The SDM845 Reference Platform and CPU Results

The Snapdragon 845 is Qualcomm’s latest flagship mobile platform, officially announced on December 6 and known officially as the SDM845 (moving from the MSMxxxx nomenclature of previous iterations). At a recent media event we had a chance to go hands-on with a development platform device for a preview of this new Snapdragon's performance, the results of which we can now share. Will the Snapdragon 845 be Qualcomm's Android antidote to Apple's A11? Read on to find out!

SDM845_Platform.jpg

The SDM845 QRD (Qualcomm Reference Design) Device

While this article will focus on CPU and GPU performance with a few known benchmarks, the Snapdragon 845 is of course a full mobile platform which combines 8-core Kryo 385 CPU, Adreno 630 graphics, Hexagon 685 DSP (which includes the Snapdragon Neural Processing Engine), Spectra 280 image processor, X20 LTE modem, etc. The reference device was packaged like a typical 5.5-inch Android smartphone, which can only help to provide a real-world application of thermal management during benchmarking.


Qualcomm Reference Design Specifications:

  • Baseband Chipset: SDM845
  • Memory: 6 GB LPDDR4X (PoP)
  • Display: 5.5-inch 1440x2560
  • Camera:
    • Front: IMX320 12 MP Sensor
    • Rear: IMX386 12 MP Sensor
  • Audio:
    • No 3.5 mm headset jack (Analog over USB-C)
    • 4 Digital Microphones
  • Connector: USB 3.1 Type-C
    • DisplayPort over USB-C

At the heart of the Snapdragon 845 is the octa-core Kryo 385 CPU, configured with 4x performance cores and 4x efficiency cores, and offering clock speeds of up to 2.8 GHz. In comparison the Snapdragon 835 had a similar 8x CPU configuration (Kryo 280) clocked up to 2.45 GHz. The SDM845 is produced on 10 nm LPP process technology, while the SD835 (MSM8998) was the first to be manufactured at 10 nm (LPE). It is not surprising that Qualcomm is getting higher clock speeds from this new chip at the same process node, and increases in efficiency (the new 10nm LPP FinFET process) should theoretically result in similar - or possibly even lower - power draw from these higher clocks.

Continue reading our performance preview of the new Snapdragon 845 mobile platform!!

Intel Pushes Xeon to the Edge With Refreshed Skylake-Based Xeon D SoCs

Subject: Processors | February 7, 2018 - 09:01 AM |
Tagged: Xeon D, xeon, servers, networking, micro server, Intel, edge computing, augmented reality, ai

Intel announced a major refresh of its Xeon D System on a Chip processors aimed at high density servers that bring the power of the datacenter as close to end user devices and sensors as possible to reduce TCO and application latency. The new Xeon D 2100-series SoCs are built on Intel’s 14nm process technology and feature the company’s new mesh architecture (gone are the days of the ring bus). According to Intel the new chips are squarely aimed at “edge computing” and offer up 2.9-times the network performance, 2.8-times the storage performance, and 1.6-times the compute performance of the previous generation Xeon D-1500 series.

Intel New Xeon D-2100.png

Intel has managed to pack up to 18 Skylake-based processing cores, Quick Assist Technology co-processing (for things like hardware accelerated encryption/decryption), four DDR4 memory channels addressing up to 512 GB of DDR4 2666 MHz ECC RDIMMs, four Intel 10 Gigabit Ethernet controllers, 32 lanes of PCI-E 3.0, and 20 lanes of flexible high speed I/O that includes up to 14 lanes of SATA 3.0, four USB 3.0 ports, or 20 lanes of PCI-E. Of course, the SoCs support Intel’s Management Engine, hardware virtualization, HyperThreading, Turbo Boost 2.0, and AVX-512 instructions with 1 FMA (fuse-multiply-add) as well..

