Rumor: Intel Expects Coffee Lake and Basin Falls Early

Subject: Processors | April 19, 2017 - 08:00 PM |
Tagged: skylake-x, ryzen, kaby lake x, Intel, Core, coffee lake, amd

According to DigiTimes, Intel is expecting to release several new processors earlier than they had originally planned. That said, there are two issues with this report. The first point, which should be expected, is that it compares internal dates that were never meant to be public. It is not like Intel has changed their advertised roadmap.

The second problem is that it’s somewhat contradicted by Intel’s earlier, public statements.

Intel-logo.png

Their rumor claims that Intel will push up the launch of Basin Falls, which is Skylake-X, Kaby Lake-X, and X299, by about two months (around June). It also claims that Coffee Lake, which was originally scheduled for January 2018, will be released in August 2017. Both of these moves are being attributed to AMD’s new products.

The potential, somewhat, sort-of contradiction comes from a tweet that Intel made back in February. In it, they said that the 8th generation of Core processors are expected for 2H’17. This time frame doesn’t include January, although it only barely includes August, too. If Intel was always planning on launching Coffee Lake for the “back to school” season, then at least that half of DigiTimes’ story would be completely incorrect. On the other hand, if Intel’s tweet was talking about a sampling / paper launch in December, with volume shipment soon to follow, then DigiTimes would be fairly accurate.

We don’t know unless someone at Intel confirms either-or.

As for Skylake-X and Kaby Lake-X, it would be interesting to see them launch at Computex / E3. Previous rumors (also from DigiTimes) that place it in the Gamescom, which is a huge gaming conference in Cologne. Interestingly, this rumor claims that only the four-, six-, eight-, and ten-core models will arrive at the time, with a twelve-core model waiting until the whole line was supposed to launch.

This omission makes me wonder if, in fact, Intel are rushing the launch, but they realize that they cannot get enough good chips to fill out the top-end SKU. In that case, it would make sense to push the smaller and partially-disabled chips out the door, while banking the big chips that can run all twelve cores at a reasonable voltage for some clock rate.

If so, that would, in fact, speak volumes about AMD’s roadmap (and Intel’s opinion of it).

Source: DigiTimes

Take 5 to read through the Ryzen roundup

Subject: Processors | April 11, 2017 - 02:46 PM |
Tagged: z270, ryzen 5, ryzen, amd, 1600X, 1400

As you have already read through Ryan's review of the Ryzen 1600X and 1500X running on MSI's B350 Tomahawk you know about how the chips measure up to Intel's offerings at the same price point.  Life being what it is, there is always a trade between testing everything and publishing results in a timely manner so it is possible that we missed your favourite game, benchmark or test setting which is why roundups such as this exist.  For instance over at [H]ard|OCP the tests were performed on an MSI Krait Z270 Gaming motherboard and they also had a chance to review the $169 Ryzen 5 1400. 

Drop by to take a look and don't forget there are a whole lot more just below.

r51400.PNG

"AMD has been on a tear with its new Ryzen 7 CPUs over the past few weeks and now it is time for the Ryzen 5 processor family performance to be explored. We are giving away the AMD Reviewer's Kit with a 1600X and 1500X, instead we bought 1600 and 1400 processors to review here today. All data is retail CPUs, and all overclocked to 4GHz."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

Ryzen 5 surfaces on eBay

Subject: Processors | April 10, 2017 - 05:50 PM |
Tagged: amd, ryzen 5, ryzen 5 1600, ryzen 5 1400

Perhaps it is best not to ask how this came about, but you can order the Ryzen 5 1600 and 1400 from eBay.  The seller has an impressive reputation and as Kyle over at [H]ard|OCP has already ordered and received some, this should be a fairly safe opportunity to take advantage of.   The full review has not yet been published but that did not stop them from putting together a quick overclocking video.  If you have 20 minutes to spare and an interest in AMD's new processors you should take a look.

1489526592NU1oMxW3l3_1_14_l.png

"Much to our surprise, AMD Ryzen 5 CPUs started showing up online for sale last week in North America, so we did what any PC hardware review site would do. We went out and bought four of those and started working on seeing just how much overclocking headroom each of these new CPUs have."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

AMD Releases Ryzen Balanced Power Plan - Test Results Inside

Subject: Processors | April 6, 2017 - 06:03 PM |
Tagged: ryzen, Power Plan, Power Management, Balanced, amd

AMD Releases Ryzen Balanced Power Plan - Test Results Inside

AMD has published Community Update #3 to their blog. This update details a new Power Plan that should yield improved gaming performance for those who were previously using the Windows default Balanced Power Profile. There has been lots of speculation on reasons for performance differences when gaming in various power modes and even on different Operating Systems. With this new Ryzen Balanced profile also came some info that should help us clear up some of the other misconceptions out there.

After we determined that the Windows 10 Scheduler was not at fault for the Ryzen performance issues we were seeing in some applications, we received some testing feedback from those who had noted performance differences between Windows 7 and Windows 10. While many believed that to be confirmation of scheduler differences between both Operating Systems, the actual cause was down to how Windows 7 and Windows 10 park their cores, as demonstrated by the points AMD sent us earlier today:

  • Windows 7 only parks SMT cores, keeping all physical cores awake.
  • Windows 10 keeps the first core awake (logical core 0 + 1 on a HT system) and parks the remainder when possible.
  • Windows 10 disables core parking by default on Intel CPUs (Speed Shift support).

Since Windows power management (not the scheduler) is not yet Ryzen aware, its default settings result in overly aggressive core parking when driving a Ryzen CPU. Until a lower level change can take place, AMD has released a custom Ryzen Balanced Power Plan that tweaks some of the P-state transition values and a few other settings to help realize the performance gains previously seen by folks shifting to the High Performance mode while keeping idle power consumption much closer to that of the Balanced plan. Here are AMD’s claimed performance gains (vs. Balanced) with their new Ryzen Balanced Power Plan:

1.png

AMD provided claimed gains for Ryzen Balanced profile vs. default Windows Balanced profile.

Realize these gains are all going to be nearly identical to any prior comparison showing Balanced vs. High Performance profile deltas, but this profile retains most of the idle power savings accomplished by the Balanced plan. We’ve been doing some testing with the tool and can partially confirm the above results, while adding in some more of our own that were not included in AMD’s data:

2.png

The blue highlighted bars denote the overlapping titles tested. A few other titles we tested showed lesser (or no) gains, but that’s not necessarily the fault of this new profile as those same titles saw similar results with a switch to High Performance mode when tested previously.

I did a bit of digging into exactly which power profile parameters are being tweaked and how. Laymen poking around in Windows Power Management will only find this single difference:

3.png

However, deconstructing the actual profile data reveals more changes that do not appear in the Windows GUI. Here are the low-level changes we discovered, including the ‘Minimum processor state’ previously noted above:

4.png

Note: Units differ varying by parameter in this chart - compare within each set of 3 bars.

As you can see, changes were made to help minimize the parking of Ryzen cores, and to also speed up their waking when required. It may not be a perfect solution as it is another step that the user must perform to get good ‘out of the box’ Ryzen performance, but it does help alleviate the dilemma of running your desktop machine at full tilt 24/7 or having to switch power modes on either end of your gaming sessions. This is a solid stop-gap until native Ryzen support makes its way into Windows, so all of you Ryzen users out there, run over to the AMD Blog and grab/install the Ryzen Balanced Power Plan!

