Intel Persistent Memory Using 3D XPoint DIMMs Expected Next Year

Subject: General Tech, Memory, Storage | May 26, 2017 - 10:14 PM |
Tagged: XPoint, Intel, HPC, DIMM, 3D XPoint

Intel recently teased a bit of new information on its 3D XPoint DIMMs and launched its first public demonstration of the technology at the SAP Sapphire conference where SAP’s HANA in-memory data analytics software was shown working with the new “Intel persistent memory.” Slated to arrive in 2018, the new Intel DIMMs based on the 3D XPoint technology developed by Intel and Micron will work in systems alongside traditional DRAM to provide a pool of fast, low latency, and high density nonvolatile storage that is a middle ground between expensive DDR4 and cheaper NVMe SSDs and hard drives. When looking at the storage stack, the storage density increases along with latency as it gets further away from the CPU. The opposite is also true, as storage and memory gets closer to the processor, bandwidth increases, latency decreases, and costs increase per unit of storage. Intel is hoping to bridge the gap between system DRAM and PCI-E and SATA storage.

Intel persistent memory DIMM.jpg

According to Intel, system RAM offers up 10 GB/s per channel and approximately 100 nanoseconds of latency. 3D XPoint DIMMs will offer 6 GB/s per channel and about 250 nanoseconds of latency. Below that is the 3D XPoint-based NVMe SSDs (e.g. Optane) on a PCI-E x4 bus where they max out the bandwidth of the bus at ~3.2 GB/s and 10 microseconds of latency. Intel claims that non XPoint NVMe NAND solid state drives have around 100 microsecomds of latency, and of course, it gets worse from there when you go to NAND-based SSDs or even hard drives hanging of the SATA bus.

Intel’s new XPoint DIMMs have persistent storage and will offer more capacity that will be possible and/or cost effective with DDR4 DRAM. In giving up some bandwidth and latency, enterprise users will be able to have a large pool of very fast storage for storing their databases and other latency and bandwidth sensitive workloads. Intel does note that there are security concerns with the XPoint DIMMs being nonvolatile in that an attacker with physical access could easily pull the DIMM and walk away with the data (it is at least theoretically possible to grab some data from RAM as well, but it will be much easier to grab the data from the XPoint sticks. Encryption and other security measures will need to be implemented to secure the data, both in use and at rest.

Intel Slide XPoint Info.jpg

Interestingly, Intel is not positioning the XPoint DIMMs as a replacement for RAM, but instead as a supplement. RAM and XPoint DIMMs will be installed in different slots of the same system and the DDR4 RAM will be used for the OS and system critical applications while the XPoint pool of storage will be used for storing data that applications will work on much like a traditional RAM disk but without needing to load and save the data to a different medium for persistent storage and offering a lot more GBs for the money.

While XPoint is set to arrive next year along with Cascade Lake Xeons, it will likely be a couple of years before the technology takes off. Supporting it is going to require hardware and software support for the workstations and servers as well as developers willing to take advantage of it when writing their specialized applications. Fortunately, Intel started shipping the memory modules to its partners for testing earlier this year. It is an interesting technology and the DIMM solution and direct CPU interface will really let the 3D XPoint memory shine and reach its full potential. It will primarily be useful for the enterprise, scientific, and financial industries where there is a huge need for faster and lower latency storage that can accommodate massive (multiple terabyte+) data sets that continue to get larger and more complex. It is a technology that likely will not trickle down to consumers for a long time, but I will be ready when it does. In the meantime, I am eager to see what kinds of things it will enable the big data companies and researchers to do! Intel claims it will not only be useful at supporting massive in-memory databases and accelerating HPC workloads but for things like virtualization, private clouds, and software defined storage.

What are your thoughts on this new memory tier and the future of XPoint?

Also read:

Source: Intel

Micron Launches SolidScale Platform Architecture, Consolidates NVMe in the Datacenter

Subject: Storage | May 24, 2017 - 08:45 PM |
Tagged: SolidScale, NVMf, NVMe, micron, fabric, Cassandra

A few weeks back, I was briefed on Micron’s new SolidScale Architecture. This is essentially Micron’s off-the-shelf solution that ties together a few different technologies in an attempt to consolidate large pools of NVMe storage into a central location that can then be efficiently segmented and distributed among peers and clients across the network.