xeond2100-14.jpg

Suffice it to say, there is a lot going on here with these new chips which represent a big step up in capabilities (and TDPs) further bridging the gap between the Xeon E3 v5 family and Xeon E5 family and the new Xeon Scalable Processors. Xeon D is aimed at datacenters where power and space are limited and while the soldered SoCs are single socket (1P) setups, high density is achieved by filling racks with as many single processor Mini ITX boards as possible. Xeon D does not quite match the per-core clockspeeds of the “proper” Xeons but has significantly more cores than Xeon E3 and much lower TDPs and cost than Xeon E5. It’s many lower clocked and lower power cores excel at burstable tasks such as serving up websites where many threads may be generated and maintained for long periods of time but not need a lot of processing power and when new page requests do come in the cores are able to turbo boost to meet demand. For example, Facebook is using Xeon D processors to serve up its front end websites in its Yosemite OpenRack servers where each server rack holds 192 Xeon D 1540 SoCs (four Xeon D boards per 1U sleds) for 1,536 Broadwell cores. Other applications include edge routers, network security appliances, self-driving vehicles, and augmented reality processing clusters. The autonomous vehicles use case is perhaps the best example of just what the heck edge computing is. Rather than fighting the laws of physics to transfer sensor data back to a datacenter for processing to be sent back to the car to in time for it to safely act on the processed information, the idea of edge computing is to bring most of the processing, networking, and storage power as close as possible to both the input sensors and the device (and human) that relies on accurate and timely data to make decisions.

xeond2100-15.jpg

As far as specifications, Intel’s new Xeon D lineup includes 14 processor models broken up into three main categories. The Edge Server and Cloud SKUs include eight, twelve, and eighteen core options with TDPs ranging from 65W to 90W. Interestingly, the 18 core Xeon D does not feature the integrated 10 GbE networking the lower end models have though it supports higher DDR4 memory frequencies. The two remaining classes of Xeon D SoCs are “Network Edge and Storage” and “Integrated Intel Quick Assist Technology” SKUs. These are roughly similar with two eight core, one 12 core, and one 16 core processor (the former also has a quad core that isn’t present in the latter category) though there is a big differentiator in clockspeeds. It seems customers will have to choose between core clockspeeds or Quick Assist acceleration (up to 100 Gbps) as the chips that do have QAT are clocked much lower than the chips without the co-processor hardware which makes sense because they have similar TDPs so clocks needed to be sacrificed to maintain the same core count. Thanks to the updated architecture, Intel is encroaching a bit on the per-core clockspeeds of the Xeon E3 and Xeon E5s though when turbo boost comes into play the Xeon Ds can’t compete.

Intel Xeon D-2100 SKU Information.png

The flagship Xeon D 2191 offers up two more cores (four additional threads) versus the previous Broadwell-based flagship Xeon D 1577 as well as higher clockspeeds at 1.6 GHz base versus 1.3 GHz and 2.2 GHz turbo versus 2.1 GHz turbo. The Xeon D 2191 does lack the integrated networking though. Looking at the two 16 core refreshed Xeon Ds compared to the 16 core Xeon D 1577, Intel has managed to increase clocks significantly (up to 2.2 GHz base and 3.0 GHz boost versus 1.3 GHz base and 2.10 GHz boost), double the number of memory channels and network controllers, and increase the maximum amount of memory from 128 GB to 512 GB. All those increases did come at the cost of TDP though which went from 45W to 100W.

xeond2100-6.jpg

Xeon D has always been an interesting platform both for enthusiasts running VM labs and home servers and big data enterprise clients building and serving up the 'next big thing' built on the astonishing amounts of data people create and consume on a daily basis. (Intel estimates a single self driving car would generate as much as 4TB of data per day while the average person in 2020 will generate 1.5 GB of data per day and VR recordings such as NFL True View will generate up to 3TB a minute!) With Intel ramping up both the core count, per-core performance, and I/O the platform is starting to not only bridge the gap between single socket Xeon E3 and dual socket Xeon E5 but to claim a place of its own in the fast-growing server market.

I am looking forward to seeing how Intel's partners and the enthusiast community take advantage of the new chips and what new projects they will enable. It is also going to be interesting to see the responses from AMD (e.g. Snowy Owl and to a lesser extent Great Horned Owl at the low and niche ends as it has fewer CPU cores but a built in GPU) and the various ARM partners (Qualcomm Centriq, X-Gene, Ampere, ect.*) as they vie for this growth market space with higher powered SoC options in 2018 and beyond.

Also read:

*Note that X-Gene and Ampere are both backed by the Carlyle Group now with MACOM having sold X-Gene to Project Denver Holdings and the ex-Intel employee led Ampere being backed by the Carlyle Group.

