Intel Technical Documentation outs 8-Core Coffee Lake-S Processor

Subject: Processors | April 16, 2018 - 10:02 AM |
Tagged: coffee lake, coffee lake s, 8700k, Z370, Z390, 6+2, 8+2

The eventual release of an Intel "Z390" chipset and 8-core Coffee Lake-S processor seem to be almost an inevitability after all of the leaks we've had about these potential parts.

One more piece of evidence was brought to our attention recently, as spotted by an eagle-eyed user on Reddit. Intel's Technical Documentation website now seems to contain documents referencing an unreleased "Coffee Lake S 8+2" product.

cfl-s_2.png

In Intel nomenclature, 8+2 would refer to 8 CPU cores, plus 2 integrated GPU cores. For example, the current 6-core i7-8700K processor is referred to as a 6+2 processor configuration. Hence, the 8+2 processor being referenced here would be a sibling to the 8700K, with two more CPU cores. 

Unfortunately, the actual documents are hidden behind an Intel login page, so we are unable to view them in full, but rather only have titles and short descriptions of their contents.

Given their recent appetite for the "i9" brand as the highest-end configurations, as we saw on the recent Coffee Lake-H notebook processor launch, I would expect this to be the first mainstream Intel desktop processor to carry the "i9" branding.

cfl-s_1.png

Additionally, we see documents referring to design aspects of both the existing Coffee Lake-S 6+2 part (8700K) and this new 8+2 part. This brings us hope that Z370 motherboards will remain compatible with this new processor, and not require yet another chipset.

While it seems likely that these new processors will launch alongside a Z390 chipset, we would expect the same level of compatibility while adding connectivity features built into the chipset such as USB 3.1 Gen 2 and 802.11ac wireless, as we saw on the recent H370 and B360 chipsets.

With the launch of AMD's Ryzen 2000-series of processors looming later this week, it seems like Intel is playing the waiting game before launching this 8-core processor. Speculation is that we could see this part before Computex in June.

Source: Reddit

Ryzen a little late to get 2 rumours

Subject: Processors | April 13, 2018 - 07:13 PM |
Tagged: ryzen 2, preview, amd, Pinnacle Ridge, x470, Ryzen 5 2600X, Ryzen 7 2700X

Better late than never to get previews of the second coming of Ryzen up, from two additional sources above and beyond the post below.  Pinnacle Ridge is poised to release next Thursday but there are a few details which have surfaced for our enjoyment about the chips themselves as well as the new Wraith coolers.  The Tech Report offers the few tidbits they are currently able to disclose, such as the infection of RGBs in the Wraith Prism cooler, while TechARP have posted a few leaked benchmarks which may or may not reflect reality as well as a look at the reviewers kit.  We know the Ryzen 5 2600X has six cores and the Ryzen 7 2700X sports eight but so far the only other thing we know for sure is what they both look like physically

Capture.PNG

"AMD is taking the wraps off its first second-generation Ryzen CPUs this morning. Join us as we take a first look at the specs and pricing of the first Zen+ products ahead of their official launch."

Here is some more Tech News from around the web:

Tech Talk

AMD puts Ryzen 2000 family up for pre-order...NOW

Subject: Processors | April 13, 2018 - 09:00 AM |
Tagged: Zen+, ryzen, pre-order, amd

In a move that should shock nobody, ahead of its April 19th release, AMD is offering pre-orders for the Ryzen 2000 family of processors starting today at Amazon.com and other key retailers.

The previously leaked specifications all turned out to be true: you'll find the Ryzen 7 2700X as the top end part with a base clock speed 3.7 GHz and a max Turbo of 4.3 GHz. The TDP jumps from 95 watt of the previous generation to 105 watts. Cost? $329.

Here's the details on the other three parts going up today: the Ryzen 7 2700, Ryzen 5 2600X, and Ryzen 5 2600.

ryzen2000-1.png

One interesting note - all four of these CPUs will now ship with a cooler in the box, so you won't need to struggle to find a heatsink or water cooler that has AM4 support out of the box.

ryzen2000-2.png

AMD outlines the already released details about the Ryzen 2000-series, including its production on GlobalFoundries 12nm process tech and the updated "Zen+" architecture. It makes claims that 2nd Gen AMD Ryzen will be the "ultimate desktop processor for gamers, creators, and enthusiasts" which is quite the claim to live up to.

