Manufacturer: BitFenix

Introduction and First Impressions

A large mid-tower design featuring tempered glass side panels and a mix of aluminum and steel exterior construction, the RGB-imbued Shogun is every bit what you would expect a ‘flagship’ enclosure from BitFenix to be. So did it get our seal of approval? Read on to find out!

DSC_0477.jpg

The BitFenix Shogun appears at first glance to be a full-tower enclosure, but it is actually using a form-factor that BitFenix calls “super mid-tower”, and it has the seven expansion slots of a mid-tower design. It supports E-ATX motherboards on down, and has some interesting features to help set it apart in a highly competitive enclosure market.

The Shogun’s compatibility with ASUS Aura motherboard lighting effects makes it a good option for the RGB lighting inclined, and there are some nice exterior touches such as the sculpted top and bottom aluminum panels and (of course) those tempered glass sides. The Shogun competes in the premium space, but is still palatable at $149 for what is on the surface a pretty impressive-looking package.

BitFenix_Shogun.jpg

The open interior and glass side panel invite impressive builds (Image credit: BitFenix)

Continue reading our review of the BitFenix Shogun Super Mid-Tower Enclosure!

Author:
Manufacturer: Corsair

Introduction and Features

Introduction

2-Products.jpg

(Courtesy of Corsair)

Corsair recently updated their HX Series power supplies which now include four models: the HX750, HX850, HX1000 and HX1200. The HX Series is targeted towards advanced users for use in gaming rigs, overclocking systems, and any PC that demands rock-solid stability. Corsair states the HX Series power supplies provide extremely tight voltage regulation, quiet operation, Platinum-level efficiency and come with a fully modular cable set. In addition, the HX Series power supplies are built with all Japanese 105°C capacitors and come backed by a 10-year warranty.

Note: Corsair offers essentially the same four models in their HXi Series, which also includes the Corsair Link digital interface for software based monitoring and control.

3-HX850-diag81.jpg

We will be taking a detailed look at the new HX Series 850W power supply in this review.

Corsair HX Series PSU Key Features:

•    750W, 850W, 1000W, and 1200W models
•    Max power output at server-grade 50°C temperature rating
•    80 Plus Platinum efficiency certification
•    10-Year warranty
•    ZeroRPM mode for fan-less operation at low loads
•    Quiet 135mm cooling fan with FDB
•    All capacitors are Japanese brand, 105°C rated
•    Fully modular cable set
•    Switch allows selecting either Single or Multiple Rail +12V outputs
•    Complies with ATX12V v2.4 and EPS 2.92 standards
•    6th Generation Intel Core processor Ready
•    Full suite of protection circuits: OVP, UVP, SCP, OPP and OTP
•    Active PFC with full range AC input (100-240 VAC)
•    MSRP for the HX850 is $159.99 USD
•    MSRP for the HX850i with Corsair Link is $199.99 USD

4-Switch.jpg

Another advanced feature incorporated into all HX Series power supplies is a little switch on the front panel that allows selecting either Single or Multiple +12V rail outputs.

Please continue reading our review of the Corsair HX850 PSU!!!

Author:
Subject: General Tech
Manufacturer: Logitech

Logitech Powerplay Wireless Charging System

Logitech was the first company to introduce a commercially available wireless mouse, way back in 1991. Since then, the company and its competitors have evolved the concept to the point where most of the technology's downsides have been addressed, even for some of the most demanding users. But despite significant improvements over the past few years, the one advantage that traditional wired mice have continued to hold over their wireless counterparts is power.

Absent technical issues, a wired mouse will always be ready to work when you sit down at your PC. It will never give up and quit on you in the middle of a gaming session or business presentation. Wireless mice, conversely, rely on batteries with limited running time. The batteries in modern wireless mice can last weeks, even months in some cases, but at some point they'll need to be recharged or replaced. Depending on the situation, it might not be a big deal to simply plug in the USB charging cable or swap batteries when your mouse dies, but it's a safe bet that most wireless mouse users have been caught without adequate battery life at a highly inconvenient time at least once.

The obvious solution to this issue is wireless charging. The technology is already commercially available for devices like smartphones and smart watches, and for years we've been promised more ambitious solutions, such as desks that charge all of your devices at once. But there's a difference between the type of wireless charging products that have been on the market for the past few years and the type of product that would be ideal for your mouse. In other words, it's easier to design and implement a small wireless charging system that accommodates a stationary object (your smartphone) than it is to create an adequately sized mousing surface that can charge an often rapidly moving device.

logitech-powerplay-1-2.jpg

But that's exactly the challenge that Logitech decided to address, and the result of their efforts is the Powerplay, the world's first consumer-targeted wireless charging system for mice. When paired with compatible Logitech devices, the Powerplay system offers a low latency "Lightspeed" experience for both gaming and everyday productivity, and it's the first step into a world where users may never need to worry about charging their mouse.

Continue reading our review of the Logitech Powerplay Wireless Charging System!

Author:
Manufacturer: AMD

RX Vega is here

Though we are still a couple of weeks from availability and benchmarks, today we finally have the details on the Radeon RX Vega product line. That includes specifications, details on the clock speed changes, pricing, some interesting bundle programs, and how AMD plans to attack NVIDIA through performance experience metrics.

There is a lot going on today and I continue to have less to tell you about more products, so I’m going to defer a story on the architectural revelations that AMD made to media this week and instead focus on what I think more of our readers will want to know. Let’s jump in.

Radeon RX Vega Specifications

Though the leaks have been frequent and getting closer to reality, as it turns out AMD was in fact holding back quite a bit of information about the positioning of RX Vega for today. Radeon will launch the Vega 64 and Vega 56 today, with three different versions of the Vega 64 on the docket. Vega 64 uses the full Vega 10 chip with 64 CUs and 4096 stream processors. Vega 56 will come with 56 CUs enabled (get it?) and 3584 stream processors.

Pictures of the various product designs have already made it out to the field including the Limited Edition with the brushed anodized aluminum shroud, the liquid cooled card with a similar industrial design, and the more standard black shroud version that looks very similar to the previous reference cards from AMD.