Traditionally it has been difficult to effectively utilize large numbers of SSDs in a single server. The combined IOPS capabilities of multiple high-performance PCIe SSDs can quickly saturate the available CPU cores of the server due to kernel/OS IO overhead incurred with each request. As a result, a flash-based network server would be bottlenecked by the server CPU during high IOPS workloads. There is a solution to this, and it’s simpler than you might think: Bypass the CPU!

blog-image-c.jpg

Read on for our deeper dive into Micron's SolidScale technology!

Source: Micron

Corsair Forces its way into the NVMe market with their MP500 M.2 SSD

Subject: Storage | May 18, 2017 - 04:26 PM |
Tagged: corsair, corsair force mp500, mp500, M.2, NVMe, PS5007-E7, toshiba mlc

Corsair have entered the NVMe market with a new Force Series product, the MP500 drive which contains Toshiba's 15-nm MLC, run by the popular Phison PS5007-E7 controller.  There is a difference which The Tech Report noticed right away, that sticker is for more than just show, it hides a layer of heat-dissipating copper inside just like we have seen in Samsung products.  It may have been the sticker, or some sort of secret sauce which Corsair added but the MP500's performance pulled ahead of Patriot's Hellfire SSD overall.  Read the full review to see where the drive showed the most performance differential.

main.jpg

"Corsair is throwing its hat into the NVMe SSD ring with the Force Series MP500 drive. We subjected this gumstick to our testing gauntlet to see how well the 240GB version fares against the rest of the formidable NVMe field."

Here are some more Storage reviews from around the web:

Storage

 

Western Digital Launches 10TB Red and Red Pro

Subject: Storage | May 17, 2017 - 09:57 PM |
Tagged: western digital, wdc, WD, Red Pro, red, NAS, helium, HelioSeal, hdd, Hard Drive, 10TB

Western Digital increased the capacity of their Red and Red Pro NAS hard disk lines to 10TB. Acquiring the Helioseal technology via their HGST acquisition, which enables Helium filled hermetically sealed drives of even higher capacities, WD expanded the Red lines to 8TB (our review of those here) using that tech. Helioseal has certainly proven itself, as over 15 million such units have shipped so far.

sshot-54.png

We knew it was just a matter of time before we saw a 10TB Red and Red Pro, as it has been some time since the HGST He10 launched, and Western Digital's own 10TB Gold (datacenter) drive has been shipping for a while now.

  • Red 10TB:        $494
  • Red Pro 10TB: $533

MSRP pricing looks a bit high based on the lower cost/GB of the 8TB model, but given some time on the market and volume shipping, these should come down to match parity with the lesser capacities.

Press blast appears after the break.

Spent all your money on a new CPU and couldn't afford an SSD? Intel Optane Memory is here

Subject: Storage | April 24, 2017 - 05:20 PM |
Tagged: XPoint, srt, rst, Optane Memory, Optane, Intel, hybrid, CrossPoint, cache, 32GB, 16GB

At $44 for 16GB or $77 for a 32GB module Intel's Optane memory will cost you less in total for an M.2 SSD, though a significantly higher price per gigabyte.  The catch is that you need to have a Kaby Lake Core system to be able to utilize Optane, which means you are unlikely to be using a HDD.  Al's test show that Optane will also benefit a system using an SSD, reducing latency noticeably although not as significantly as with a HDD.

The Tech Report tested it differently, by sourcing a brand new desktop system with Kaby Lake Core APU that did not ship with an SSD.  Once installed, the Optane drive enabled the system to outpace an affordable 480GB SSD in some scenarios; very impressive for a HDD.  They also did peek at the difference Optane makes when paired with aforementioned affordable SSD in their full review.

requirements.png

"Intel's Optane Memory tech purports to offer most of the responsiveness of an SSD to systems whose primary storage device is a good old hard drive. We put a 32GB stick of Optane Memory to the test to see whether it lives up to Intel's claims."

