E Gaming
Memory 2 x 8GB G.SKILL FlareX DDR4-3200
(All memory running at 3200 MHz)
Storage Corsair Neutron XTi 480 SSD
Sound Card On-board
Graphics Card AMD Radeon Vega 11 Graphics
Intel UHD 630 Graphics
Graphics Drivers AMD 17.40.3701
Intel 23.20.16.4901
Power Supply Corsair RM1000x
Operating System Windows 10 Pro x64 RS3

 

GPGPU Compute

Before we take a look at some real-world examples of where a powerful GPU can be utilized, let's look at the relative power of the Vega 11 graphics on the Ryzen 5 2400G compared to the UHD 630 graphics on the Intel i5-8400.

sisoft-screen.png

SiSoft Sandra is a suite of benchmarks covering a wide array of system hardware and functionality, including an extensive range of GPGPU tests, which we are looking at today. 

sandra1.png

Comparing the raw shader performance of the Ryzen 5 2400G and the Intel i5-8400 provides a clear snapshot of what we are dealing with. In every precision category, the Vega 11 graphics in the AMD part are significantly more powerful than the Intel UHD 630 graphics. This all combines to provide a 175% increase in aggregate shader performance over Intel for the AMD part. 

Now that we've taken a look at the theoretical power of these GPUs, let's see how they perform in real-world applications.

Continue reading our look at the GPU compute performance of the Ryzen 5 2400G!

AMD goes after $15B embedded space with two new embedded processors

Subject: Processors | February 21, 2018 - 11:22 AM |
Tagged: amd, ryzen, EPYC, embedded, ryzen v1000, epyc 3000

Continuing its expansion of bringing modern processor and graphics designs to as many of its targeted market segments as possible, AMD announced today two new families that address the embedded processor space. The company has already seen double-digital YoY sequential growth in revenue from embedded markets, but the release of the Epyc Embedded 3000 and Ryzen Embedded V1000 family create significant additional opportunity for the company.

amdembed1.png

Embedded markets are unique from traditional consumer and enterprise channels as they address areas from military and aerospace applications to networking hardware and storage devices to retail compute and even casino and arcade gaming. These markets tend to be consistent and stable without the frequent or dramatic swings in architectural preference or market share that we often witness in consumer PCs. As AMD continues to grow and look for stable sources of adjacent income, embedded processors are a critical avenue and one that I believe AMD has distinct advantages in.

amdembed2.png

Research firm IDC estimates the market size that AMD can address with this pair of chip families exceeds $14-15B annually. The largest portion of that ($11-12B) includes storage and networking infrastructure systems that the Epyc 3000 line will target. The remaining amount includes IoT gateways, medical systems, and casino gaming hardware and is the purview of the Ryzen V1000.

Competitors in this space include Intel (with its Xeon D-series and Core family of chips) and many Arm-based designs that focus on low power integration. Intel has the most potential for immediate negative impact with AMD’s expansion in the embedded markets as the shared architecture and compatibility mean customers can more easily move between platforms. AMD is positioning both parts directly against Intel with proposed advantages in value and performance, hoping to move embedded customers to the combined AMD solution.

amdembed5.png

The Ryzen V1000 family combines the company’s recent processor and graphics architectures on a single chip, similar in function to the consumer Ryzen design that was released for notebook and desktop PCs. For the embedded customers and devices being targeted, this marks a completely new class of product with two key benefits over competing solutions. First, it allows for smaller and cooler system designs (critical for the cramped working environments of the embedded space) while increasing maximum performance.

amdembed6.png

Second, the V1000 allows integrators to downscale from using a combination of an Intel processor and a separate, discrete graphics chip to a single chip design. This both raises the ASP (average selling price) for AMD, increasing revenue and potential margin, while lowering the price that customers pay in total for system components.

While AMD struggles to find ways to promote the value of higher performance graphics on its new processors, where it has a significant advantage over Intel, for the consumer and business space, in the embedded markets that additional performance value is well understood. Casino gaming often utilizes multiple high-resolution displays for a single device with demand for high-quality rendered 3D graphics, of which the V1000 can now provide in a single chip design. The same is seen with medical imaging hardware, including ultrasound machines for women’s healthcare and cardiovascular diagnostics.

amdembed3.png

The Epyc Embedded 3000 family does not include integrated graphics on-chip and instead offers higher core performance and performance per dollar compared to competing Intel solutions. AMD believes that the Epyc 3000 will double the total addressable market for the company when it comes to networking and storage infrastructure.

amdembed4.png

AMD previously has disclosed its partnership with Cisco that included AMD-built processor options for some families of switches and other networking gear. As the demand for edge computing grows (systems that will exist near the consumer or enterprise side of a network to aid in computational needs of high speed networks), AMD is offering a compelling solution to counter the Intel Xeon family of processors.

Both the Epyc 3000 and Ryzen V1000 chips represent the first time AMD has targeted embedded customers with specific features and capabilities at the hardware level. During the design phase of its Zen CPU and Vega graphics architecture, business unit leaders included capabilities like multiple 10-gigabit network integration, support of four 4K display outputs, ECC memory (error correction capability for mission-critical applications), and unique embedded-based interfaces for external connectivity.

While these were not needed for the consumer segments of the market, and weren’t exposed in those hardware launches, they provide crucial benefits for AMD customers when selecting a chip for embedded markets.

Source: AMD