  RX Vega 64 Liquid RX Vega 64 Air RX Vega 56 Vega Frontier Edition GTX 1080 Ti GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega 10 Vega 10 Vega 10 Vega 10 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3584 4096 3584 2560 3072 2048 4096
Base Clock 1406 MHz 1247 MHz 1156 MHz 1382 MHz 1480 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1677 MHz 1546 MHz 1471 MHz 1600 MHz 1582 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units 256 256 256 256 224 160 192 128 256
ROP Units 64 64 ? 64 88 64 96 64 64
Memory 8GB 8GB 8GB 16GB 11GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 1600 MHz 1890 MHz 11000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 352-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 484 GB/s 484 GB/s 484 GB/s 484 GB/s 484 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 345 watts 295 watts 210 watts 300 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.7 TFLOPS 12.6 TFLOPS 10.5 TFLOPS 13.1 TFLOPS 10.6 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count 12.5B 12.5B 12.5B 12.5B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 14nm 14nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $699 $499 $399 $999 $699 $599 $999 $499 $649

If you are a frequent reader of PC Perspective, you have already seen our reviews of the Vega Frontier Edition air cooled and liquid cards, so some of this is going to look very familiar. Looking at the Vega 64 first, we need to define the biggest change to the performance ratings of RX and FE versions of the Vega architecture. When we listed the “boost clock” of the Vega FE cards, and really any Radeon cards previous to RX Vega, we were referring the maximum clock speed of the card in its out of box state. This was counter to the method that NVIDIA used for its “boost clock” rating that pointed towards a “typical” clock speed that the card would run at in a gaming workload. Essentially, the NVIDIA method was giving consumers a more realistic look at how fast the card would be running while AMD was marketing the theoretical peak with perfect thermals, perfect workloads. This, to be clear, never happened.

vega-44.jpg

With the RX Vega cards and their specifications, the “boost clock” is now a typical clock rate. AMD has told me that this is what they estimate the average clock speed of the card will be during a typical gaming workload with a typical thermal and system design. This is great news! It means that gamers will have a more realistic indication of performance, both theoretical and expected, and the listings on the retailers and partner sites will be accurate. It also means that just looking at the spec table above will give you an impression that the performance gap between Vega FE and RX Vega is smaller than it will be in testing. (This is, of course, if AMD’s claims are true; I haven’t tested it myself yet.)

Continue reading our preview of the Radeon RX Vega 64 and Vega 56!

Author:
Subject: General Tech
Manufacturer: Fanatec

Dropping Price Points for Wider Appeal

Fanatec needs little introduction for anyone that has seriously considered racing wheel and the corresponding components.  It is a German based company that produces high quality and authentic feeling gear for PC and console racers.  Their ClubSport products are their top end models which also commands a top level price.  Solid construction, high quality materials, and sharp looking designs have defined the company since its inception.

csl_01.jpg

Fanatec always features a classy design. The first portion of the 4-flap saying is on the top. Otherwise, a bit confusing if you didn't know that...

Last year I was given the chance to test out some of the latest, and highest end, Fanatec gear.  The ClubSport V2 base and pedals were fantastic performers.  The build quality, fit and finish, and functionality were all superior to anything that I had used before.  The unfortunate part of the setup was the corresponding price.  These parts were not inexpensive.  Thankfully, most people who are familiar with Fanatec know that they cater to a more discerning crowd where price constraints are not the driving factor for this gear.  Even though these parts are expensive, they are still far less than the direct-drive counterparts that typically cost two to three times more.

Like any company, Fanatec is looking to expand and attract new users.  Their biggest hurdle with the ClubSport series is obviously price.  To attract new customers Fanatec introduced a new, more cost effective design that provides much the same experience as the higher end ClubSport series, but at a more reasonable price tag.  The CSL Elite series (ClubSport Lite) is aimed to address this area with more reasonably priced units that promise the same build quality and attention to detail as the higher end products in the ClubSport realm.  Costs were cut throughout, but Fanatec hopes that the overall product will provide much the same gaming experience as their higher end products.

csl_02.jpg

The packing is always well designed and copious when it comes to materials.

Click here to read the entire review on Fanatec's CSL Elite Products!

Author:
Subject: Processors
Manufacturer: AMD
Tagged: 1200, 1300x, amd, ryzen, ryzen 3, Zen

Battle for the Mainstream

With today's release of the Ryzen 3 processors, AMD completes the circle of the mainstream Ryzen processor family. Starting with the 8-core Ryzen 7 that disrupted the high end of the market, followed by the Ryzen 5 that shook up the Core i5 segment, Ryzen 3 goes after the world of the Core i3 targeting budget PC builders, gamers, and even enterprising business consumers willing to build their own machines or looking for information here on what to select.

We already learned about the Ryzen 3 products launching today, the 1300X and the 1200, from a video that AMD CEO Lisa Su posted a couple of weeks ago. But pricing and performance were still an unknown, both of which we are going to show you in great detail today. What can a $129 and $109 processor get you with four true cores?

IMG_4827.JPG

As you'll soon see, the Ryzen 3 product family competes against the Intel Core i3 line in terms of pricing but is definitely a concern for the Core i5 family when it comes to multi-threaded workloads. Let's dive into the specifications and see what AMD has put together for us.

Specifications

The devil is in the details and as we will see the core counts and clock speeds of Ryzen 3 make it very compelling for a wide range of consumers.