There isn't much else to talk about, though AMD does allow us to mention briefly the accompanying X470 chipset and its improved power delivery system, providing a bit more headroom and capability for these Ryzen 2000-series parts.

ryzen2000-3.png

You will also find mention of AMD StoreMI, a maturation of the company's partnership with Enmotus, bringing a tiered caching system to the platform. Again, details are minimal until the April 19th launch date, at which point we'll have much more to share with you.

ryzen2000-4.png

Now that this is all confirmed, I'm very curious to see the community reaction to the 2700X coming in at $329, undercutting the Core i7-8700K by a few bucks. There is going to be another big battle for the DIY space coming this spring, and we can't wait to share the first punches with you next week.

Source: Amazon.com

A difference of 10; testing a B350 against a B360

Subject: Processors | April 11, 2018 - 06:06 PM |
Tagged: ryzen, Intel, i5-8400, coffee lake, B360, b350, AMD Ryzen 5 1600, amd

With the launch of Intel's B360 chipset, the price difference between a Coffee Lake and Ryzen system have been much reduced; in part because RAM and GPU will account for the vast majority of your expenses.  TechSpot tested the Ryzen 5 1600 against an i5-8400 on a B360 motherboard, as well as a Z370 to show the difference between those two chipsets.  Overall, the results came out in a tie, with AMD's chip better at tasks which benefit from multithreading while Intel's topped out when gaming. 

Of course, we are quickly approaching the arrival of Ryzen 2, which may change things drastically.

2018-04-09-image-3.jpg

"Before the incoming 2nd-gen Ryzen parts arrive this shootout will let us establish how AMD and Intel currently stack up with all the latest Windows updates, BIOS updates, driver updates and new motherboards we have on hand, giving us an up to date reference point for the new CPUs."

Here are some more Processor articles from around the web:

Processors

Source: TechSpot

Is the GPU in Intel Kaby Lake-G More Polaris than Vega?

Subject: Graphics Cards, Processors | April 9, 2018 - 04:25 PM |
Tagged: Vega, Polaris, kaby lake-g, Intel, amd

Over the weekend, some interesting information has surfaced surrounding the new Kaby Lake-G hardware from Intel. A product that is officially called the “8th Generation Intel Core Processors with Radeon RX Vega M Graphics” is now looking like it might be more of a Polaris-based GPU than a Vega-based one. This creates an interesting marketing and technology capability discussion for the community, and both Intel and AMD, that is worth diving into.

PCWorld first posted the question this weekend, using some interesting data points as backup that Kaby Lake-G may in fact be based on Polaris. In Gordon’s story he notes that in AIDA64 the GPU is identified as “Polaris 22” while the Raven Ridge-based APUs from AMD show up as “Raven Ridge.” Obviously the device identification of a third party piece of software is a suspect credential in any situation, but the second point provided is more salient: based on the DXDiag information, the GPU on the Hades Canyon NUC powered by Kaby Lake-G does not support DirectX 12.1.

dx_diag_comparo-100754201-orig.jpg

Image source: PCWorld

AMD clearly stated in its launch of the Vega architecture last year that the new GPUs supported DX 12.1, among other features. The fact that the KBL-G part does NOT include support for it is compelling evidence that the GPU might be more similar to Polaris than Vega.

Tom’s Hardware did some more digging that was posted this morning, using a SiSoft Sandra test that can measure performance of FP16 math and FP32. For both the Radeon RX Vega 64 and 56 discrete graphics cards, running the test with FP16 math results in a score that is 65% faster than the FP32 results. With a Polaris-based graphics card, an RX 470, the scores between FP32 and FP16 were identical as the architecture can support FP16 math functions but doesn’t accelerate it with AMD’s “rapid packed math” feature (that was a part of the Vega launch).

tomsmath.jpg

Image source: Tom's Hardware

And you guessed it, the Kaby Lake-G part only runs essentially even in the FP16 mode. (Also note that AMD’s Raven Ridge APU that integrated Vega graphics does get accelerated by 61% using FP16.)

What Kaby Lake-G does have that leans toward Vega is support for HBM2 memory (which none of the Polaris cards have) and “high bandwidth memory cache controller and enhanced compute units with additional ROPs” according to the statement from Intel given to Tom’s Hardware.

It should be noted that just because the benchmarks and games that can support rapid packed math don’t take advantage of that capability today, does not mean they won’t have the capability to do so after a driver or firmware update. That being said, if that’s the plan, and even if it’s not, Intel should come out and tell the consumers and media.