Here are some more Storage reviews from around the web:

Storage

 

ADATA Announces XPG SX7000 Line of NVMe PCIe SSDs

Subject: Storage | April 10, 2017 - 04:15 PM |
Tagged: adata, pcie, M.2, NVMe

ADATA has added another line of M.2 PCIe SSDs to their catalog with the XPG SX7000. These drives support NVMe and claim up to 1800 MB/s sequential read performance and 850 MB/s sequential write performance, with both tests measured on CrystalDiskMark at a queue depth of 32. Interestingly enough, their ATTO sequential write results, 860 MB/s, exceed their claimed maximum. Again, each of these numbers are provided by ADATA, so it’s still up to third-parties (like us) to verify. That said, ADATA provided a lot of information in their performance chart, which is nice to see.

adata-2017-xpg-sx7000.jpg

The spec sheet (pdf) provides performance results for three SKUs: 128GB, 256GB, and 512GB. A fourth model (if you guessed 1TB, then you would be right) is also acknowledged, but not elaborated upon. These are all based on 3D TLC flash, with some undefined amount of SLC cache.

Pricing and availability are TBD, but it will come with a 5 year warranty.

Source: ADATA

Western Digital Announces USB Type-C My Passport SSD

Subject: Storage | April 7, 2017 - 07:01 AM |
Tagged: WD, ssd, external ssd

Western Digital has just announced the My Passport SSD line of portable solid state hard drives. As you might expect, the major advantage of SSD-based portable storage is speed. This one connects with a USB Type-C port and is rated at up to 515 MB/s, although that hasn’t been benchmarked yet. The drives also support hardware, 256-bit AES encryption via their security software.

wd-2017-mypassportssd.png

According to Best Buy, the 256GB model ($99.99 USD) is already sold out, but the 512GB model ($199.99) and the 1TB model ($399.99) are both still available for the 14th of April.

DAS is good, the Noontec-TerraMaster D2-310

Subject: Storage | April 3, 2017 - 03:53 PM |
Tagged: Noontec-TerraMaster, DAS, D2-310, usb 3.1

For those who don't want to get into networked storage solutions but still require external storage with more options than a simple USB drive offers, direct attached storage devices are a good solution.  The Noontec-TerraMaster D2-310 is an aluminium shell with two drive bays, connected via Type-C USB 3.1 and offers support for JBOD, RAID 0 and RAID 1 in addition to simply presenting two external disks.  Modders-Inc tested this DAS in two different configurations, a pair of Seagate 4 TB 7200 RPM HDDs as well as a pair of Samsung 850 EVO 256 SSDs.  The performance levels reached their expectations, however the price is a bit higher than the competition; examine their results and description of the device to determine if you feel it is worth the expense.

IMG_0004.jpg

"D2-310 is a direct attached storage device by Noontec-TerraMaster. Most of the market is moving away from DAS devices to network based devices however, there is still a need for simple and fast solutions to store data locally. D2-310 offers USB 3.1 connectivity and supports RAID redundancy in a two bay shell."

Here are some more Storage reviews from around the web:

Storage

Source: Modders Inc

Intel Officially Launches Optane Memory, Shows Performance

Subject: Storage | March 27, 2017 - 12:16 PM |
Tagged: XPoint, Optane Memory, Optane, M.2, Intel, cache, 3D XPoint

We are just about to hit two years since Intel and Micron jointly launched 3D XPoint, and there have certainly been a lot of stories about it since. Intel officially launched the P4800X last week, and this week they are officially launching Optane Memory. The base level information about Optane Memory is mostly unchanged, however, we do have a slide deck we are allowed to pick from to point out some of the things we can look forward to once the new tech starts hitting devices you can own.

Optane Memory-6.png

Alright, so this is Optane Memory in a nutshell. Put some XPoint memory on an M.2 form factor device, leverage Intel's SRT caching tech, and you get a 16GB or 32GB cache laid over your system's primary HDD.

Optane Memory-15.png

To help explain what good Optane can do for typical desktop workloads, first we need to dig into Queue Depths a bit. Above are some examples of the typical QD various desktop applications run at. This data is from direct IO trace captures of systems in actual use. Now that we've established that the majority of desktop workloads operate at very low Queue Depths (<= 4), lets see where Optane performance falls relative to other storage technologies:

Optane Memory-22.png

There's a bit to digest in this chart, but let me walk you through it. The ranges tapering off show the percentage of IOs falling at the various Queue Depths, while the green, red, and orange lines ramping up to higher IOPS (right axis) show relative SSD performance at those same Queue Depths. The key to Optane's performance benefit here is that it can ramp up to full performance at very low QD's, while the other NAND-based parts require significantly higher parallel requests to achieve full rated performance. This is what will ultimately lead to a much snappier responsiveness for, well, just about anything hitting the storage. Fun fact - there is actually a HDD on that chart. It's the yellow line that you might have mistook as the horizontal axis :).