Source: AMD

AIDA64 Version 5.90 Released

Subject: Processors | March 28, 2017 - 11:48 AM |
Tagged: FinalWire, aida64, ryzen, amd, Intel

01-aida64.png

Courtesy of FinalWire

Today, FinalWire Ltd. announced the release of version 5.90 of their diagnostic and benchmarking tool, AIDA64. This new version updates their Extreme Edition, Engineer Edition, and Business Edition of the software, available here.

The latest version of AIDA64 has been optimized to work with AMD's Ryzen "Summit Ridge" and Intel's "Apollo Lake" processors, as well as updated to work with Microsoft's Windows 10 Creators Update release. The benchmarks and performance tests housed within AIDA64 have been updated for the Ryzen processor to utilize the VX2, FMA3, AES-NI and SHA instruction sets.

New features include:

  • AVX2 and FMA accelerated 64-bit benchmarks for AMD Ryzen Summit Ridge processors
  • Microsoft Windows 10 Creators Update support
  • Optimized 64-bit benchmarks for Intel Apollo Lake SoC
  • Improved support for Intel Cannonlake, Coffee Lake, Denverton, Kaby Lake-X, Skylake-X CPUs
  • Preliminary support for AMD Zen server processors
  • Preliminary support for Intel Gemini Lake SoC and Knights Mill HPC CPU
  • NZXT Kraken X52 sensor support
  • Socket AM4 motherboards support
  • Improved support for Intel B250, H270, Q270 and Z270 chipset based motherboards
  • EastRising ER-OLEDM032 (SSD1322) OLED support
  • SMBIOS 3.1.1 support
  • Crucial M600, Crucial MX300, Intel Pro 5400s, SanDisk Plus, WD Blue SSD support
  • Improved support for Samsung NVMe SSDs
  • Advanced support for HighPoint RocketRAID 27xx RAID controllers
  • GPU details for nVIDIA GeForce GTX 1080 Ti, Quadro GP100, Tesla P6

Software updates new to this release (since AIDA64 v5.00):

  • AVX and FMA accelerated FP32 and FP64 ray tracing benchmarks
  • Vulkan graphics accelerator diagnostics
  • RemoteSensor smartphone and tablet LCD integration
  • Logitech Arx Control smartphone and tablet LCD integration
  • Microsoft Windows 10 TH2 (November Update) support
  • Proper DPI scaling to better support high-resolution LCD and OLED displays
  • AVX and FMA accelerated 64-bit benchmarks for AMD A-Series Bristol Ridge and Carrizo APUs
  • AVX2 and FMA accelerated 64-bit benchmarks for Intel Broadwell, Kaby Lake and Skylake CPUs
  • AVX and SSE accelerated 64-bit benchmarks for AMD Nolan APU
  • Optimized 64-bit benchmarks for Intel Braswell and Cherry Trail processors
  • Advanced SMART disk health monitoring
  • Hot Keys to switch LCD pages, start or stop logging, show or hide SensorPanel
  • Corsair K65, K70, K95, Corsair Strafe, Logitech G13, G19, G19s, G910, Razer Chroma RGB LED keyboard support
  • Corsair, Logitech, Razer RGB LED mouse support
  • Corsair and Razer RGB LED mousepad support
  • AlphaCool Heatmaster II, Aquaduct, Aquaero, AquaStream XT, AquaStream Ultimate, Farbwerk, MPS, NZXT GRID+ V2, PowerAdjust 2, PowerAdjust 3 sensor devices support
  • Improved Corsair Link sensor support
  • NZXT Kraken water cooling sensor support
  • Corsair AXi, Corsair HXi, Corsair RMi, Enermax Digifanless, Thermaltake DPS-G power supply unit sensor support
  • Support for Gravitech, LCD Smartie Hardware, Leo Bodnar, Modding-FAQ, Noteu, Odospace, Saitek Pro Flight Instrument Panel, Saitek X52 Pro, UCSD LCD devices
  • Portrait mode support for AlphaCool and Samsung SPF LCDs
  • System certificates information
  • Advanced support for Adaptec and Marvell RAID controllers

About FinalWire

AIDA64 is developed by FinalWire Ltd., headquartered in Budapest, Hungary. The company’s founding members are veteran software developers who have worked together on programming system utilities for more than two decades. Currently, they have ten products in their portfolio, all based on the award-winning AIDA technology: AIDA64 Extreme, AIDA64 Engineer, AIDA64 Network Audit, AIDA64 Business and AIDA64 for Android,, iOS, Sailfish OS, Tizen, Ubuntu Touch and Windows Phone. For more information, visit www.aida64.com.

Source: FinalWire

A reasonable response about Ryzen, please do not check your sanity at the door

Subject: Processors | March 17, 2017 - 03:48 PM |
Tagged: amd, Intel, ryzen, sanity check

Ars Technica asks the question that many reasonable people are also pondering, "Intel still beats Ryzen at games, but how much does it matter?".  We here at PCPer have seen the same sorts of responses which Ars has, there is a group of people who had the expectation that Ryzen would miraculously beat any and all Intel chips at every possible task.  More experienced heads were hoping for about what we received, a chip which can challenge Broadwell, offering performance which improved greatly on their previous architecture.  The launch has revealed some growing pains with AMD's new baby but not anything which makes Ryzen bad. 

Indeed, with more DX12 or Vulkan games arriving we should see AMD's performance improve, especially if programmers start to take more effective advantage of high core counts.  Head over to read the article, unless you feel that is not a requirement to comment on this topic.

amd.png

"In spite of this, reading the various reviews around the Web—and comment threads, tweets, and reddit posts—one gets the feeling that many were hoping or expecting Ryzen to somehow beat Intel across the board, and there's a prevailing narrative that Ryzen is in some sense a bad gaming chip. But this argument is often paired with the claim that some kind of non-specific "optimization" is going to salvage the processor's performance, that AMD fans just need to keep the faith for a few months, and that soon Ryzen's full power will be revealed."

Here are some more Processor articles from around the web:

Processors

Source: Ars Technica

Ryzen Locking on Certain FMA3 Workloads

Subject: Processors | March 15, 2017 - 05:51 PM |
Tagged: ryzen, Infinity Fabric, hwbot, FMA3, Control Fabric, bug, amd, AM4

Last week a thread was started at the HWBOT forum and discussed a certain workload that resulted in a hard lock every time it was run.  This was tested with a variety of motherboards and Ryzen processors from the 1700 to the 1800X.  In no circumstance at default power and clock settings did the processor not lock from the samples that they have worked on, as well as products that contributors have been able to test themselves.

ryzen.jpg

This is quite reminiscent of the Coppermine based Pentium III 1133 MHz processor from Intel which failed in one specific workload (compiling).  Intel had shipped a limited number of these CPUs at that time, and it was Kyle from HardOCP and Tom from Tom’s Hardware that were the first to show this behavior in a repeatable environment.  Intel stopped shipping these models and had to wait til the Tualatin version of the Pentium III to be released to achieve that speed (and above) and be stable in all workloads.