The debate and accusations of conspiracy are running rampant again today with this news. Is Intel trying to pull one over on us by telling the community that this is a Vega-based product when it is in fact based on Polaris? Why would AMD allow and promote the Vega branding with a part that it knows didn’t meet the standards it created to be called a Vega architecture solution?

Another interesting thought comes when analyzing this debate with the Ryzen 7 2400G and Ryzen 5 2200G products, both of which claim to use Vega GPUs as a portion of the APU. However, without support for HBM2 or the high-bandwidth cache controller, does that somehow shortchange the branding for it? Or are the memory features of the GPU considered secondary to its design?

This is the very reason why companies hate labels, hate specifications, and hate having all of this tracked by a competent and technical media. Basically every company in the tech industry is guilty of this practice: Intel has 2-3 architectures running as “8th Generation” in the market, AMD is selling RX 500 cards that were once RX 400 cards, and NVIDIA has changed performance capabilities of the MX 150 at least once or twice.

The nature of semi-custom chips designs is that they are custom. Are the GPUs used in the PS4 and Xbox One or Xbox One X called Polaris, Vega, or something else? It would be safer for AMD and its partners to give each new product its own name, its own brand—but then the enthusiasts would want to know what it was most like, and how did it compare to Polaris, or Vega, etc.? It’s also possible that AMD was only willing to sell this product to Intel if it included some of these feature restrictions. In complicated negotiations like this one surely was, anything is feasible.

These are tough choices for companies to make. AMD loves having the Vega branding in more products as it gives weight to the development cost and time it spent on the design. Having Vega associated with more high-end consumer products, including those sold by Intel, give them leverage for other products down the road. From Intel’s vantage point using the Vega brand makes it looks like it has the very latest technology in its new processor and it can benefit from any cross-promotion that occurs around the Vega brand from AMD or its partners.

Unfortunately, it means that the devil is in the details, and the details are something that no one appears to be willing to share. Does it change the performance we saw in our recent Hades Canyon NUC review or our perspective on it as a product? It does not. But as features like Rapid Packed Math or the new geometry shader accelerate in adoption, the capability for Kaby Lake-G to utilize them is going to be scrutinized more heavily.

Source: Various

Intel Unveils More 8th Generation Mobile Processors, 6-Core Mobile CPUs

Subject: Processors, Chipsets, Mobile | April 3, 2018 - 03:01 AM |
Tagged: Intel, Core i9-8950HK, coffee lake h, 8th generation

Intel's rollout of their "8th Generation" processors has been glacial compared to other generations, and overall a bit confusing when it comes to trying to decode what processor belongs to what architecture. 

8th Gen Intel Core i9 Badge.png

Past the 8th generation Kaby Lake-R 15W quad-core mobile processors in August of last year, the Coffee Lake-S desktop CPU launch in October, and the recent Kaby Lake-G launch combining Intel processors with AMD graphics, there has still been one big missing market—high performance mobile processors.

6.png

Today, Intel is finally rounding out it's 8th Generation Mobile processor line-up with the addition of Coffee Lake-H processors. 

1.png

The biggest change with Intel's new mobile lineup is the delightful addition of more cores. All i7 and Xeon-based SKUs will now have 6 cores with Hyper-threading enabled for a total of 12 threads. In addition, the entire i5 lineup is gaining Hyper-threading support, bringing them to 4 cores and 8 threads. 

Coffee Lake-H also marks the introduction of Intel's first "i9" branded processor, the i9-8950HK. Taking the top spot of the mobile lineup previously held by the i7-7920HQ, the i9-8950HK is fully unlocked, with a turbo frequency of up to 4.8GHz. 

In addition, all of these new 8th generation mobile processors will bring support for Optane Memory caching to mobile for the first time.

2.png

Intel is achieving the 4.8GHz single core turbo boost on the i9-8950HK through what they are calling "Intel Velocity Boost." While there aren't a lot of details about exactly how this technology will work yet, Intel has told us that essentially it's a way of providing extra frequency if there is thermal headroom on a given notebook design.

Below the 50 degrees C target temperature, we were told to expect about a 200MHz single-core boost and a 100MHz multi-core boost. With factory overclocking, Intel says they expect to see OEMs hit 5GHz and beyond, thanks in part to Velocity Boost.

3.png

In addition to new processors, Intel is also unveiling their new 300-series mobile chipsets today. The major additions include the adoption of USB 3.1 Gen 2 ports directly from the chipset, as well as the integration of an 802.11ac radio.