  Ryzen 3 1300X Ryzen 3 1200 Pentium G4560 Core i3-7100 Core i3-7350K Ryzen 5 1600X Ryzen 5 1500X Core i5-7600K Core i5-7500
Architecture Zen Zen Kaby Lake Kaby Lake Kaby Lake Zen Zen Kaby Lake Kaby Lake
Process Tech 14nm 14nm 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm+ 14nm+
Cores/Threads 4/4 4/4 2/4 2/4 2/4 6/12 4/8 4/4 4/4
Base Clock 3.4 GHz 3.1 GHz 3.5 GHz 3.9 GHz 4.2 GHz 3.6 GHz 3.5 GHz 3.8 GHz 3.4 GHz
Turbo/Boost Clock 3.7 GHz 3.4 GHz - - - 4.0 GHz 3.7 GHz 4.2 GHz 3.8 GHz
Cache 8MB 8MB 3MB 3MB 4MB 16MB 16MB 6MB 6MB
Memory Support DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
TDP 65 watts 65 watts 54 watts 51 watts 60 watts 95 watts 65 watts 91 watts 65 watts
Price $129 $109 $80 $119 $149 $229 $189 $239 $204

Continue reading our review of the AMD Ryzen 3 1300X and 1200 processors!

Author:
Manufacturer: AMD

Software Iteration

The software team at AMD and the Radeon Technologies Group is releasing Radeon Crimson ReLive Edition 17.7.2 this evening and it includes a host of new features, improved performance capabilities, and stability improvements to boot. This isn’t the major reboot of the software that we have come to expect on an annual basis, but rather an attempt to get the software team’s work out in front of media and gamers before the onslaught of RX Vega and Threadripper steal the attention.

radeonsw-4.jpg

AMD’s software team is big on its user satisfaction ratings, which it should be after the many years of falling behind NVIDIA in this department. With 16 individual driver releases in 2017 (so far) and 20 new games optimized and supported with day one releases, the 90% rating seems to be about right. Much of the work that could be done to improve multi-GPU and other critical problems are more than a calendar year behind us, so it seems reasonable the Radeon gamers would be in a good place in terms of software support.

radeonsw-7.jpg

One big change for Crimson ReLive today is that all of those lingering settings that remained in the old Catalyst Control Panel will now reside in the proper Radeon Settings. This means matching UI and streamlined interface.

radeonsw-14.jpg

The ReLive capture and streaming capability sees a handful of upgrades today including a bump from 50mbps to 100mbps maximum bit rate, transparency support for webcams, improved optimization to lower the memory usage (and thus the overhead of running ReLive), notifications of replays and record timers, and audio controls for microphone volume and push-to-talk.

Continue reading about the latest Crimson ReLive driver updates!

Author:
Subject: Mobile
Manufacturer: Various

Specifications

In the original premise for today’s story, I had planned to do a standard and straight-forward review of the iPad Pro 10.5-inch model, the latest addition to Apple’s line of tablet devices. After receiving the 12.9-in variant, with the same processor upgrade but a larger and much more substantial screen, I started using them both as my daily-driver computing device. I was surprised at how well both handled the majority of tasks I tossed their way but there was still some lingering doubt in my mind about the usefulness of the iOS system as it exists today for my purposes.

The next step was for me to acquire an equivalent Windows 10-based tablet and try making THAT my everyday computer and see how my experiences changed. I picked up the new Surface Pro (2017) model that was priced nearly identical to the iPad Pro 12.9-in device. That did mean sacrificing some specifications that I would usually not do, including moving down to 4GB of memory and a 128GB SSD. This brought the total of the iPad Pro + Pencil + keyboard within $90 of the Surface Pro and matching accessories.

IMG_4814.JPG

I should mention at the outset that with the pending release of iOS 11 due in the fall, the Apple iPad Pro line could undergo enough of a platform upgrade to change some of the points in this story. At that time, we can reevaluate our stance and conclusions.

Specifications

Let’s start our editorial with a comparison of the hardware being tested in the specification department. Knowing that we are looking two ARM-based devices and an x86 system, we should realize core counts, clocks, and the like are even less comparable and relatable than in the Intel/AMD debates. However, it does give us a good bearing on how the hardware landscape looks when we get into the benchmarking section of this story.

Surface Pro (2017) vs. iPad Pro (2017) Comparison
Processor Intel Core i5-7300U (Kaby Lake)
2-core/4-thread
Apple A10X
(3x high performance Hurrican, 3x high efficiency Zephyr cores)
Graphics Intel HD Graphics 620 12-core Custom PowerVR
Memory 4GB 4GB
Screen 12.3-in 2736x1824 IPS 12.9-in 2732x2048 IPS 120 Hz
10.5-in 2224x1668 IPS 120 Hz
Storage

128GB SSD

256GB SSD
Camera 5MP Front
8MP Rear
7MP Front
12MP Rear + OIS
Wireless 802.11ac 802.11ac
Connections USB 3.0
Mini DisplayPort
Headphone
Lightning
Headphone
Battery 45 Wh 12.9-in: 41 Wh
10.5-in: 30.4 Wh
Dimensions 11.50-in x 7.93-in x 0.33-in 12.9-in: 12.04-in x 8.69-in x 0.27-in
10.5-in: 9.87-in x 6.85-in x 0.24-in
OS Windows 10 iOS 10
Price $999 - Amazon.com 12.9-in: $899
10.5-in: $749 - Amazon.com

Continue reading our comparison of the 2017 Surface Pro and iPad Pro!

Subject: General Tech
Manufacturer: ZALMAN

A Premium Mechanical Option Under $100

In the past year or two we have seen a number of sub-$100 mechanical gaming keyboards on the market, and several of these have passed through our hands here at the PC Perspective offices. The latest of these to garner our attention is the ZALMAN ZM-K900M, a premium gaming design featuring RGB lighting effects and Kailh Blue key switches, along with a 1000 Hz polling rate and full N-key rollover. It currently retails for $89.99, though it can be found for as little as $79.99 (currently, at least) with a little googling. How impressive is it in person? Read on to find out!

DSC_0219.jpg

The ZM-K900M offers a variety of RGB effects

The ZM-K900M certainly checks the right boxes as a gaming keyboard, with the above-mentioned 1000 Hz polling rate (which ZALMAN calls 'Z-Engine') and customizable RGB lighting, supports simulanious key presses for the full 104 keys, and offers programmable macro keys. All of the keyboard features are controlled via hot keys on the ZM-K900M itself, eliminating the need for software.