Optane Memory-11.png

As you can see, we have a few integrators on board already. Official support requires a 270 series motherboard and Kaby Lake CPU, but it is possible that motherboard makers could backport the required NVMe v1.1 and Intel RST 15.5 requirements into older systems.

Optane Memory-7.png

For those curious, if caching is the only way power users will be able to go with Optane, that's not the case. Atop that pyramid there sits an 'Intel Optane SSD', which should basically be a consumer version of the P4800X. It is sure to be an incredibly fast SSD, but that performance will most definitely come at a price!

We should be testing Optane Memory shortly and will finally have some publishable results of this new tech as soon as we can!

Source: Intel

Lexar Announces Durable JumpDrives with USB 3.1

Subject: Storage | March 25, 2017 - 02:13 AM |
Tagged: Lexar, thumb drive

A new line of USB flash drives has been announced by Lexar, which focuses on both durability and USB 3.1 support (compatible with USB 2.0 and USB 3.0). From the technical side, the Lexar JumpDrive Tough drives can read up to 150 MB/s and write up to 60 MB/s, which is obviously nowhere near SSD speed, but reasonably fast for the typical cases that you would use a thumb drive.

lexar-2017-jumpdrivetough.jpg

As for its robustness, Lexar claims that the JumpDrive Tough will operate normally between -13F and 300F, which is just shy of the bake cookies temperature. It is also water resistant up to 98 feet.

The Lexar JumpDrive Tough will be available in 32GB, 64GB, and 128GB models for $19.99, $34.99, and $59.99, respectively. While I don’t normally consider manufacturer returns for something like this, Lexar is backing this purchase with a 3-year limited warranty, which gives some legal teeth to their claims (if anyone takes them up on it). They are available now.

Source: Lexar

Need a huge amount of reliable storage? 10TB of enterprise storage from Seagate

Subject: Storage | March 21, 2017 - 03:07 PM |
Tagged: Seagate, 10TB, enterprise, hdd

The Seagate Barracuda Pro 10TB Enterprise HDD won't give you the fastest access to your data, but if you have a large amount of storage in a reliable format it is worth looking at this review.  The MSRP of $444.45USD is much lower than you would pay for 10TB of SSD storage, though you might be able to set up several smaller disks in a Drobo or similar device for a similar price.  The MTBF is 2.5 million hours, the endurance rating is 550TB per year and there is a 5 year warranty so even with heavy usage you should be able to depend on this drive for quite a long time.  You can drop by NikKTech to see how it performs.

enterprise_capacity_3.5_v6_10tbb.jpg

"The Seagate Barracuda Pro 10TB hard disk drive offers good endurance levels with great performance and an even greater capacity. The Enterprise Capacity 3.5 V6 10TB model again by Seagate boosts even higher performance and endurance numbers without asking more from your wallet."

Here are some more Storage reviews from around the web:

Storage

 

Source: Nikktech

Intel Officially Kicks Off Optane Launch with SSD DC P4800X

Subject: Storage | March 19, 2017 - 12:21 PM |
Tagged: XPoint, SSD DC P4800X, Optane Memory, Optane, Intel, client, 750GB, 3D XPoint, 375GB, 1.5TB

Intel brought us out to their Folsom campus last week for some in-depth product briefings. Much of our briefing is still under embargo, but the portion that officially lifts this morning is the SSD DC P4800X:

Intel_SSD_4800_FlatFront_OnWhite_RGB_Small.jpg

optane-4.png

optane-9.png

MSRP for the 375GB model is estimated at $1520 ($4/GB), which is rather spendy, but given that the product has shown it can effectively displace RAM in servers, we should be comparing the cost/GB with DRAM and not NAND. It should also be noted this is also nearly half the cost/GB of the X25-M at its launch. Capacities will go all the way up to 1.5TB, and U.2 form factor versions are also on the way.

For those wanting a bit more technical info, the P4800X uses a 7-channel controller, with the 375GB model having 4 dies per channel (28 total). Overprovisioning does not do for Optane what it did for NAND flash, as XPoint can be rewritten at the byte level and does not need to be programmed in (KB) pages and erased in larger (MB) blocks. The only extra space on Optane SSDs is for ECC, firmware, and a small spare area to map out any failed cells.