The all-new wireless radio is said to be capable of Gigabit speeds using 2x2 MIMO at 160MHz, which is part of the Wave 2 specification. While routers that support the 160MHz band are few and far between today, hopefully, Intel's adoption of this technology into its chipset will help spur faster adoption.

5.png

In addition to the H-series processors, Intel also unveiled several new U-series parts today with Iris Plus graphics.

While the 28W notebook processors combining Intel U-series parts with Iris graphics containing 128MB of eDRAM have been available for generations, the only major customer for these parts historically is Apple. I fully expect these processors to make it into a revised 13" MacBook Pro later this year.

These new U-series parts will also be able to take advantage of the new 300-series chipsets with the integrated 802.11ac and USB 3.1 Gen 2 connectivity. It will be interesting to see if Intel finally integrating Wi-Fi capability directly into the chipset will cause Apple to ditch Broadcom on their MacBook lineup.

Stay tuned for more announcements from Intel today, as well of announcements from notebook vendors utilizing these new processors!

Source: Intel

Intel Adds New Processors and Chipsets to 8th Generation Desktop Lineup

Subject: General Tech, Processors, Chipsets | April 3, 2018 - 03:01 AM |
Tagged: Intel, H370, H310, coffee lake, B360, 8700k

Since the Coffee Lake-S desktop processor launch with the i7-8700K in October of last year, the processor lineup has remained a bit bare compared to previous generations.

While we are used to an Intel processor platform launch having several SKUs covering the entire spectrum of consumers, from Pentium all the way to up Core i7, Coffee Lake currently sits at just 6 different processor options.

1.png

Today, Intel is rounding out the rest of the Coffee Lake desktop lineup with the addition of more traditional desktop SKUs, as well as low-power "T-series" CPUs.

Filling out the i5-lineup, we have two more 6 core options without hyper-threaded in the i5-8600 and i5-8400. The Core i3-8300 provides a 100MHz boost to the existing quad-core i3-8100, while staying in the same 65W TDP.

The little-known T-Series are Intel's lower frequency desktop chips that are configured to run at just 35W while remaining desktop-level performance. Traditionally, these CPUs are used in OEM configurations, but enthusiasts looking for ultra-small form factor and quiet PCs have been known to use these CPUs in the past.

Overall, these CPU announcements are difficult to get too excited about, but help round out the 8th Generation lineup into more available price points, which is always good for consumers looking to build a PC.

2.PNG

Even better news for anyone looking to build an 8th Generation-based PC is the addition of new, lower cost chipsets. Previously, only expensive Z370-based boards were compatible with Coffee Lake processors.

Now, joining the Z370 chipset for consumers, we have the H370, and B360 chipsets. While sacrificing I/O options and overclocking availability, motherboards based on these chipsets should provide a much greater value for consumers looking to build a lower-end Coffee Lake system. The H370, Q370, and B360 chipsets also provide USB 3.1 Gen 2 connectivity directly from the chipset.

In addition, Intel has also added built-in 802.11ac support into all of these new chipsets, providing a solid wireless solution without any additonal peripherals. 

No exact word on availability of these new processors or chipsets, but we expect them to start hitting the market very soon!

Source: Intel
Author:
Manufacturer: Intel

System Overview

Announced at Intel's Developer Forum in 2012, and launched later that year, the Next Unit of Computing (NUC) project was initially a bit confusing to the enthusiast PC press. In a market that appeared to be discarding traditional desktops in favor of notebooks, it seemed a bit odd to launch a product that still depended on a monitor, mouse, and keyboard, yet didn't provide any more computing power.

Despite this criticism, the NUC lineup has rapidly expanded over the years, seeing success in areas such as digital signage and enterprise environments. However, the enthusiast PC market has mostly eluded the lure of the NUC.

Intel's Skylake-based Skull Canyon NUC was the company's first attempt to cater to the enthusiast market, with a slight stray from the traditional 4-in x 4-in form factor and the adoption of their best-ever integrated graphics solution in the Iris Pro. Additionally, the ability to connect external GPUs via Thunderbolt 3 meant Skull Canyon offered more of a focus on high-end PC graphics. 

However, Skull Canyon mostly fell on deaf ears among hardcore PC users, and it seemed that Intel lacked the proper solution to make a "gaming-focused" NUC device—until now.

8th Gen Intel Core processor.jpg

Announced at CES 2018, the lengthily named 8th Gen Intel® Core™ processors With Radeon™ RX Vega M Graphics (henceforth referred to as the code name, Kaby Lake-G) marks a new direction for Intel. By partnering with one of the leaders in high-end PC graphics, AMD, Intel can now pair their processors with graphics capable of playing modern games at high resolutions and frame rates.