“The ZM-K900M requires no software installation and is universally compatible with any operating system. The macros automatically remember the time interval between the inputs and run exactly as you typed. The keyboard stores the data inside the keyboard so you can instantly run your macros on any computer.”


Features and specifications from ZALMAN:

  • Simple and minimal design
  • Equipped with Z-Engine
  • Supports USB and PS/2 connection
  • Intelligent hardware macro with option to add mouse clicks
  • Multimedia hotkeys
  • 4-stage macro speed adjustment
  • 6-key and N-Key rollover
  • Option to lock Windows key or entire keyboard
  • High quality laser-etched keycaps

Specifications:

  • Model: ZM-K900M
  • Keyboard Layout: 104-key
  • Key Switch: Kailh Blue mechanical key switch
  • Keyboard Matrix: USB & PS/2 N key rollover (anti-ghost function)
  • Key cap type: Step Sculpture 2
  • Interface: USB
  • Cable length: 5.6 ft
  • Dimensions: 17.32 x 5.51 x 1.34 inches, 2.75 lbs

Continue reading our review of the ZALMAN ZM-K900M RGB Mechanical Gaming Keyboard!

Author:
Subject: Mobile
Manufacturer: ASUS

Overview

A few months ago at Computex, NVIDIA announced their "GeForce GTX with Max-Q Design" initiative. Essentially, the heart of this program is the use of specifically binned GTX 1080, 1070 and 1060 GPUs. These GPUs have been tested and selected during the manufacturing process to ensure lower power draw at the same performance levels when compared to the GPUs used in more traditional form factors like desktop graphics cards.

slide1.png

In order to gain access to these "Max-Q" binned GPUs, notebook manufacturers have to meet specific NVIDIA guidelines on noise levels at thermal load (sub-40 dbA). To be clear, NVIDIA doesn't seem to be offering reference notebook designs (as demonstrated by the variability in design across the Max-Q notebooks) to partners, but rather ideas on how they can accomplish the given goals.

slide2.png

At the show, NVIDIA and some of their partners showed off several Max-Q notebooks. We hope to take a look at all of these machines in the coming weeks, but today we're focusing on one of the first, the ASUS ROG Zephyrus.

IMG_4744.JPG

ASUS ROG Zephyrus  (configuration as reviewed)
Processor Intel Core i7-7700HQ (Kaby Lake)
Graphics NVIDIA Geforce GTX 1080 with Max-Q Deseign (8GB)
Memory 24GB DDR4  (8GB Soldered + 8GBx2 DIMM)
Screen 15.6-in 1920x1080 120Hz G-SYNC 
Storage

512GB Samsung SM961 NVMe

Camera HD Webcam
Wireless 802.11ac
Connections Thunderbolt 3
HDMI 2.0
4 x USB 3.0
Audio combo jack
Power 50 Wh Battery, 230W AC Adapter
Dimensions 378.9mm x 261.9mm x 17.01-17.78mm (14.92" x 10.31" x 0.67"-0.70")
4.94 lbs. (2240.746 g)
OS Windows 10 Home
Price $2700 - Amazon.com

As you can see, the ASUS ROG Zephyrus has the specifications of a high-end gaming desktop, let alone a gaming notebook. In some gaming notebook designs, the bottleneck comes down to CPU horsepower more than GPU horsepower. That doesn't seem to be the case here. The powerful GTX 1080 GPU is paired with a quad-core HyperThread Intel processor capable of boosting up to 3.8 GHz. 

Continue reading our review of the ASUS Zephyrus Max-Q Gaming Notebook!

Author:
Subject: General Tech
Manufacturer: SILVIA

Intelligent Gaming

Kal Simpson recently had the chance to sit down and have an extensive interview with SILVIA's Chief Product Officer - Cognitive Code, Alex Mayberry.  SILVIA is a company that specializes on conversational AI that can be adapted to a variety of platforms and applications.  Kal's comments are in bold while Alex's are in italics.

SILVIA virtual assistant.jpg

Always good to speak with you Alex. Whether it's the latest Triple-A video game release or the progress being made in changing the way we play, virtual reality for instance – your views and developments within the gaming space as a whole remains impressive. Before we begin, I’d like to give the audience a brief flashback of your career history. Prominent within the video game industry you’ve been involved with many, many titles – primarily within the PC gaming space. Quake 2: The Reckoning, America’s Army, a plethora of World of Warcraft titles.

Those more familiar with your work know you as the lead game producer for Diablo 3 / Reaper of Souls, as well as the executive producer for Star Citizen. The former of which we spoke on during the release of the game for PC, PlayStation 4 and the Xbox One, back in 2014.

So I ask, given your huge involvement with some of the most popular titles, what sparked your interest within the development of intelligent computing platforms? No-doubt the technology can be adapted to applications within gaming, but what’s the initial factor that drove you to Cognitive Code – the SILVIA technology?

AM: Conversational intelligence was something that I had never even thought about in terms of game development. My experience arguing with my Xbox and trying to get it to change my television channel left me pretty sceptical about the technology. But after leaving Star Citizen, my paths crossed with Leslie Spring, the CEO and Founder of Cognitive Code, and the creator of the SILVIA platform. Initially, Leslie was helping me out with some engineering work on VR projects I was spinning up. After collaborating for a bit, he introduced me to his AI, and I became intrigued by it. Although I was still very focused on VR at the time, my mind kept drifting to SILVIA.

I kept pestering Leslie with questions about the technology, and he continued to share some of the things that it could do. It was when I saw one of his game engine demos showing off a sci-fi world with freely conversant robots that the light went on in my head, and I suddenly got way more interested in artificial intelligence. At the same time, I was discovering challenges in VR that needed solutions. Not having a keyboard in VR creates an obstacle for capturing user input, and floating text in your field of view is really detrimental to the immersion of the experience. Also, when you have life-size characters in VR, you naturally want to speak to them. This is when I got interested in using SILVIA to introduce an entirely new mechanic to gaming and interactive entertainment. No more do we have to rely on conversation trees and scripted responses.

how-silvia-work1.jpg

No more do we have to read a wall of text from a quest giver. With this technology, we can have a realistic and free-form conversation with our game characters, and speak to them as if they are alive. This is such a powerful tool for interactive storytelling, and it will allow us to breathe life into virtual characters in a way that’s never before been possible. Seeing the opportunity in front of me, I joined up with Cognitive Code and have spent the last 18 months exploring how to design conversationally intelligent avatars. And I’ve been having a blast doing it.