Source: Intel

It takes a hefty CPU to power a Chocobo

Subject: Processors | February 5, 2018 - 04:28 PM |
Tagged: final fantasy xv, round up

The new iteration of Final Fantasy sports some hefty recommendations, including the need for a Core i7-3770 or FX-8350 powering your system.  TechSpot decided to test out a variety of CPUs to see how they performed in tandem with a GTX 1080 Ti.  With 14 CPUs represented, including several generations of Intel chips and a representative from each of the three Ryzen lines they proceeded to run through a battery of benchmarks.  The tests quickly showed that if you are running a quad core CPU clocked lower than 4GHz, from either vendor, you are not going to have a good time.  Check out the full results to see if your system can handle it or if you should be shopping for a Ryzen 5 or 7, or perhaps a higher end Coffee Lake if Intel is your cup of tea.

2018-02-05-image-5.jpg

"Today we're checking out Final Fantasy XV CPU performance using the new standalone benchmark released ahead of next month's PC launch. The reason we want to look at CPU performance first is because the game is extremely CPU intensive, far more so than we were expecting."

Here are some more Processor articles from around the web:

Processors

 

Source: Techspot

Intel Recommends Waiting to Apply Haswell and Broadwell Spectre and Meltdown Patches

Subject: Processors | January 22, 2018 - 09:40 PM |
Tagged: spectre, meltdown, Intel

A couple of weeks ago, Intel acknowledged reports that firmware updates for Spectre and Meltdown resulted in reboots and other stability issues. At the time, they still suggested that end-users should apply the patch regardless. They have since identified the cause and their recommendation has changed: OEMs, cloud service providers, system manufacturers, software vendors, and end users should stop deploying the firmware until a newer solution is released.

INTEL_XeonE7v3_1_p.jpg

The new blog post also states that an early version of the updated patch has been created. Testing on the updated firmware started over the weekend, and it will be published shortly after that process has finished.

According to their security advisory, another patch that solved both Spectre 1 and Meltdown did not exhibit stability and reboot issues. This suggests that something went wrong with the Spectre 2 mitigation, which could be a fun course of speculation for tea-leaf readers to guess what went wrong in the patch. Ultimately, it doesn’t matter, though, because new code will be available soon.

Source: Intel

GIGABYTE Announces Gemini Lake Motherboards with Intel Pentium Silver Processors

Subject: Motherboards, Processors | January 19, 2018 - 01:39 PM |
Tagged: small form-factor, SFF, pentium, motherboard, mini ITX, Intel Pentium Silver, Intel, integrated CPU, gigabyte, gemini lake, fanless, embedded, celeron

GIGABYTE has announced motherboards for the new Gemini Lake platform featuring built-in Intel Pentium Silver and Intel Celeron processors. These fanless J/N series motherboards also offer the company's trademark "Ultra Durable" components and customizable performance settings.

J4005N.jpg

As to the Gemini Lake platform, here are some of the details as reported by CNXSoft at last month's CPU launch:

"The models include two Pentium Silver quad core processor with N5000 for mobile, J5005 for desktop, and four Celeron dual/quad core processors with N4000 & N4100 for mobile, and Celeron J4005 & J4105 for desktop.

All processors share the same 4MB cache which will help with performance improvement, and dual channel DDR4-2400, LPDDR4-2400 memory. Pentium processors come with Intel UHD Graphics 605 clocked up to 750/800 MHz, and Celeron processors are instead equipped with UHD Graphics 600 up to 650/750 MHz which the exactly frequency depending on model."

Gemini-Lake-Desktop-Processors.jpg

Image credit: CNXSoft

From GIGABYTE:

"[our] newest J/N series motherboards utilize a fanless cooling solution and the built-in Intel Gemini Lake processors make them perfect for compact, mainstream builds. The motherboards support HDMI 2.0 4K at 21:9 resolution for high definition video quality. Integrated PCIe Gen2 x2 M.2 slots supporting high speed NVMe SSD allows for fast data transfer speeds. The board's native Intel WIFI via the M.2 Connector along with an independently sold Intel CNVi wireless networking solution can make way for impressive wireless connectivity exceeding 1 gigabit per second, traditionally found in wired connections. Additionally, its support for M.2 SATA SSD, UDIMM DDR4 modules rated for 2400MHz, and noise free configurations makes it a perfect option for school, business, and home usage."

Pricing and availability were not specified in the press release (full PR after the break).