Those with a keen eye (and calculator) might have noted that the early TBW values only put the P4800X at 30 DWPD for a 3-year period. At the event, Intel confirmed that they anticipate the P4800X to qualify at that same 30 DWPD for a 5-year period by the time volume shipment occurs.

Read on for more about the SSD DC P4800X (and other upcoming products!)

Now that's dense storage; single atom storage

Subject: General Tech | March 14, 2017 - 11:54 AM |
Tagged: nm, storage

As we are not going to see scanning tunnelling microscopes included in our home computers anytime soon this experiment is simply proof of the concept that data can be stored on a single atom.  That does not make it any less interesting for those fascinated by atomic storage techniques.  A single atom of holmium can be made to spin either up or down, signifying either a 0 or 1, and that spin state can be 'read' by measuring the vibration of a single iron atom located close by.  The holmium atoms used for storage can be separated by a mere nanometer without interfering with the spin of its neighbours.  The spin state only lasts a few hours but shows that this could someday be a viable storage technology.  You can read more at nanotechweb, who also have links to the Nature article.

Capture.PNG

"Information has been stored in a single atom for the first time. The nascent binary memory was created by Andreas Heinrich at the Institute of Basic Science in South Korea and an international team."

Here is some more Tech News from around the web:

Tech Talk

Source: Nanotechweb

ioSafe Launches 5-Bay Xeon-Based 'Server 5' Fireproof NAS

Subject: Storage | March 8, 2017 - 09:58 PM |
Tagged: xeon, raid, NAS, iosafe, fireproof

ioSafe, makers of excellent fireproof external storage devices and NAS units, has introduced what they call the 'Server 5':

Server5-front2-.jpg

The Server 5 is a completely different twist for an ioSafe NAS. While previous units have essentially been a fireproof drive cage surrounding Synology NAS hardware, the Server 5 is a full blown Xeon D-1520 or D-1521 quad core HT, 16GB of DDR4, an Areca ARC-1225-8i hardware RAID controller (though only 5 ports are connected to the fireproof drive cage). ioSafe supports the Server 5 with Windows Server 2012 R2 or you can throw your preferred flavor of Linux on there. The 8-thread CPU and 16GB of RAM mean that you can have plenty of other services running straight off of this unit. It's not a particularly speedy CPU, but keep in mind that the Areca RAID card offloads all parity calculations from the host.

Server5-rear.jpg

Overall the Server 5 looks nearly identical to the ioSafe 1515+, but with an extra inch or two of height added to the bottom to accommodate the upgraded hardware. The Server 5 should prove to be a good way to keep local enterprise / business data protected and available immediately after a disaster. While only the hard drives will be protected in a fire, they can be popped out of the charred housing and shifted to a backup Server 5 or just migrated to another Areca-driven NAS system. For those wondering what a typical post-fire ioSafe looks like, here ya go:

1515+.jpg

Note how clean the cage and drives are (and yes, they all still work)!

Press blast appears after the break.

Source: ioSafe

NETGEAR Issues Non-Urgent Recall of Some Enterprise Devices

Subject: Networking, Storage | March 4, 2017 - 11:57 PM |
Tagged: netgear, Intel, Avoton, recall

While this is more useful for our readers in the IT field, NETGEAR has issued a (non-urgent) recall on sixteen models of Rackmount NAS and Wireless Controller devices. It looks like the reason for this announcement is to maintain customer relations. They are planning to reach out to customers “over the next several months” to figure out a solution for them. Note the relaxed schedule.

netgear-2017-RN3130.png

The affected model numbers are:

  1. RN3130
  2. RN3138
  3. WC7500 Series:
    • WC7500-10000S, WC7500-100INS, WC7500-100PRS, WB7520-10000S, WB7520-100NAS, WB7530-10000S, WB7530-100NAS
  4. WC7600 Series:
    • WC7600-20000S, WC7600-200INS, WC7600-200PRS, WB7620-10000S, WB7620-100NAS, WB7630-10000S, WB7630-100NAS

The Register noticed that each of these devices contain Intel’s Avoton-based Atom processors. You may remember our coverage from last month, which also sourced The Register, that states these chips may fail to boot over time. NETGEAR is not blaming Intel for their recall, but gave The Register a wink and a nudge when pressed: “We’re not naming the vendor but it sounds as if you’ve done your research.”