Click here to continue reading the entire interview!

Subject: Motherboards
Manufacturer: ASUS

Introduction and Technical Specifications

Introduction

02-board-all.jpg

Courtesy of ASUS

With the latest revision of the TUF line, ASUS made the decision to drop the well-known "Sabertooth" moniker from the board's name, naming the board with the TUF branding only. The TUF Z270 Mark 1 motherboard is the flagship board in ASUS' TUF (The Ultimate Force) product line designed with the Intel Z270 chipset. The board offers support for the latest Intel Kaby Lake processor line as well as Dual Channel DDR 4 memory because of its integrated Intel Z270 chipset. While the MSRP for the board may be a bit higher than expected, its $239 price is more than justified by the board's build quality and "armored" offerings.

03-board.jpg

Courtesy of ASUS

04-board-back.jpg

Courtesy of ASUS

05-board-flyapart.jpg

Courtesy of ASUS

06-board-pwr-comps.jpg

Courtesy of ASUS

The TUF Z270 Mark 1 motherboard is built with the same quality and attention to detail that you've come to expect from TUF-branded motherboards. Its appearance follows the standard tan plastic armor overlay on the top with a 10-phase digital power system. ASUS also chose to include the armored backplate with the TUF Z270 Mark 1 motherboard, dubbed the "TUF Fortifier". The board contains the following integrated features: six SATA 3 ports; two M.2 PCIe x4 capable ports; dual GigE controllers - an Intel I219-V Gigabit NIC and an Intel I211 Gigabit NIC; three PCI-Express x16 slots; three PCI-Express x1 slots; an 8-channel audio subsystem; MEM OK! and USB BIOS Flashback buttons; integrated DisplayPort and HDMI; and USB 2.0, 3.0, and 3.1 Type-A and Type-C port support.

Continue reading our preview of the ASUS TUF Z270 Mark 1 motherboard!

Author:
Manufacturer: AMD

Specifications and Design

Just a couple of short weeks ago we looked at the Radeon Vega Frontier Edition 16GB graphics card in its air-cooled variety. The results were interesting – gaming performance proved to fall somewhere between the GTX 1070 and the GTX 1080 from NVIDIA’s current generation of GeForce products. That is under many of the estimates from players in the market, including media, fans, and enthusiasts.  But before we get to the RX Vega product family that is targeted at gamers, AMD has another data point for us to look at with a water-cooled version of Vega Frontier Edition. At a $1500 MSRP, which we shelled out ourselves, we are very interested to see how it changes the face of performance for the Vega GPU and architecture.

Let’s start with a look at the specifications of this version of the Vega Frontier Edition, which will be…familiar.

  Vega Frontier Edition (Liquid) Vega Frontier Edition Titan Xp GTX 1080 Ti Titan X (Pascal) GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega Vega GP102 GP102 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3840 3584 3584 2560 3072 2048 4096
Base Clock 1382 MHz 1382 MHz 1480 MHz 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1600 MHz 1600 MHz 1582 MHz 1582 MHz 1480 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units ? ? 224 224 224 160 192 128 256
ROP Units 64 64 96 88 96 64 96 64 64
Memory 16GB 16GB 12GB 11GB 12GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 11400 MHz 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 384-bit G5X 352-bit 384-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 483 GB/s 483 GB/s 547.7 GB/s 484 GB/s 480 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 300 watts
~350 watts
300 watts 250 watts 250 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.1 TFLOPS 13.1 TFLOPS 12.0 TFLOPS 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count ? ? 12.0B 12.0B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 16nm 16nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $1499 $999 $1200 $699 $1,200 $599 $999 $499 $649

The base specs remain unchanged and AMD lists the same memory frequency and even GPU clock rates across both models. In practice though, the liquid cooled version runs at higher sustained clocks and can overclock a bit easier as well (more details later). What does change with the liquid cooled version is a usable BIOS switch on top of the card that allows you to move between two distinct power draw states: 300 watts and 350 watts.

IMG_4728.JPG

First, it’s worth noting this is a change from the “375 watt” TDP that this card was listed at during the launch and announcement. AMD was touting a 300-watt and 375-watt version of Frontier Edition, but it appears the company backed off a bit on that, erring on the side of caution to avoid breaking any of the specifcations of PCI Express (board slot or auxiliary connectors). Even more concerning is that AMD chose to have the default state of the switch on the Vega FE Liquid card at 300 watts rather than the more aggressive 350 watts. AMD claims this to avoid any problems with lower quality power supplies that may struggle to hit slightly over 150 watts of power draw (and resulting current) from the 8-pin power connections. I would argue that any system that is going to install a $1500 graphics card can and should be prepared to provide the necessary power, but for the professional market, AMD leans towards caution. (It’s worth pointing out the RX 480 power issues that may have prompted this internal decision making were more problematic because they impacted the power delivery through the motherboard, while the 6- and 8-pin connectors are generally much safer to exceed the ratings.)

Even without clock speed changes, the move to water cooling should result in better and more consistent performance by removing the overheating concerns that surrounded our first Radeon Vega Frontier Edition review. But let’s dive into the card itself and see how the design process created a unique liquid cooled solution.

Continue reading our review of the Radeon Vega Frontier Edition Liquid-Cooled card!!