Source: GIGABYTE

Intel Responds to Reboot Issues with Meltdown and Spectre Updates

Subject: Processors | January 18, 2018 - 01:17 PM |
Tagged: update, spectre, security, restart, reboot, processor, patch, meltdown, Intel, cpu

The news will apparently get worse before it gets any better for Intel, as the company updated their security recommendations for the Spectre/Meltdown patches for affected CPUs to address post-patch system restart issues. Specifically, Intel notes that issues may be introduced in some configurations with the current patches, though the company does not recommend discontinued use of such updates:

" Intel recommends that these partners, at their discretion, continue development and release of updates with existing microcode to provide protection against these exploits, understanding that the current versions may introduce issues such as reboot in some configurations".

meltdown_spectre.png

Image credit: HotHardware

The recommendation section of the security bulletin, updated yesterday (January 17, 2018), is reproduced below:

  • Intel has made significant progress in our investigation into the customer reboot sightings that we confirmed publicly last week
  • Intel has reproduced these issues internally and has developed a test method that allows us to do so in a predictable manner
  • Initial sightings were reported on Broadwell and Haswell based platforms in some configurations. During due diligence we determined that similar behavior occurs on other products including Ivy Bridge, Sandy Bridge, Skylake, and Kaby Lake based platforms in some configurations
  • We are working toward root cause
  • While our root cause analysis continues, we will start making beta microcode updates available to OEMs, Cloud service providers, system manufacturers and Software vendors next week for internal evaluation purposes
  • In all cases, the existing and any new beta microcode updates continue to provide protection against the exploit (CVE-2017-5715) also known as “Spectre Variant 2”
  • Variants 1 (Spectre) and Variant 3 (Meltdown) continue to be mitigated through system software changes from operating system and virtual machine vendors
  • As we gather feedback from our customers we will continue to provide updates that improve upon performance and usability

Intel recommendations to OEMs, Cloud service providers, system manufacturers and software vendors

  • Intel recommends that these partners maintain availability of existing microcode updates already released to end users. Intel does not recommend pulling back any updates already made available to end users
  • NEW - Intel recommends that these partners, at their discretion, continue development and release of updates with existing microcode to provide protection against these exploits, understanding that the current versions may introduce issues such as reboot in some configurations
  • NEW - We further recommend that OEMs, Cloud service providers, system manufacturers and software vendors begin evaluation of Intel beta microcode update releases in anticipation of definitive root cause and subsequent production releases suitable for end users

Intel recommendations to end users

  • Following good security practices that protect against malware in general will also help protect against possible exploitation until updates can be applied
  • For PCs and Data Center infrastructure, Intel recommends that patches be applied as soon as they are available from your system manufacturer, and software vendors
  • For data center infrastructure, Intel additionally recommends that IT administrators evaluate potential impacts from the reboot issue and make decisions based on the security profile of the infrastructure

Intel has worked with operating system vendors, equipment manufacturers, and other ecosystem partners to develop software updates that can help protect systems from these methods. End users and systems administrators should check with their operating system vendors and apply any available updates as soon as practical.

The full list of affected processors from Intel's security bulletin follows:

  • Intel® Core™ i3 processor (45nm and 32nm)
  • Intel® Core™ i5 processor (45nm and 32nm)
  • Intel® Core™ i7 processor (45nm and 32nm)
  • Intel® Core™ M processor family (45nm and 32nm)
  • 2nd generation Intel® Core™ processors
  • 3rd generation Intel® Core™ processors
  • 4th generation Intel® Core™ processors
  • 5th generation Intel® Core™ processors
  • 6th generation Intel® Core™ processors
  • 7th generation Intel® Core™ processors
  • 8th generation Intel® Core™ processors
  • Intel® Core™ X-series Processor Family for Intel® X99 platforms
  • Intel® Core™ X-series Processor Family for Intel® X299 platforms
  • Intel® Xeon® processor 3400 series
  • Intel® Xeon® processor 3600 series
  • Intel® Xeon® processor 5500 series
  • Intel® Xeon® processor 5600 series
  • Intel® Xeon® processor 6500 series
  • Intel® Xeon® processor 7500 series
  • Intel® Xeon® Processor E3 Family
  • Intel® Xeon® Processor E3 v2 Family
  • Intel® Xeon® Processor E3 v3 Family
  • Intel® Xeon® Processor E3 v4 Family
  • Intel® Xeon® Processor E3 v5 Family
  • Intel® Xeon® Processor E3 v6 Family
  • Intel® Xeon® Processor E5 Family
  • Intel® Xeon® Processor E5 v2 Family
  • Intel® Xeon® Processor E5 v3 Family
  • Intel® Xeon® Processor E5 v4 Family
  • Intel® Xeon® Processor E7 Family
  • Intel® Xeon® Processor E7 v2 Family
  • Intel® Xeon® Processor E7 v3 Family
  • Intel® Xeon® Processor E7 v4 Family
  • Intel® Xeon® Processor Scalable Family
  • Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series
  • Intel® Atom™ Processor C Series
  • Intel® Atom™ Processor E Series
  • Intel® Atom™ Processor A Series
  • Intel® Atom™ Processor x3 Series
  • Intel® Atom™ Processor Z Series
  • Intel® Celeron® Processor J Series
  • Intel® Celeron® Processor N Series
  • Intel® Pentium® Processor J Series
  • Intel® Pentium® Processor N Series