Again, while this news applies to enterprise customers and it’s entirely possible that Intel (if it actually is the Avoton long-term failure issue) is privately supporting them, it’s good to see NETGEAR being honest and upfront. Problems will arise in the tech industry; often (albeit not always) what matters more is how they are repaired.

Source: NETGEAR

SDXC SD cards come at a big premium; too bad we can't slide an M.2 SSD into our cameras

Subject: Storage | February 27, 2017 - 05:23 PM |
Tagged: sdxc, sd card, patriot, lx series

You may recall a while back Allyn put together an article detailing the new types of SD cards hitting the market which will support 4K recording in cameras.  Modders Inc just wrapped up a review of one of these cards, Patriot's 256GB LX Series SDXC card with an included adapter for those who need it.  The price certainly implies it is new technology, $200 for 256GB of storage is enough to make anyone pause, so the question becomes why one would pay such a premium. Their benchmarks offer insight into this, with 83Mb/s write and 96Mb/s read in both ATTO and CrystalDisk proving that this is a far cry from the performance of older SD cards and worthy of that brand new ultra high definition camera you just picked up.  Lets us hope the prices plummet as they did with the previous generations of cards.

Front.jpg

"Much like Mary Poppins bag of wonders, Patriot too has a method of fitting a substantial amount of goodness in a small space with the release of their 256GB LX Series SDXC class 10 memory card. Featuring an impressive 256GB of storage and boasting this as an “ultra high speed” card for QHD video production and high resolution photos."

Here are some more Storage reviews from around the web:

Storage

 

Source: Modders Inc

Intel Details Optane Memory System Requirements

Subject: General Tech, Storage | February 21, 2017 - 07:14 PM |
Tagged: Optane, kaby lake, Intel, 3D XPoint

Intel has announced that its Optane memory will require an Intel Kaby Lake processor to function. While previous demonstrations of the technology used an Intel Skylake processor, it appears this configuration will not be possible on the consumer versions of the technology.

Intel Optane App Accelerator.jpg

Further, the consumer application accelerator drives will also require a 200-series chipset motherboard, and either a M.2 2280-S1-B-M or M.2 2242-S1-B-M connector with two or four PCI-E lanes. Motherboards will have to support NVMe v1.1 and Intel RST (Rapid Storage Technology) 15.5 or newer.

It is not clear why Intel is locking Optane technology to Kaby Lake and whether it is due to technical limitations that they were not able to resolve to keep Skylake compatible or if it is just a matter of not wanting to support the older platform and focus on its new Kaby Lake processors. As such, Kaby Lake is now required if you want UHD Blu Ray playback and Optane 3D XPoint SSDs.

What are your thoughts on this latest bit of Optane news? Has Intel sweetened the pot enough to encourage upgrade hold outs?

Also Read: 

 

Source: Bit-Tech

Intel Quietly Launches Official Optane Memory Site

Subject: Storage | February 15, 2017 - 08:58 PM |
Tagged: XPoint, ssd, Optane, memory, Intel, cache

We've been hearing a lot about Intel's upcoming Optane memory over the past two years, but the information had all been in the form of press announcements and leaked roadmap slides.

optane-memory-marquee-16x9.png.rendition.intel_.web_.1072.603.png

We now have an actual Optane landing page on the Intel site that discusses the first iteration of 'Intel Optane Memory', which appears to be the 8000p Series that we covered last October and saw as an option on some upcoming Lenovo laptops. The site does not cover the upcoming enterprise parts like the 375GB P4800X, but instead, focuses on the far smaller 16GB and 32GB 'System Accelerator' M.2 modules.

intel-optane-memory-8000p.jpg

Despite using only two lanes of PCIe 3.0, these modules turn in some impressive performance, but the capacities when using only one or two (16GB each) XPoint dies preclude an OS install. Instead, these will be used, presumably in combination with a newer form of Intel's Rapid Storage Technology driver, as a caching layer meant as an HDD accelerator:

While the random write performance and endurance of these parts blow any NAND-based SSD out of the water, the 2-lane bottleneck holds them back compared to high-end NVMe NAND SSDs, so we will likely see this first consumer iteration of Intel Optane Memory in OEM systems equipped with hard disks as their primary storage. A very quick 32GB caching layer should help speed things up considerably for the majority of typical buyers of these types of mobile and desktop systems, while still keeping the total cost below that for a decent capacity NAND SSD as primary storage. Hey, if you can't get every vendor to switch to pure SSD, at least you can speed up that spinning rust a bit, right?