Subject: Mobile
Manufacturer: ASUS

Introduction and Specifications

The ZenBook 3 UX390UA is a 12.5-inch thin-and-light which offers a 1920x1080 IPS display, choice of 7th-generation Intel Core i5 or Core i7 processors, 16GB of DDR4 memory, and a roomy 512GB PCIe SSD. It also features just a single USB Type-C port, eschewing additional I/O in the vein of recent Apple MacBooks (more on this trend later in the review). How does it stack up? I had the pleasure of using it for a few weeks and can offer my own usage impressions (along with those ever-popular benchmark numbers) to try answering that question.

DSC_0144.jpg

A thin-and-light (a.k.a. ‘Ultrabook’) is certainly an attractive option when it comes to portability, and the ZenBook 3 certainly delivers with a slim 0.5-inch thickness and 2 lb weight from its aluminum frame. Another aspect of thin-and-light designs are the typically low-power processors, though the “U” series in Intel’s 7th-generation processor lineup still offer good performance numbers for portable machines. Looking at the spec sheet it is clear that ASUS paid attention to performance with this ZenBook, and we will see later on if a good balance has been struck between performance and battery life.

Our review unit was equipped with a Core i7-7500U processor, a 2-core/4-thread part with a 15W TDP and speeds ranging from 2.70 - 3.50 GHz, along with the above-mentioned 16GB of RAM and 512GB SSD. With an MSRP of $1599 for this configuration it faces some stiff competition from the likes of the Dell XPS line and recent Lenovo ThinkPad and Apple MacBook offerings, though it can of course be found for less than its MSRP (and this configuration currently sells on Amazon for about $1499). The ZenBook 3 certainly offers style if you are into blade-like aluminum designs, and, while not a touchscreen, nothing short of Gorilla Glass 4 was employed to protect the LCD display.

“ZenBook 3’s design took some serious engineering prowess and craftsmanship to realize. The ultra-thin 11.9mm profile meant we had to invent the world’s most compact laptop hinge — just 3mm high — to preserve its sleek lines. To fit in the full-size keyboard, we had to create a surround that’s just 2.1mm wide at the edges, and we designed the powerful four-speaker audio system in partnership with audiophile specialists Harman Kardon. ZenBook is renowned for its unique, stunning looks, and you’ll instantly recognize the iconic Zen-inspired spun-metal finish on ZenBook 3’s all-metal unibody enclosure — a finish that takes 40 painstaking steps to create. But we’ve added a beautiful twist, using a special 2-phase anodizing process to create stunning golden edge highlights. To complete this sophisticated new theme, we’ve added a unique gold ASUS logo and given the keyboard a matching gold backlight.”

DSC_0147.jpg

Continue reading our review of the ASUS ZenBook 3 UX390UA laptop!

Author:
Subject: Processors
Manufacturer: AMD

Just a little taste

In a surprise move with no real indication as to why, AMD has decided to reveal some of the most exciting and interesting information surrounding Threadripper and Ryzen 3, both due out in just a few short weeks. AMD CEO Lisa Su and CVP of Marketing John Taylor (along with guest star Robert Hallock) appear in a video being launched on the AMD YouTube website today to divulge the naming, clock speeds and pricing for the new flagship HEDT product line under the Ryzen brand.

people.jpg

We already know a lot of about Threadripper, AMD’s answer to the X299/X99 high-end desktop platforms from Intel, including that they would be coming this summer, have up to 16-cores and 32-threads of compute, and that they would all include 64 lanes of PCI Express 3.0 for a massive amount of connectivity for the prosumer.

Now we know that there will be two models launching and available in early August: the Ryzen Threadripper 1920X and the Ryzen Threadripper 1950X.

  Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Threadripper 1950X Threadripper 1920X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24
Base Clock ? ? ? ? 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz
Turbo Boost 2.0 ? ? ? ? 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 ? ? ? ? 4.5 GHz 4.5 GHz N/A N/A N/A
Cache 16.5MB (?) 16.5MB (?) 16.5MB (?) 16.5MB (?) 13.75MB 11MB 8.25MB 40MB ?
Memory Support ? ? ? ? DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel
PCIe Lanes ? ? ? ? 44 28 28 64 64
TDP 165 watts (?) 165 watts (?) 165 watts (?) 165 watts (?) 140 watts 140 watts 140 watts 180 watts 180 watts
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799

 

  Threadripper 1950X Threadripper 1920X Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Ryzen 5 1600X Ryzen 5 1600 Ryzen 5 1500X Ryzen 5 1400
Architecture Zen Zen Zen Zen Zen Zen Zen Zen Zen
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm
Cores/Threads 16/32 12/24 8/16 8/16 8/16 6/12 6/12 4/8 4/8
Base Clock 3.4 GHz 3.5 GHz 3.6 GHz 3.4 GHz 3.0 GHz 3.6 GHz 3.2 GHz 3.5 GHz 3.2 GHz
Turbo/Boost Clock 4.0 GHz 4.0 GHz 4.0 GHz 3.8  GHz 3.7 GHz 4.0 GHz 3.6  GHz 3.7 GHz 3.4 GHz
Cache 40MB ? 20MB 20MB 20MB 16MB 16MB 16MB 8MB
Memory Support DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
PCIe Lanes 64 64 20 20 20 20 20 20 20
TDP 180 watts 180 watts 95 watts 95 watts 65 watts 95 watts 65 watts 65 watts 65 watts
Socket TR4 TR4 AM4 AM4 AM4 AM4 AM4 AM4 AM4
Price $999 $799 $499 $399 $329 $249 $219 $189 $169

Continue reading about the announcement of the Ryzen Threadripper and Ryzen 3 processors!

Author:
Manufacturer: ASUS

Overview

To say that the consumer wired networking market has stagnated has been an understatement. While we've seen generational improvements on NICs from companies like Intel, and companies like Rivet trying to add their own unique spin on things with their Killer products, the basic idea has remained mostly unchanged.

And for its time, Gigabit networking was an amazing thing. In the era of hard drive-based storage as your only option, 100 MB/s seemed like a great data transfer speed for your home network — who could want more?

Now that we've moved well into the era of flash-based storage technologies capable of upwards of 3 GB/s transfer speeds, and even high capacity hard drives hitting the 200 MB/s category, Gigabit networking is a frustrating bottleneck when trying to move files from PC to PC.