The interesting thing about this FMA3 finding is that it is seen to not be present in some overclocked Ryzen chips.  To me this indicates that it could be a power delivery issue with the chip.  A particular workload that heavily leans upon the FPU could require more power than the chip’s Control Fabric can deliver, therefore causing a hard lock.  Several tested overclocked chips with much more power being pushed to them seems as though enough power is being applied to the specific area of the chip to allow the operation to be completed successfully.

This particular fact implies to me that AMD does not necessarily have a bug such as what Intel had with the infamous F-Div issue with the original Pentium, or AMD’s issue with the B2 stepping of Phenom.  AMD has a very complex voltage control system that is controlled by the Control Fabric portion of the Infinity Fabric.  With a potential firmware or microcode update this could be a fixable problem.  If this is the case, then AMD would simply increase power being supplied to the FPU/SIMD/SSE portion of the Ryzen cores.  This may come at a cost through lower burst speeds to keep TDP within their stated envelope.

A source at AMD has confirmed this issue and that a fix will be provided via motherboard firmware update.  More than likely this comes in the form of an updated AGESA protocol.

Source: HWBOT Forums

Today's episode features special guest Denver Jetson

Subject: Processors | March 14, 2017 - 03:17 PM |
Tagged: nvidia, JetsonTX1, Denver, Cortex A57, pascal, SoC

Amongst the furor of the Ryzen launch the NVIDIA's new Jetson TX2 SoC was quietly sent out to reviewers and today the NDA expired so we can see how it performs.  There are more Ryzen reviews below the fold, including Phoronix's Linux testing if you want to skip ahead.  In addition to the specifications in the quote, you will find 8GB of 128-bit LPDDR4 offering memory bandwidth of 58.4 GB/s and 32GBs of eMMC for local storage.  This Jetson is running JetPack 3.0 L4T based off of the Linux 4.4.15 kernel.  Phoronix tested out its performance, see for yourself.

image.php_.jpg

"Last week we got to tell you all about the new NVIDIA Jetson TX2 with its custom-designed 64-bit Denver 2 CPUs, four Cortex-A57 cores, and Pascal graphics with 256 CUDA cores. Today the Jetson TX2 is shipping and the embargo has expired for sharing performance metrics on the JTX2."

Here are some more Processor articles from around the web:

Processors

Source: Phoronix

AMD Ryzen Community Update Addresses Windows 10 Thread Scheduling, SMT Performance, and More

Subject: Processors | March 13, 2017 - 08:48 PM |
Tagged: Windows 7, windows 10, thread scheduling, SMT, ryzen, Robert Hallock, processor, cpu, amd

AMD's Robert Hallock (previously the Head of Global Technical Marketing for AMD and now working full time on the CPU side of things) has posted a comprehensive Ryzen update, covering AMD's official stance on Windows 10 thread scheduling, the performance implications of SMT, Windows power management settings, and more. The post in its entirety is reproduced below, and also available from AMD by following this link.

AMD_RYZEN.png

(Begin statement:)

It’s been about two weeks since we launched the new AMD Ryzen™ processor, and I’m just thrilled to see all the excitement and chatter surrounding our new chip. Seems like not a day goes by when I’m not being tweeted by someone doing a new build, often for the first time in many years. Reports from media and users have also been good:

  • “This CPU gives you something that we needed for a long time, which is a CPU that gives you a well-rounded experience.” –JayzTwoCents
  • Competitive performance at 1080p, with Tech Spot saying the “affordable Ryzen 7 1700” is an “awesome option” and a “safer bet long term.”
  • ExtremeTech showed strong performance for high-end GPUs like the GeForce GTX 1080 Ti, especially for gamers that understand how much value AMD Ryzen™ brings to the table
  • Many users are noting that the 8-core design of AMD Ryzen™ 7 processors enables “noticeably SMOOTHER” performance compared to their old platforms.

While these findings have been great to read, we are just getting started! The AMD Ryzen™ processor and AM4 Platform both have room to grow, and we wanted to take a few minutes to address some of the questions and comments being discussed across the web.

Thread Scheduling

We have investigated reports alleging incorrect thread scheduling on the AMD Ryzen™ processor. Based on our findings, AMD believes that the Windows® 10 thread scheduler is operating properly for “Zen,” and we do not presently believe there is an issue with the scheduler adversely utilizing the logical and physical configurations of the architecture.

As an extension of this investigation, we have also reviewed topology logs generated by the Sysinternals Coreinfo utility. We have determined that an outdated version of the application was responsible for originating the incorrect topology data that has been widely reported in the media. Coreinfo v3.31 (or later) will produce the correct results.

Finally, we have reviewed the limited available evidence concerning performance deltas between Windows® 7 and Windows® 10 on the AMD Ryzen™ CPU. We do not believe there is an issue with scheduling differences between the two versions of Windows.  Any differences in performance can be more likely attributed to software architecture differences between these OSes.

Going forward, our analysis highlights that there are many applications that already make good use of the cores and threads in Ryzen, and there are other applications that can better utilize the topology and capabilities of our new CPU with some targeted optimizations. These opportunities are already being actively worked via the AMD Ryzen™ dev kit program that has sampled 300+ systems worldwide.

Above all, we would like to thank the community for their efforts to understand the Ryzen processor and reporting their findings. The software/hardware relationship is a complex one, with additional layers of nuance when preexisting software is exposed to an all-new architecture. We are already finding many small changes that can improve the Ryzen performance in certain applications, and we are optimistic that these will result in beneficial optimizations for current and future applications.

Temperature Reporting

The primary temperature reporting sensor of the AMD Ryzen™ processor is a sensor called “T Control,” or tCTL for short. The tCTL sensor is derived from the junction (Tj) temperature—the interface point between the die and heatspreader—but it may be offset on certain CPU models so that all models on the AM4 Platform have the same maximum tCTL value. This approach ensures that all AMD Ryzen™ processors have a consistent fan policy.

Specifically, the AMD Ryzen™ 7 1700X and 1800X carry a +20°C offset between the tCTL° (reported) temperature and the actual Tj° temperature. In the short term, users of the AMD Ryzen™ 1700X and 1800X can simply subtract 20°C to determine the true junction temperature of their processor. No arithmetic is required for the Ryzen 7 1700. Long term, we expect temperature monitoring software to better understand our tCTL offsets to report the junction temperature automatically.

The table below serves as an example of how the tCTL sensor can be interpreted in a hypothetical scenario where a Ryzen processor is operating at 38°C.

TEMPS.png

Power Plans

Users may have heard that AMD recommends the High Performance power plan within Windows® 10 for the best performance on Ryzen, and indeed we do. We recommend this plan for two key reasons: 

  1. Core Parking OFF: Idle CPU cores are instantaneously available for thread scheduling. In contrast, the Balanced plan aggressively places idle CPU cores into low power states. This can cause additional latency when un-parking cores to accommodate varying loads.
  2. Fast frequency change: The AMD Ryzen™ processor can alter its voltage and frequency states in the 1ms intervals natively supported by the “Zen” architecture. In contrast, the Balanced plan may take longer for voltage and frequency (V/f) changes due to software participation in power state changes.