Source: Intel

Crucial expands their MX300 line of SSDs all the way up to 2TB

Subject: Storage | February 14, 2017 - 06:51 PM |
Tagged: tlc, slc, MX300, micron, imft, Dynamic Write Acceleration, DWA, crucial, 3DNAND, 3d nand

Last June Al took a look at the Crucial MX300 750GB and its ability to switch its cache dynamically from TLC to SLC, helping Crucial improve how they implemented this feature along the way.  It proved to be a great value for the money; not the best performing drive but among the least expensive on the market.  Crucial has since expanded the lineup and Hardware Canucks took a look at the 2TB model.  This model has more than just a larger pool of NAND, the RAM cache has been doubled up to 1GB and the dynamic cache has more space to work in as well.  Take a look at this economy sized drive in their full review.

board_lg.jpg

"Crucial's newest MX300 series continues to roll on with a new 2TB version. This SSD may be one of the best when it comes to performance, price and capacity all combined into one package."

Here are some more Storage reviews from around the web:

Storage

A Closer Look at Intel's Optane SSD DC P4800X Enterprise SSD Performance

Subject: Storage | February 10, 2017 - 04:22 PM |
Tagged: Optane, XPoint, P4800X, 375GB

Over the past few hours, we have seen another Intel Optane SSD leak rise to the surface. While we previously saw a roadmap and specs for a mobile storage accelerator platform, this time we have some specs for an enterprise part:

optane-leak.png

The specs are certainly impressive. While they don't match the maximum theoretical figures we heard at the initial XPoint announcement, we do see an endurance rating of 30 DWPD (drive writes per day), which is impressive given competing NAND products typically run in the single digits for that same metric. The 12.3 PetaBytes Written (PBW) rating is even more impressive given the capacity point that rating is based on is only 375GB (compare with 2000+ GB of enterprise parts that still do not match that figure).

Now I could rattle off the rest of the performance figures, but those are just numbers, and fortunately we have ways of showing these specs in a more practical manner:

rnd.png

Assuming the P4800X at least meets its stated specifications (very likely given Intel's track record there), and also with the understanding that XPoint products typically reach their maximum IOPS at Queue Depths far below 16, we can compare the theoretical figures for this new Optane part to the measured results from the two most recent NAND-based enterprise launches. To say the random performance makes leaves those parts in the dust is an understatement. 500,000+ IOPS is one thing, but doing so at lower QD's (where actual real-world enterprise usage actually sits) just makes this more of an embarrassment to NAND parts. The added latency of NAND translates to far higher/impractical QD's (256+) to reach their maximum ratings.

server workload QD.png

Intel research on typical Queue Depths seen in various enterprise workloads. Note that a lower latency device running the same workload will further 'shallow the queue', meaning even lower QD.

Another big deal in the enterprise is QoS. High IOPS and low latency are great, but where the rubber meets the road here is consistency. Enterprise tests measure this in varying degrees of "9's", which exponentially approach 100% of all IO latencies seen during a test run. The plot method used below acts to 'zoom in' on the tail latency of these devices. While a given SSD might have very good average latency and IOPS, it's the outliers that lead to timeouts in time-critical applications, making tail latency an important item to detail.

qos-r.png

qos-w.png

I've taken some liberties in my approximations below the 99.999% point in these plots. Note that the spec sheet does claim typical latencies "<10us", which falls off to the left of the scale. Not only are the potential latencies great with Optane, the claimed consistency gains are even better. Translating what you see above, the highest percentile latency IOs of the P4800X should be 10x-100x (log scale above) faster than Intel's own SSD DC P3520. The P4800X should also easily beat the Micron 9100 MAX, even despite its IOPS being 5x higher than the P3520 at QD16. These lower latencies also mean we will have to add another decade to the low end of our Latency Percentile plots when we test these new products.

Well, there you have it. The cost/GB will naturally be higher for these new XPoint parts, but the expected performance improvements should make it well worth the additional cost for those who need blistering fast yet persistent storage.