For the enterprise market, there has been a solution to this for a long time. 10 Gigabit networking has been available in enterprise equipment for over 10 years, and even old news with even faster specifications like 40 and 100 Gbps interfaces available.

So why then are consumers mostly stuck at 1Gbps? As is the case with most enterprise technologies, the cost for 10 Gigabit equipment is still at a high premium compared to it's slower sibling. In fact, we've only just started to see enterprise-level 10 Gigabit NICs integrated on consumer motherboards, like the ASUS X99-E 10G WS at a staggering $650 price point.

However, there is hope. Companies like Aquantia are starting to aggressively push down the price point of 10 Gigabit networking, which brings us to the product we are taking a look at today — the ASUS XG-C100C 10 Gigabit Network Adapter.

IMG_4714.JPG

Continue reading about the ASUS XG-C100C 10GigE add-in card!

Author:
Subject: Processors
Manufacturer: Intel

A massive lineup

The amount and significance of the product and platform launches occurring today with the Intel Xeon Scalable family is staggering. Intel is launching more than 50 processors and 7 chipsets falling under the Xeon Scalable product brand, targeting data centers and enterprise customers in a wide range of markets and segments. From SMB users to “Super 7” data center clients, the new lineup of Xeon parts is likely to have an option targeting them.

All of this comes at an important point in time, with AMD fielding its new EPYC family of processors and platforms, for the first time in nearly a decade becoming competitive in the space. That decade of clear dominance in the data center has been good to Intel, giving it the ability to bring in profits and high margins without the direct fear of a strong competitor. Intel did not spend those 10 years flat footed though, and instead it has been developing complimentary technologies including new Ethernet controllers, ASICs, Omni-Path, FPGAs, solid state storage tech and much more.

cpus.jpg

Our story today will give you an overview of the new processors and the changes that Intel’s latest Xeon architecture offers to business customers. The Skylake-SP core has some significant upgrades over the Broadwell design before it, but in other aspects the processors and platforms will be quite similar. What changes can you expect with the new Xeon family?

01-11 copy.jpg

Per-core performance has been improved with the updated Skylake-SP microarchitecture and a new cache memory hierarchy that we had a preview of with the Skylake-X consumer release last month. The memory and PCIe interfaces have been upgraded with more channels and more lanes, giving the platform more flexibility for expansion. Socket-level performance also goes up with higher core counts available and the improved UPI interface that makes socket to socket communication more efficient. AVX-512 doubles the peak FLOPS/clock on Skylake over Broadwell, beneficial for HPC and analytics workloads. Intel QuickAssist improves cryptography and compression performance to allow for faster connectivity implementation. Security and agility get an upgrade as well with Boot Guard, RunSure, and VMD for better NVMe storage management. While on the surface this is a simple upgrade, there is a lot that gets improved under the hood.

01-12 copy.jpg

We already had a good look at the new mesh architecture used for the inter-core component communication. This transition away from the ring bus that was in use since Nehalem gives Skylake-SP a couple of unique traits: slightly longer latencies but with more consistency and room for expansion to higher core counts.

01-18 copy.jpg

Intel has changed the naming scheme with the Xeon Scalable release, moving away from “E5/E7” and “v4” to a Platinum, Gold, Silver, Bronze nomenclature. The product differentiation remains much the same, with the Platinum processors offering the highest feature support including 8-sockets, highest core counts, highest memory speeds, connectivity options and more. To be clear: there are a lot of new processors and trying to create an easy to read table of features and clocks is nearly impossible. The highlights of the different families are:

  • Xeon Platinum (81xx)
    • Up to 28 cores
    • Up to 8 sockets
    • Up to 3 UPI links
    • 6-channel DDR4-2666
    • Up to 1.5TB of memory
    • 48 lanes of PCIe 3.0
    • AVX-512 with 2 FMA per core
  • Xeon Gold (61xx)
    • Up to 22 cores
    • Up to 4 sockets
    • Up to 3 UPI links
    • 6-channel DDR4-2666
    • AVX-512 with 2 FMA per core
  • Xeon Gold (51xx)
    • Up to 14 cores
    • Up to 2 sockets
    • 2 UPI links
    • 6-channel DDR4-2400
    • AVX-512 with 1 FMA per core
  • Xeon Silver (41xx)
    • Up to 12 cores
    • Up to 2 sockets
    • 2 UPI links
    • 6-channel DDR4-2400
    • AVX-512 with 1 FMA per core
  • Xeon Bronze (31xx)
    • Up to 8 cores
    • Up to 2 sockets
    • 2 UPI links
    • No Turbo Boost
    • 6-channel DDR4-2133
    • AVX-512 with 1 FMA per core

That’s…a lot. And it only gets worse when you start to look at the entire SKU lineup with clocks, Turbo Speeds, cache size differences, etc. It’s easy to see why the simplicity argument that AMD made with EPYC is so attractive to an overwhelmed IT department.

01-20 copy.jpg

Two sub-categories exist with the T or F suffix. The former indicates a 10-year life cycle (thermal specific) while the F is used to indicate units that integrate the Omni-Path fabric on package. M models can address 1.5TB of system memory. This diagram above, which you should click to see a larger view, shows the scope of the Xeon Scalable launch in a single slide. This release offers buyers flexibility but at the expense of complexity of configuration.

Continue reading about the new Intel Xeon Scalable Skylake-SP platform!

Author:
Manufacturer: Sapphire

Overview

There has been a lot of news lately about the release of Cryptocurrency-specific graphics cards from both NVIDIA and AMD add-in board partners. While we covered the currently cryptomining phenomenon in an earlier article, today we are taking a look at one of these cards geared towards miners.

IMG_4681.JPG

It's worth noting that I purchased this card myself from Newegg, and neither AMD or Sapphire are involved in this article. I saw this card pop up on Newegg a few days ago, and my curiosity got the best of me.

There has been a lot of speculation, and little official information from vendors about what these mining cards will actually entail.