In the near term, we recommend that games and other high-performance applications are complemented by the High Performance plan. By the first week of April, AMD intends to provide an update for AMD Ryzen™ processors that optimizes the power policy parameters of the Balanced plan to favor performance more consistent with the typical usage models of a desktop PC.

Simultaneous Multi-threading (SMT)

Finally, we have investigated reports of instances where SMT is producing reduced performance in a handful of games. Based on our characterization of game workloads, it is our expectation that gaming applications should generally see a neutral/positive benefit from SMT. We see this neutral/positive behavior in a wide range of titles, including: Arma® 3, Battlefield™ 1, Mafia™ III, Watch Dogs™ 2, Sid Meier’s Civilization® VI, For Honor™, Hitman™, Mirror’s Edge™ Catalyst and The Division™. Independent 3rd-party analyses have corroborated these findings.

For the remaining outliers, AMD again sees multiple opportunities within the codebases of specific applications to improve how this software addresses the “Zen” architecture. We have already identified some simple changes that can improve a game’s understanding of the "Zen" core/cache topology, and we intend to provide a status update to the community when they are ready.

Wrap-up

Overall, we are thrilled with the outpouring of support we’ve seen from AMD fans new and old. We love seeing your new builds, your benchmarks, your excitement, and your deep dives into the nuts and bolts of Ryzen. You are helping us make Ryzen™ even better by the day.  You should expect to hear from us regularly through this blog to answer new questions and give you updates on new improvements in the Ryzen ecosystem.

(End statement.)

Such topics as Windows 7 vs. Windows 10 performance, SMT impact, and thread scheduling will no doubt still be debated, and AMD has correctly pointed out that optimization for this brand new architecture will only improve Ryzen performance going forward. Our own findings as to Ryzen and the Windows 10 thread scheduler appear to be validated as AMD officially dismisses performance impact in that area, though there is still room for improvement in other areas from our initial gaming performance findings. As mentioned in the post, AMD will have an update for Windows power plan optimization by the first week of April, and the company has "already identified some simple changes that can improve a game’s understanding of the 'Zen' core/cache topology, and we intend to provide a status update to the community when they are ready", as well.

It is refreshing to see a company publicly acknowledging the topics that have resulted in so much discussion in the past couple of weeks, and their transparency is commendable, with every issue (that this author is aware of) being touched on in the post.

Source: AMD

NVIDIA Launches Jetson TX2 With Pascal GPU For Embedded Devices

Subject: General Tech, Processors | March 12, 2017 - 05:11 PM |
Tagged: pascal, nvidia, machine learning, iot, Denver, Cortex A57, ai

NVIDIA recently unveiled the Jetson TX2, a credit card sized compute module for embedded devices that has been upgraded quite a bit from its predecessor (the aptly named TX1).

jx10-jetson-tx2-170203.jpg

Measuring 50mm x 87mm, the Jetson TX2 packs quite a bit of processing power and I/O including an SoC with two 64-bit Denver 2 cores with 2MB L2, four ARM Cortex A57 cores with 2MB L2, and a 256-core GPU based on NVIDIA’s Pascal architecture. The TX2 compute module also hosts 8 GB of LPDDR4 (58.3 GB/s) and 32 GB of eMMC storage (SDIO and SATA are also supported). As far as I/O, the Jetson TX2 uses a 400-pin connector to connect the compute module to the development board or final product and the final I/O available to users will depend on the product it is used in. The compute module supports up to the following though:

  • 2 x DSI
  • 2 x DP 1.2 / HDMI 2.0 / eDP 1.4
  • USB 3.0
  • USB 2.0
  • 12 x CSI lanes for up to 6 cameras (2.5 GB/second/lane)
  • PCI-E 2.0:
    • One x4 + one x1 or two x1 + one x2
  • Gigabit Ethernet
  • 802.11ac
  • Bluetooth

 

The Jetson TX2 runs the “Linux for Tegra” operating system. According to NVIDIA the Jetson TX2 can deliver up to twice the performance of the TX1 or up to twice the efficiency at 7.5 watts at the same performance.

The extra horsepower afforded by the faster CPU, updated GPU, and increased memory and memory bandwidth will reportedly enable smart end user devices with faster facial recognition, more accurate speech recognition, and smarter AI and machine learning tasks (e.g. personal assistant, smart street cameras, smarter home automation, et al). Bringing more power locally to these types of internet of things devices is a good thing as less reliance on the cloud potentially means more privacy (unfortunately there is not as much incentive for companies to make this type of product for the mass market but you could use the TX2 to build your own).

Cisco will reportedly use the Jetson TX2 to add facial and speech recognition to its Cisco Spark devices. In addition to the hardware, NVIDIA offers SDKs and tools as part of JetPack 3.0. The JetPack 3.0 toolkit includes Tensor-RT, cuDNN 5.1, VisionWorks 1.6, CUDA 8, and support and drivers for OpenGL 4.5, OpenGL ES 3 2, EGL 1.4, and Vulkan 1.0.

The TX2 will enable better, stronger, and faster (well I don't know about stronger heh) industrial control systems, robotics, home automation, embedded computers and kiosks, smart signage, security systems, and other connected IoT devices (that are for the love of all processing are hardened and secured so they aren't used as part of a botnet!).

Interested developers and makers can pre-order the Jetson TX2 Development Kit for $599 with a ship date for US and Europe of March 14 and other regions “in the coming weeks.” If you just want the compute module sans development board, it will be available later this quarter for $399 (in quantities of 1,000 or more). The previous generation Jetson TX1 Development Kit has also received a slight price cut to $499.

Also read:

Source: NVIDIA

SoftBank Plans To Sell 25% of ARM Holdings To Vision Fund

Subject: General Tech, Processors | March 11, 2017 - 10:02 PM |
Tagged: softbank, investments, business, arm

Japanese telecom powerhouse SoftBank, which recently purchased ARM Holdings for $32 billion USD is reportedly in talks to sell off a 25% stake in its new subsidiary to a new investment fund. Specifically, the New York Times cites a source inside SoftBank familiar with the matter who revealed that SoftBank is in talks with the Vision Fund to purchase a stake in ARM Holdings worth approximately $8 billion USD.

ARM at a glance.png

The $100 billion Vision Fund is an investment fund started by SoftBank founder Masayoshi Son with a goal of investing in high growth technology start-ups and major technology IP holders. The fund is currently comprised of investments from SoftBank worth $25 billion, $45 billion from Saudi Arabia (via Saudi Arabia Public Investment Fund), and minor investments from Apple and Oracle co-founder Lawrence Ellison. The fund is approximately 75% of the way to its $100 billion funding goal with the state owned Mubadala Development investment company in Abu Dhabi and the Qatari government allegedly interested in joining the fund. The Vision Fund is based in the UK and led by SoftBank's Head of Strategic Finance Rajeev Mistra (Investment bankers Nizar al-Bassam and Dalin Ariburnu formerly of Deutsche Bank and Goldman Sachs respectively are also involved.)