DSC04773.JPG

The first product to launch using the new Kaby Lake-G family of processors is Intel's own NUC, the NUC8i7HVK (Hades Canyon). Will the marriage of Intel and AMD finally provide a NUC capable of at least moderate gaming? Let's dig a bit deeper and find out.

Click here to continue reading our review of the Intel Hades Canyon NUC!

The Ryzen rumours are 2 hard to ignore

Subject: General Tech, Processors | March 26, 2018 - 03:20 PM |
Tagged: Ryzen 7 2700X, Ryzen 5 2600, ryzen 2, rumour, amd

TechARP published some leaked benchmarks which seem to show the performance of two as of yet unreleased AMD processors the 8-core Ryzen 7 2700X and 6-core Ryzen 5 2600.  The benchmarks contrast their performance against the current Ryzen 7 1700X as well as Intel's i7 6700K and the results look good.  The new chips outperform their predecessors by a noticeable margin and are able to top the Intel part as well.  These leaked benchmarks are all productivity software, so we don't have gaming results nor have we seen these two chips paired with extremely highly clocked DDR4 yet but it does give us a glimpse at performance; assuming these are accurate of course.

AMDRyzen-580x358.jpg

"Can't wait to find out how fast the 2nd Generation AMD Ryzen processors are? We present to you - the leaked benchmark results and findings of the AMD Ryzen 7 2700X and Ryzen 5 2600 processors!"

Here is some more Tech News from around the web:

Tech Talk

 

Source: TechARP

AMD finalizing fixes for Ryzen, EPYC security vulnerabilities

Subject: Processors | March 20, 2018 - 04:33 PM |
Tagged: ryzenfall, masterkey, fallout, cts labs, chimera, amd

AMD’s CTO Mark Papermaster released a blog today that both acknowledges the security vulnerabilities first shown by a CTS Labs report last week, while also laying the foundation for the mitigations to be released. Though the company had already acknowledged the report, and at least one other independent security company validated the claims, we had yet to hear from AMD officially on the potential impact and what fixes might be possible for these concerns.

In the write up, Papermaster is clear to call out the short period of time AMD was given with this information, quoting “less than 24 hours” from the time it was notified to the time the story was public on news outlets and blogs across the world. It is important to detail for some that may not follow the security landscape clearly that this has no relation to the Spectre and Meltdown issues that are affecting the industry and what CTS did find has nothing to do with the Zen architecture itself. Instead, the problem revolves around the embedded security protocol processor; while an important distinction moving forward, from a practical view to customers this is one and the same.

amd_02.jpg

AMD states that it has “rapidly completed its assessment and is in the process of developing and staging the deployment of mitigations.” Rapidly is an understatement – going from blindsided to an organized response is a delicate process and AMD has proven its level of sincerity with the priority it placed on this.

Papermaster goes on to mention that all these exploits require administrative access to the computer being infected, a key differentiator from the Spectre/Meltdown vulnerabilities. The post points out that “any attacker gaining unauthorized administrative access would have a wide range of attacks at their disposal well beyond the exploits identified in this research.” I think AMD does an excellent job threading the needle in this post balancing the seriousness of these vulnerabilities with the overzealous hype that was created upon their initial release and the accompanying financial bullshit that followed.

AMD provides an easy to understand table with a breakdown of the vulnerabilities, the potential impact of the security risk, and what the company sees as its mitigation capability. Both sets that affect the secure processor in the Ryzen and EPYC designs are addressable with a firmware update for the secure unit itself, distributed through a standard BIOS update. For the Promontory chipset issue, AMD is utilizing a combination of a BIOS update and further work with ASMedia to further enhance the security updates.

amdsec1.png

amdsec2.png

That is the end of the update from AMD at this point. In my view, the company is doing a satisfactory job addressing the problems in what must be an insanely accelerated time table. I do wish AMD was willing to offer more specific time tables for the distribution of those security patches, and how long we should expect to wait to see them in the form of BIOS updates for consumer and enterprise customers. For now, we’ll monitor the situation and look for other input from AMD, CTS, or secondary security firms to see if the risks laid out ever materialize.

For what could have been a disastrous week for AMD, it has pivoted to provide a controlled, well-executed plan. Despite the hype and hysteria that might have started with stock-shorting and buzzwords, the plight of the AMD processor family looks stable.

Source: AMD