From the outward appearance, it is virtually impossible to distinguish this "new" RX 470 from the previous Sapphire Nitro+ RX 470, besides the lack of additional display outputs beyond the DVI connection. Even the branding and labels on the card identify it as a Nitro+ RX 470.

In order to test the hashing rates of this GPU, we are using Claymore's Dual Miner Version 9.6 (mining Ethereum only) against a reference design RX 470, also from Sapphire.

IMG_4684.JPG

On the reference RX 470 out of the box, we hit rates of about 21.8 MH/s while mining Ethereum. 

Once we moved to the Sapphire mining card, we move up to at least 24 MH/s from the start.

Continue reading about the Sapphire Radeon RX 470 Mining Edition!

Subject: Motherboards
Manufacturer: GIGABYTE

Introduction and Technical Specifications

Introduction

02-board_0.jpg

Courtesy of GIGABYTE

For the launch of the Intel X299 chipset motherboards, GIGABYTE chose their AORUS brand to lead the charge. The AORUS branding differentiates the enthusiast and gamer friendly products from other GIGABYTE product lines, similar to how ASUS uses the ROG branding to differentiate their high performance product line. The X299 AORUS Gaming 3 is among GIGABYTE's intial release boards offering support for the latest Intel HEDT chipset and processor line. Built around the Intel X299 chlipset, the board supports the Intel LGA2066 processor line, including the Skylake-X and Kaby Lake-X processors, with support for Quad-Channel DDR4 memory running at a 2667MHz speed. The X299 AORUS Gaming 3 can be found in retail with an MRSP of $279.99.

03-board-profile_0.jpg

Courtesy of GIGABYTE

GIGABYTE integrated the following features into the X299 AORUS Gaming 3 motherboard: eight SATA III 6Gbps ports; two M.2 PCIe Gen3 x4 32Gbps capable ports with Intel Optane support built-in; an Intel I219-V Gigabit RJ-45 port; five PCI-Express x16 slots; Realtek® ALC1220 8-Channel audio subsystem; and USB 2.0, 3.0, and 3.1 Type-A and Type-C port support.

04-pwr-system.jpg

Courtesy of GIGABYTE

To power the board, GIGABYTE integrated integrated a 9-phase digital power delivery system into the X299 AORUS Gaming 3's design. The digital power system was designed with IR digital power controllers and PowIRstage ICs, Server Level Chokes, and Durable Black capacitors.

05-pcie-armor.jpg

Courtesy of GIGABYTE

Designed to withstand the punishment of even the largest video cards, GIGABYTE's Ultra Durable PCIe Armor gives added strength and retention force to the primary and secondary PCIe x16 video card slots (PCIe X16 slots 1 and 3). The PCIe slots are reinforced with a metal overlay that is anchored to the board, giving the slot better hold capabilities (both side-to-side and card retention) when the board is used in a vertical orientation.

Continue reading our preview of the GIGABYTE X299 AORUS Gaming 3 motherboard!

Author:
Manufacturer: AKiTiO

A long time coming

External video cards for laptops have long been a dream of many PC enthusiasts, and for good reason. It’s compelling to have a thin-and-light notebook with great battery life for things like meetings or class, with the ability to plug it into a dock at home and enjoy your favorite PC games.

Many times we have been promised that external GPUs for notebooks would be a viable option. Over the years there have been many commercial solutions involving both industry standard protocols like ExpressCard, as well as proprietary connections to allow you to externally connect PCIe devices. Inspiring hackers have also had their hand with this for many years, cobbling together interesting solutions using mPCIe and M.2 ports on their notebooks which were meant for other devices.

With the introduction of Intel’s Thunderbolt standard in 2011, there was a hope that we would finally achieve external graphics nirvana. A modern, Intel-backed protocol promising PCIe x4 speeds (PCIe 2.0 at that point) sounded like it would be ideal for connecting GPUs to notebooks, and in some ways it was. Once again the external graphics communities managed to get it to work through the use of enclosures meant to connect other non-GPU PCIe devices such as RAID and video capture cards to systems. However, software support was still a limiting factor. You were required to use an external monitor to display your video, and it still felt like you were just riding the line between usability and a total hack. It felt like we were never going to get true universal support for external GPUs on notebooks.

Then, seemingly of out of nowhere, Intel decided to promote native support for external GPUs as a priority when they introduced Thunderbolt 3. Fast forward, and we've already seen a much larger adoption of Thunderbolt 3 on PC notebooks than we ever did with the previous Thunderbolt implementations. Taking all of this into account, we figured it was time to finally dip our toes into the eGPU market. 

For our testing, we decided on the AKiTio Node for several reasons. First, at around $300, it's by far the lowest cost enclosure built to support GPUs. Additionally, it seems to be one of the most compatible devices currently on the market according to the very helpful comparison chart over at eGPU.io. The eGPU site is a wonderful resource for everything external GPU, over any interface possible, and I would highly recommend heading over there to do some reading if you are interested in trying out an eGPU for yourself.

The Node unit itself is a very utilitarian design. Essentially you get a folded sheet metal box with a Thunderbolt controller and 400W SFX power supply inside.

DSC03490.JPG

In order to install a GPU into the Node, you must first unscrew the enclosure from the back and slide the outer shell off of the device.

DSC03495.JPG

Once inside, we can see that there is ample room for any graphics card you might want to install in this enclosure. In fact, it seems a little too large for any of the GPUs we installed, including GTX 1080 Ti models. Here, you can see a more reasonable RX 570 installed.

Beyond opening up the enclosure to install a GPU, there is very little configuration required. My unit required a firmware update, but that was easily applied with the tools from the AKiTio site.

From here, I simply connected the Node to a ThinkPad X1, installed the NVIDIA drivers for our GTX 1080 Ti, and everything seemed to work — including using the 1080 Ti with the integrated notebook display and no external monitor!

Now that we've got the Node working, let's take a look at some performance numbers.

Continue reading our look at external graphics with the Thunderbolt 3 AKiTiO Node!