It is interesting that SoftBank plans to sell off such a large stake in ARM Holdings so soon after purchasing the company (the sale finalized only six months ago), but it may be a move to entice investors to the investment fund which SoftBank is a part of to further diversify its assets. The more interesting question is the political and regulatory reaction to this news and what it will mean for ARM and its IP to have even more countries controlling it and its direction(s). I do not have the geopolitical acumen to speculate on whether this is a good or bad thing (heh). It does continue the trend of countries outside of the US increasing their investments in established technology companies with lots of IP (wether US based or not) as well as new start ups. New money entering this sector is likely overall good though, at least for the companies involved heh.

I guess we will just have to wait and see if the sale completes and where ARM goes from there! What are your thoughts on the SoftBank sale of a quarter stake in ARM?

Two CPUs of plump juicy Ryzens

Subject: Processors | March 8, 2017 - 02:43 PM |
Tagged: Ryzen 1700X, Ryzen 1700, amd

With suggested prices of $330 for the Ryzen 1700 and $400 for the 1700X, a lot of users are more curious about the performance of these two chips, especially with some sites reporting almost equal performance when these chips are overclocked.  [H]ard|OCP tested both of these chips at the same clock speeds to see what performance differences there are between the two.  As it turns out the only test which resulted in delta of 1% or more was WinRAR, all other tests showed a minuscule difference between the X and the plain old 1700.  They are going to follow these findings up with more tests, once they source some CPUs from retail outlets to see if there are any differences there.

"So there has been a lot of talk about what Ryzen CPU do you buy? The way I think is that you want to buy the least expensive one that will give you the best performance. That is exactly what we expect to find out here today. Is the Ryzen 1700 for $330 as good as the $400 1700X, or even the $500 1800X? "

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

AMD Prepares Zen-Based "Naples" Server SoC For Q2 Launch

Subject: Processors | March 7, 2017 - 09:02 AM |
Tagged: SoC, server, ryzen, opteron, Naples, HPC, amd

Over the summer, AMD introduced its Naples platform which is the server-focused implementation of the Zen microarchitecture in a SoC (System On a Chip) package. The company showed off a prototype dual socket Naples system and bits of information leaked onto the Internet, but for the most part news has been quiet on this front (whereas there were quite a few leaks of Ryzen which is AMD's desktop implementation of Zen).

The wait seems to be finally over, and AMD appears ready to talk more about Naples which will reportedly launch in the second quarter of this year (Q2'17) with full availability of processors and motherboards from OEMs and channel partners (e.g. system integrators) happening in the second half of 2017. Per AMD, "Naples" processors are SoCs with 32 cores and 64 threads that support 8 memory channels and a (theoretical) maximum of 2TB DDR4-2667. (Using the 16GB DIMMs available today, Naples support 256GB of DDR4 per socket.) Further, the Naples SoC features 64 PCI-E 3.0 lanes. Rumors also indicated that the SoC included support for sixteen 10GbE interfaces, but AMD has yet to confirm this or the number of SATA/SAS ports offered. AMD did say that Naples has an optimized cache structure for HPC compute and "dedicated security hardware" though it did not go into specifics. (The security hardware may be similar to the ARM TrustZone technology it has used in the past.) 

AMD Naples.jpg

Naples will be offered in single and dual socket designs with dual socket systems offering up 64 cores, 128 threads, 32 DDR4 DIMMs (512 GB using 16 GB modules) on 16 total memory channels with 21.3 GB/s per channel bandwidth (170.7 GB/s per SoC), 128 PCI-E 3.0 lanes, and an AMD Infinity Fabric interconnect between the two processor sockets.

AMD claims that its Naples platform offers up to 45% more cores, 122% more memory bandwidth, and 60% more I/O than its competition. For its internal comparison, AMD chose the Intel Xeon E5-2699A V4 which is the processor with highest core count that is intended for dual socket systems (there are E7s with more cores but those are in 4P systems). The Intel Xeon E5-2699A V4 system is a 14nm 22 core (44 thread) processor clocked at 2.4 GHz base to 3.6 GHz turbo with 55MB cache. It supports four channels of DDR4-2400 for a maximum bandwidth of 76.8 GB/s (19.2 GB/s per channel) as well as 40 PCI-E 3.0 lanes. A dual socket system with two of those Xeons features 44 cores, 88 threads, and a theoretical maximum of 1.54 TB of ECC RAM.

AMD's reference platform with two 32 core Naples SoCs and 512 GB DDR4 2400 MHz was purportedly 2.5x faster at the seismic analysis workload than the dual Xeon E5-2699A V4 OEM system with 1866 MHz DDR4. Curiously, when AMD compared a Naples reference platform with 44 cores enabled and running 1866 MHz memory to a similarly configured Intel system the Naples platform was twice as fast. It seems that the increased number of memory channels and memory bandwidth are really helping the Naples platform pull ahead in this workload.

AMD Naples and Radeon Instinct.png

The company also intends Naples to power machine learning and AI projects with servers that feature Naples processors and Radeon Instinct graphics processors.

AMD further claims that its Naples platform is more balanced and suited to cloud computing and scientific and HPC workloads than the competition. Specifically, Forrest Norrod the Senior Vice president and General Manager of AMD's Enterprise, Embedded, and Semi-Custom Business Unit stated:

“’Naples’ represents a completely new approach to supporting the massive processing requirements of the modern datacenter. This groundbreaking system-on-chip delivers the unique high-performance features required to address highly virtualized environments, massive data sets and new, emerging workloads.”

There is no word on pricing yet, but it should be competitive with Intel's offerings (the E5-2699A V4 is $4,938). AMD will reportedly be talking data center strategy and its upcoming products during the Open Compute Summit later this week, so hopefully there will be more information released at those presentations.

(My opinions follow)

This is one area where AMD needs to come out strong with support from motherboard manufacturers, system integrators, OEM partners, and OS and software validation to succeed. Intel is not likely to take AMD encroaching on its lucrative server market share lightly, and AMD is going to have a long road ahead of it to regain the market share it once had in this area, but it does have a decent architecture on its hands to build off of with Zen and if it can secure partner support Intel is certainly going to have competition here that it has not had to face in a long time. Intel and AMD competing over the data center market is a good thing, and as both companies bring new technology to market it will trickle down into the consumer level hardware. Naples' success in the data center could mean a profitable AMD with R&D money to push Zen as far as it can – so hopefully they can pull it off.

What are your thoughts on the Naples SoC and AMD's push into the server market?

Also read:

Source: AMD

PSA: AMD XFR Enabled On All Ryzen CPUs, X SKUs Have Wider Range

Subject: Processors | March 4, 2017 - 06:00 AM |
Tagged: xfr, turbo, sensemi, ryzen, overclocking, amd

Following the leaks and official news and reviews of AMD's Ryzen processors there were a few readers asking for clarity on the eXtended Frequency Range (XFR) technology and whether or not it is enabled on all Ryzen CPUs or only the X models. After quite a bit of digging through forums and contradictory articles, I believe I have the facts in hand to answer those questions. In short, XFR is supported on all Ryzen processors (at least all the Ryzen 7 CPUs released so far) including the non-X Ryzen 7 1700; however the X SKUs get a bigger boost from XFR than the non-X model(s).