We await further updates and developments from Intel, system integrators, and motherboard partners.

Source: Intel

Gaming in isolation, complete Meltdown or not?

Subject: Processors | January 8, 2018 - 07:24 PM |
Tagged: meltdown, security, linux, nvidia

Thanks to a wee tech conference going on, performing a wide gamut of testing of the effect of the Meltdown patch is taking some time.  Al has performed benchmarks focusing on the performance impact the patch has on your storage subsystem, which proved to be very minimal.  Phoronix are continuing their Linux testing, the latest of which focuses on the impact the patch has on NVIDIA GPUs, specifically the GTX 1060 and GTX 1080 Ti.  The performance delta they see falls within measurement error levels; in other words there is no measurable impact after the patch was installed.  For now it seems the most impact this patch has is for scientific applications and hosting providers which use select high I/O workloads and large amounts of virtual machines.  For now the cure to Meltdown is nowhere near as bad as what it protects against for most users ... pity the same cannot be said for Spectre.

image.php_.jpg

"Earlier this week when news was still emerging on the "Intel CPU bug" now known as Spectre and Meltdown I ran some Radeon gaming tests with the preliminary Linux kernel patches providing Kernel Page Table Isolation (KPTI) support. Contrary to the hysteria, the gaming performance was minimally impacted with those open-source Radeon driver tests while today are some tests using the latest NVIDIA driver paired with a KPTI-enabled kernel."

Here are some more Processor articles from around the web:

Processors

Source: Phoronix

CES 2018: AMD Drops Ryzen CPU Prices By Up to 30 Percent

Subject: Processors | January 8, 2018 - 12:00 AM |
Tagged: Threadripper, ryzen, processor, price cut, cpu, CES 2018, CES, amd

AMD announced today a price drop for most of its Ryzen processor lineup, making the company's multi-core-focused parts even more competitive to Intel in terms of cost-to-performance. While not every Ryzen and Threadripper processor is seeing a price reduction, many parts are being reduced by up to 30 percent.

Processor Cores/Threads Previous SEP New SEP Percent Reduction
Threadripper 1950X 16/32 $999 $999 N/A
Threadripper 1920X 12/24 $799 $799 N/A
Threadripper 1900X 8/16 $549 $449 -18.2%
Ryzen 7 1800X 8/16 $499 $349 -30.1%
Ryzen 7 1700X 8/16 $399 $309 -22.5%
Ryzen 7 1700 8/16 $329 $299 -9.1%
Ryzen 5 1600X 6/12 $249 $219 -12.0%
Ryzen 5 1600 6/12 $219 $189 -13.7%
Ryzen 5 1500X 4/8 $189 $174 -7.9%
Ryzen 5 2400G 4/8   $169 N/A
Ryzen 3 1300X 4/4 $129 $129 N/A
Ryzen 3 2200G 4/4   $99 N/A

Note also in the price chart the new "G" series Ryzen APUs with integrated Radeon Vega graphics. Check pcper.com for more info on this new part.

Some of the new prices are already reflected, and in some cases reduced further, at retailers like Amazon.

To determine the new prices, AMD performed comparative price testing with its online retail partners last quarter, and determined that these new prices were the best balance between performance and value.

With second generation Ryzen processors not scheduled to launch until later this spring, the price drop not only helps AMD move existing inventory, it also keeps the company at the top of enthusiasts' minds in the midst of the fallout around the recent processor security issues, one of which primarily affects Intel processors.