Specifically, the Ryzen 7 1700X and Ryzen 7 1800X when paired with a high end air or water cooler is able to boost up to an additional 100 MHz over the 4 GHz advertised boost clock while the Ryzen 7 1700 is limited to an XFR boost of up to 50 MHz so long as there is thermal headroom. Interestingly, the Extended Frequency Range boosts are done in 25 MHz increments (and likely achieved by adjusting the multiplier by 0.25x).

AMD XFR.jpg

How does this all work though? Well, with Ryzen AMD introduced a new suite of technologies it calls "SenseMI" which, despite the questionable name (heh), puts a lot of intelligence into the processor and builds on the paths AMD started down with Carrizo and Excavator designs. The five main technologies are Pure Power, Precision Boost, Extended Frequency Range (XFR), Neural Net Prediction, and Smart Prefetch. The first three are important when talking about XFR.

With Ryzen AMD has embedded a number of sensors throughout the chip that accurately measure temperatures, clock speeds, and voltages within 1°C, 1mA, 1mW, 1mV and it has connected all the sensors together using its Infinity Fabric. Pure Power lets AMD make localized adaptive adjustments to optimize power usage without negatively affecting performance. Precision Boost is AMD's equivalent to Intel's Turbo Boost and it is built on top of Pure Power's sensor network. Precision Boost enables a Ryzen CPU to dynamically clock up beyond the base clock speed across all cores or clock even further across two cores. Lightly threaded workloads will benefit from the latter while workloads using any more than two threads will get the all core boost, so there is not a lot of granularity in number of cores vs allowed boost but there does not really need to be and the Precision Boost is more granular than Intel's Turbo Boost in clock speed bumps of 25MHz increments versus 100 MHz increments up to the maximum allowed Precision Boost clock. As an example, the Ryzen 7 1800X has a base clock of 3.6 GHz and so long as there is thermal headroom it can adjust the clock speed up by 25 MHz steps to 3.7 GHz across all eight cores or up to as much as 4.0 GHz on two cores.

From there XFR allows the processor to clock beyond the 2 core Precision Boost (XFR only works to increase the boost of the two core turbo not the all core turbo) and as temperatures decrease the allowed XFR increases. While initial reports and slides from AMD suggested XFR would scale with the cooler (air, water, LN2, LHe) with no upper limit aside from temperature and other sensor input, it appears AMD has taken a step back and limited X series Ryzen 7 chips to a maximum XFR boost of 100 MHz over the two core Precision Boost and non-X series Ryzen 7 processors to a maximum XFR boost of 50 MHz over the maximum boosted two core clock speed. The Ryzen 7 1700 will have two extra steps above its two core boost so while the chip has a base clock of 3.0 GHz, Precision Boost can take all eight cores to 3.1GHz or two cores to 3.7 GHz. Further, so long as temperatures are still in check XFR can take those two boosted cores to 3.75 GHz.

AMD Ryzen 1800X XFR Boost.jpg

XFR will be a setting that you are able to toggle on and off via a motherboard setting, and some motherboards may have the feature turned on by default. Unfortunately, if you choose to manually overclock you will lose XFR functionality (and boost). Further, Precision Boost and XFR are connected and you are not able to turn off one but not the other (you either get both or nothing). Note that if you overclock using AMD's "Ryzen Master" software utility, it will also disable Precision Boost and XFR, but the lower power C-states will stay enabled which may be desirable if you want the power bill and room to cool down when not gaming or creating content.

I would expect as yields and the binning processes improve for Ryzen AMD may lift or extend the XFR limits either with a product refresh (not sure if a micro-code update would be possible) or maybe only in the upcoming hexa-core and quad core Ryzen 5 and Ryzen 3 processors that have less cores and more headroom for overclocking. That is merely speculation however. Ryzen 5 and Ryzen 3 should support XFR on both X and non-X models, but it is too early to know or say what the XFR boost will be.

XFR is neat though not as big of a deal as I originally thought it to be without limits, and as many expected manual overclocking is still going to be the way to go. This is not all bad news though, because it means that the much cheaper Ryzen 7 1700 just got a lot more attractive. You give up a 50 MHz XFR boost that you can't use anyway because you are going to manually overclock and you gamble a bit on getting a decently binned chip that can hit R7 1800X clock speeds, but you save $170 that you can put towards a better motherboard or a better graphics card (or a second one for CrossFire - even on B350).

I am still waiting on our overclocking results as well as Kyle's overclocking results when it comes to the Ryzen 7 1700, but several other sites are reporting success at hitting at least 4.0 GHz (though not many results over 4.0 or 4.1 GHz which isn't unexpected since these are not the highest binned chips and yields are still young so bins are more real/based on silicon and not just for product segmentation but most can hit the higher speeds at x power, v voltage, and n temperature et al). For example, Legit Reviews reports that they were able to hit manually overclock a R7 1700 to 4.0 GHz on all cores at 1.3875 volts. They were able to keep the non-X Ryzen chip stable with those settings on both aftermarket air and AIO water coolers.

prec_boost.png

AMD's Ryzen Master overclocking software lets you OC and setup CPU and memory profiles from your OS.

More on overclocking: Tom's Hardware has posted that, according to AMD, the safe voltage ceiling for overclocking is 1.35V if you want the CPU to last, but that up to 1.45V CPU voltage is "sustainable". Further, note that is is recommended not to set the SOC Voltage higher than 1.2 volts. Also, much like Intel's platform, it is possible to adjust the base clock (BCLCK) but you may run into stability problems with the rest of the system if you push this too far outside expected specifications (PC Gamer claims you can set this up to 140 MHz though so AM4/Ryzen may be more forgiving in this area than Intel. Edit: The highest figure I've seen so far is 106.4 MHz being stable before the rest of the system gets too far out of spec and becomes unstable. The main benefit to adjusting this is to support overclocked RAM above 3200 MHz so unless you need that your overclocking efforts are probably better spent adjusting the multiplier. /edit). Finally, when manually overclocking you will be able to turn off SMT and/or turn off cores in 2s (e.g. disable 2 cores or disable 4 cores, you can't disable in single numbers but groups of two).

Hopefully this helps to clear up the XFR confusion. If you do not need guaranteed clocks with a bonus XFR boost for a stable workstation build, saving money and going with the Ryzen 7 1700 and manually overclocking it to at least attempt to reach R7 1700X or 1800X speeds seems like the way to go for enthusiasts that are considering making the jump to AM4 especially if you enjoy tinkering with things like overclocking. There's nothing wrong with going with the higher priced and binned chips if you want to go that route, but don't do it for XFR in my opinion.

What are your thoughts? Are you planning to overclock your Ryzen CPU or do you think the Precision Boost and XFR is enough?

Source: Ars Technica

Ryzen shine! It is time for your AMD roundup

Subject: Processors | March 2, 2017 - 03:08 PM |
Tagged: Ryzen 1700X, Zen, x370, video, ryzen, amd

Having started your journey with Ryan's quick overview of the performance of the 1800X and anxiously awaiting our further coverage now that we have both the parts and the time to test them you might want to take a peek at some other coverage. [H]ard|OCP tested the processor which many may be looking at due to the more affordable pricing, the Ryzen 1700X.  Their test system is based on a Gigabyte A370-Gaming 5 with 16GB of Corsair Vengeance DDR4-3600 which ran at 2933MHz during testing; Kyle reached out to vendors who assured him an update will make 3GHz reachable will arrive soon.  Part of their testing focused on VR performance, so make sure to check out the full article.

1488169187kcPgB2ioTd_1_2.jpg

"Saying that we have waited for a long time for a "real" CPU out of AMD would be a gross misunderstatement, but today AMD looks to remedy that. We are now offered up a new CPU that carries the branding name of Ryzen. Has AMD risen from the CPU graveyard? You be the judge after looking at the data."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

AMD responds to 1080p gaming tests on Ryzen

Subject: Processors | March 2, 2017 - 11:29 AM |
Tagged: amd, ryzen, gaming, 1080p

By far one of the most interesting and concerning points about today's launch of the AMD Ryzen processor is gaming results. Many other reviewers have seen similar results to what I published in my article this morning: gaming at 1080p, even at "ultra" image quality settings, in many top games shows a deficit in performance compared to Intel Kaby Lake and Broadwell-E processors. 

I shared my testing result with AMD over a week ago, trying to get answers and hoping to find some instant fix (a BIOS setting, a bug in my firmware). As it turns out, that wasn't the case. To be clear, our testing was done on the ASUS Crosshair VI Hero motherboard with the 5704 BIOS and any reports you see claiming that the deficits only existed on ASUS products are incorrect.

hitman.png

AMD responded to the issues late last night with the following statement from John Taylor, CVP of Marketing:

“As we presented at Ryzen Tech Day, we are supporting 300+ developer kits with game development studios to optimize current and future game releases for the all-new Ryzen CPU. We are on track for 1000+ developer systems in 2017. For example, Bethesda at GDC yesterday announced its strategic relationship with AMD to optimize for Ryzen CPUs, primarily through Vulkan low-level API optimizations, for a new generation of games, DLC and VR experiences.

Oxide Games also provided a public statement today on the significant performance uplift observed when optimizing for the 8-core, 16-thread Ryzen 7 CPU design – optimizations not yet reflected in Ashes of the Singularity benchmarking. Creative Assembly, developers of the Total War series, made a similar statement today related to upcoming Ryzen optimizations.

CPU benchmarking deficits to the competition in certain games at 1080p resolution can be attributed to the development and optimization of the game uniquely to Intel platforms – until now. Even without optimizations in place, Ryzen delivers high, smooth frame rates on all “CPU-bound” games, as well as overall smooth frame rates and great experiences in GPU-bound gaming and VR. With developers taking advantage of Ryzen architecture and the extra cores and threads, we expect benchmarks to only get better, and enable Ryzen excel at next generation gaming experiences as well.

Game performance will be optimized for Ryzen and continue to improve from at-launch frame rate scores.” John Taylor, AMD

The statement begins with Taylor reiterating the momentum of AMD to support developers both from a GPU and a CPU technology angle. Getting hardware in the hands of programmers is the first and most important step to find and fixing any problem areas that Ryzen might have, so this is a great move to see taking place. Both Oxide Games and Creative Assembly, developers of Ashes of the Singularity and Total War respectively, have publicly stated their intent to demonstrate improved threading and performance on Ryzen platforms very soon.

Taylor then recognizes the performance concerns at 1080p with attribution to those deficits going to years of optimizations for Intel processors. It's difficult, if not impossible, to know for sure how much weight this argument has, but it would make some logical sense. Intel CPUs have been the automatic, defacto standard for gaming PCs for many years, and any kind of performance optimizations and development would have been made on those same Intel processors. So it seems plausible that simply by seeding Ryzen to developers and having them look at performance as development goes forward would result in a positive change for AMD's situation.

lisa-29.jpg

For buyers today that are gaming at 1080p, the situation is likely to remain as we have presented it going forward. Until games get patched or new games are released from developers that have had access and hands-on time with Ryzen, performance is unlikely to change from some single setting/feature that AMD or its motherboard partners can enable. 

The question I would love answered is why is this even happening? What architectural difference between Core and Zen is attributing to this delta? Is it fundamental to the pipeline built or to the caching structure or to how SMT is enabled? Does Windows 10 and its handling of kernel processes have something to do with it? There is a lot to try to figure out as testing moves forward.

If you want to see the statements from both Oxide and Creative Assembly, they are provided below.

“Oxide games is incredibly excited with what we are seeing from the Ryzen CPU. Using our Nitrous game engine, we are working to scale our existing and future game title performance to take full advantage of Ryzen and its 8-core, 16-thread architecture, and the results thus far are impressive. These optimizations are not yet available for Ryzen benchmarking. However, expect updates soon to enhance the performance of games like Ashes of the Singularity on Ryzen CPUs, as well as our future game releases.” - Brad Wardell, CEO Stardock and Oxide
 
"Creative Assembly is committed to reviewing and optimizing its games on the all-new Ryzen CPU. While current third-party testing doesn’t reflect this yet, our joint optimization program with AMD means that we are looking at options to deliver performance optimization updates in the future to provide better performance on Ryzen CPUs moving forward. " – Creative Assembly, Developers of the Multi-award Winning Total War Series

Source: AMD

Delidded Ryzen 7 1700 Confirms AMD Is Using Solder With IHS On Ryzen Processors

Subject: Processors | March 1, 2017 - 09:17 PM |
Tagged: solder, Ryzen 1700, ryzen, overclocking, IHS, delid, amd

Professional extreme overclocker Roman "der8auer" Hartung from Germany recently managed to successfully de-lid his AMD Ryzen 7 1700 processor and confirmed that AMD is, in fact, using solder as its thermal interface material of choice between the Ryzen die and IHS (integrated heat spreader). The confirmation that AMD is using solder is promising news for enthusiasts eager to overclock the new processors and see just how far they are able to push them on air and water cooling.

Delidded Ryzen 7 1700 Die.JPG

Image credit: Roman Hartung. Additional high resolution photos are available here.

In a video on his YouTube channel, der8auer ("The Farmer") shows the steps involved in delidding the Ryzen 7 1700 which involve using razor blades, a heating element to get the IHS heated to a temperature high enough to melt the indium (~170°C on the block with the indium melting around 157°C), and a whole lot of courage. After using the razor blades to cut the glue around the edges, he heated up the IHS enough to start melting the solder and after a cringe-worthy cracking sound he was able to lift the package away from the IHS with the die and on-package components intact!

He does note that the Ryzen using PGA rather than the LGA method Intel has moved to makes the CPU a bit harder to handle as the pins are on the CPU rather than the socket and are easily bent. Compared to the delidding process and possibility of cracking the die or ripping off some components and killing the $329 CPU though, bent pins are nothing and can usually be bent back heh. He reportedly went through two previous Ryzen CPUs before getting a successful de-lid on the third attempt after all.

It seems that AMD is using two small pads of Indium solder along with some gold plating on the inside of the IHS to facilitate heat transfer and allow the solder to mate with the IHS. Because AMD is using what seems to be high quality solder TIM, delidding and replacing the TIM does not seem to be necessary at all; however, Roman "der8auer" Hartung speculates that direct die cooling could work out very well for those enthusiasts brave enough to try it since the cooler does not need to put high amounts of pressure onto the CPU to hold it into place unlike an LGA socket. 