Source:

CES 2018: AMD Announces 2nd Generation Ryzen CPUs for April, Threadripper for 2H 2018

Subject: Processors | January 8, 2018 - 12:00 AM |
Tagged: Zen+, Zen, ryzen 2000, ryzen, CES 2018, CES, amd

During AMD’s CES 2018 Tech Day, CEO Lisa Su announced the plans for the second-generation Ryzen processor roll-out in April. This is the revised design that has been rumored for months, with a process technology change and slight tweaks to features.

03.jpg

Details are expectantly short, but what we know is that these parts will move from a 14nm process technology to 12nm from GlobalFoundries. AMD is calling the design “Zen+” and this is NOT Zen 2 – that is coming next year. You should expect higher clocks for Ryzen 2000-series processors and improvements to Precision Boost that will enable more consistent and gradual clock speed shifts in workloads of interesting like gaming.

02.jpg

Also on the roadmap now are updated Threadripper processors with the same “Zen+” enhancements, coming out in 2H of 2018.

04.jpg

The great news for enthusiasts that have already bought into AMD’s current generation platform is existing motherboards will support this processor update, as long as you have the associated BIOS. Motherboards are already being updated today for the channel (to support the Ryzen APU launch) so there should be little concern with compatibility come April.

05.jpg

However, there IS a new chipset coming with “Zen+”, the AMD X470. Information on it is also slim, but it includes some optimizations and fixes. AMD had growing pains with the initial set of motherboard releases including power concerns and routing issues, both of which are addressed with the new design.

That’s all we know for now, but I am excited to get my hands on the Ryzen second-generation processors this spring to see how much performance and behavior has changed. Intel has definitely changed the landscape since Ryzen’s first release in March of 2017, so enthusiasts should welcome the back and forth competition cycle once again.

Source: PCPer

CES 2018: AMD Ryzen Desktop CPU with Vega Graphics Coming Feb 12

Subject: Processors | January 8, 2018 - 12:00 AM |
Tagged: Zen, Vega, ryzen, CES 2018, CES, APU, amd, 2400G, 2200G

Though AMD might not use the term APU anymore, that’s what we are looking at today. The Ryzen + Vega processor (single die implementation, to be clear) for desktop solutions will begin shipping February 12 and will bring high-performance integrated graphics to low cost PCs. Fully titled the “AMD Ryzen Desktop Processor with Radeon Vega Graphics”, this new processor will utilize the same AM4 socket and motherboards that have been shipping since March of 2017. Finally, a good use for those display outputs!

04.jpg

Though enthusiasts might have little interest in these parts, it is an important step for AMD. Building a low-cost PC with a Ryzen CPU has been difficult due to the requirement of a discrete graphics card. Nearly all of Intel’s processors have integrated graphics, and though we might complain about the performance it provides in games, the truth is that the value of not needing another component is crucial for reducing costs.

03.jpg

Without an APU that had both graphics and the company’s greatly improved Zen CPU architecture, AMD was leaving a lot of potential sales on the table. Also, the market for entry-level gaming in small form factor designs is significant.

02.jpg

Two models will be launching: the Ryzen 5 2400G and Ryzen 3 2200G. Clock speeds are higher than what exists on the Ryzen 5 1400 and Ryzen 3 1200 and match the core and thread count. The 2400G includes 11 Compute Units (704 stream processors) and the 2200G has 8 CUs (512 stream processors). The TDP of both is 65 watts.

01.jpg

The pricing configuration gives AMD some impressive placement. The $169 Ryzen 5 2400G will offer much better graphics performance than the $30 more expensive Core i5-8400 (based on current pricing) and has equivalent performance to the $100+ higher Core i5-8400 and NVIDIA GT 1030 discrete solution.

05.jpg

When looking at CPU performance, the new Ryzen processors offer higher scores than the units they are replacing. They do this while adding Vega graphics capability and matching or lower prices.

08.jpg

AMD even went as far to show the overclocking headroom that the Ryzen APU can offer. During an on-site demo we saw the Ryzen 5 2400G improve its 3DMark score by 39% with memory frequency and GPU clock speed increases. Moving the GPU clock from ~1100 MHz to 1675 MHz will mean a significant increase in power consumption, and I do question the size of the audience that wants to overclock an APU. Still – cool to see!

The Ryzen CPU with Vega graphics is a product we all expected to see, it’s the first perfect marriage of AMD’s revitalized CPU division and its considerable advantage in integrated graphics. It has been a long time since one of AMD’s APUs appeared interesting to me and stoked my desire to build a low-cost, mainstream gaming build. Looks for reviews in just a few short weeks!

Source: PCPer