If you are interested in seeing the overclocking benefits of de-lidding and direct die cooling a Ryzen CPU, keep an eye on his YouTube channel for a video over the weekend detailing his testing using a Ryzen 7 1800X.

I am really looking forward to seeing how far enthusiasts are able to push Ryzen (especially on water), and maybe we can convince Morry to de-lid a Ryzen CPU!

Happy Overclocking!

Also read:

Source: der8auer

Overclockers Push Ryzen 7 1800X to 5.2 GHz On LN2, Break Cinebench Record

Subject: Processors | February 28, 2017 - 09:06 PM |
Tagged: Zen, Ryzen 1800X, ryzen, overclocking, LN2, Cinebench, amd

During AMD’s Ryzen launch event a team of professional overclockers took the stage to see just how far they could push the top Zen-based processor. Using a bit of LN2 (liquid nitrogen) and a lot of voltage, the overclocking team was able to hit an impressive 5.20 GHz with all eight cores (16 threads) enabled!

Ryzen Cinebench Benchmark Record.png

In addition to the exotic LN2 cooling, the Ryzen 7 1800X needed 1.875 volts to hit 5.20 GHz. That 5.20 GHz was achieved by setting the base clock at 137.78 MHz and the multiplier at 37.75. Using these settings, the chip was even stable enough to benchmark with a score of 2,363 on Cinebench R15’s multi-threaded test.

According to information from AMD, a stock Ryzen 7 1800X comes clocked at 3.6 GHz base and up to 4 GHz boost (XFR can go higher depending on HSF) and is able to score 1,619 in Cinebench. The 30% overclock to 5.20 GHz got the overclockers an approximately 45% higher CInebench score.

Further, later in the overclocking event, they managed to break a Cinebench world record of 2,445 points by achieving a score of 2,449 (it is not clear what clockspeed this was at). Not bad for a brand-new processor!

AMD Ryzen 1800X Overclocked On LN2 to 5GHz.jpg

The overclocking results are certainly impressive, and suggest that Ryzen may be a decent overclocker so long as you have the cooling setup to get it there (the amount of voltage needed is a bit worrying though heh). Interestingly, HWBot shows a Core i7 6900K (also 8C/16T) hitting 5.22 GHz and scoring 2,146 in CInebench R15. That Ryzen can hit similar numbers with all cores and threads turned on is promising.

I am looking forward to seeing what people are able to hit on air and water cooling and if XFR will work as intended and get most of the way to a manual overclock without the effort of manually overclocking. I am also curious how the power phases and overclocking performance will stack up on motherboards using the B350 versus X370 chipsets. With the eight core chips able to hit 5.2, I expect the upcoming six core Ryzen 5 and four core Ryzen 3 processors to clock even higher which would certainly help gaming performance for budget builds!

Austin Evans was able to get video of the overclocking event which you can watch here (Vimeo).

Also read:

Source: Hexus

AMD Launching Ryzen 5 Six Core Processors Soon (Q2 2017)

Subject: Processors | February 24, 2017 - 02:17 AM |
Tagged: Zen, six core, ryzen 5, ryzen, hexacore, gaming, amd

While AMD's Ryzen lineup and pricing has leaked out, only the top three Ryzen 7 processors are available for pre-order (with availability on March 2nd). Starting at $329 for the eight core sixteen thread Ryzen 7 1700, these processors are aimed squarely at enthusiasts craving top-end performance. It seems that enthusiasts looking for cheaper and better price/performance options for budget gaming and work machines will have to wait a bit for Ryzen 5 and Ryzen 3 which will reportedly launch in the second quarter and second half of 2017 respectively. Two six core Ryzen 5 processors will launch somewhere between April and June with the Ryzen 3 quad cores (along with mobile and "Raven Ridge" APU parts) following in the summer to end-of-year timeframe hopefully hitting that back-to-school and holiday shopping launch windows respectively.

AMD Ryzen Die Shot_six core.jpg

Image via reddit (user noiserr). Guru3d has another die shot. Six cores will be created by disabling one core from each CCX.

Thanks to leaks, the two six core Ryzen 5 CPUs are the Ryzen 5 1600X at $259 and Ryzen 5 1500 at $229. The Ryzen 5 1600X is a 95W TDP CPU with six cores and twelve threads at 3.6 GHz base to 4.0 GHz boost with 16MB of L3 cache. AMD is pitting this chip against the Intel Core i5 7600K which is a $240 quad core Kaby Lake part sans Hyper-Threading. Meanwhile, the Ryzen 5 1500 is a 65W processor clocked at 3.2 GHz base and 3.5 GHz boost with 16 MB of L3 cache.

Note that the Ryzen 5 1600X features AMD's XFR (extreme frequency) technology which the Ryzen 5 1500 lacks. Both processors are unlocked and can be overclocked, however. 

Interestingly, Antony Leather over at Forbes managed to acquire some information on how AMD is making these six core parts. According to his source, AMD is disabling one core (and its accompanying L2 cache) from each four core Core Complex (CCX). Doing this this way (rather than taking two cores from one CCX) should keep things balanced. It also allows AMD to keep all of the processors 16MB of L3 cache enabled and each of the remaining three cores of each complex will be able to access the L3 cache as normal. Previous rumors had suggested that the CCXes were "indivisible" and six cores were not possible, but it appears that AMD is able to safely disable at least one core of a complex without compromising the whole thing. I doubt we will be seeing any odd number core count CPUs from AMD though (like their old try at selling tri-core parts that later were potentially able to be unlocked). I am glad that AMD was able to create six core parts while leaving the entire L3 cache intact.

What is still not clear is whether these six core Ryzen 5 parts are made by physically disabling the core from the complex or if the cores are simply disabled/locked out in the micro code or BIOS/UEFI. It would be awesome if, in the future when yields are to the point where binning is more for product segmentation than because of actual defects, those six core processors could be unlocked! 

The top end Ryzen 7 processors are looking to be great performers and a huge leap over Excavator while at least competing with Intel's latest at multi-threaded performance (I will wait for independent benchmarks for single threaded where even from AMD the benchmark scores are close although these benchmark runs look promising). These parts are relatively expensive though, and the cheaper Ryzen 5 and Ryzen 3 (and Raven Ridge APUs) are where AMD will see the most potential sales due to a much bigger market. I am looking forward to seeing more information on the lower end chips and how they will stack up against Intel and its attempts to shift into high gear with moves like enabling Hyper-Threading on lower end Kaby Lake Pentiums and possibly on new Core i5s (that's still merely a rumor though). Intel certainly seems to be taking notice of Ryzen and the reignited competition in the desktop processor space is very promising for consumers!

Are you holding out for a six core or quad core Ryzen CPU or are you considering a jump to the high-end Ryzen 7s?

Source: TechPowerUp

Flipped your lid and want to reattach it?

Subject: Processors | February 23, 2017 - 11:07 AM |
Tagged: Intel, Skylake, kaby lake, delidding, relidding

[H]ard|OCP have been spending a lot of time removing the integrated heatspreader on recent Intel chips to see what effect it has on temperatures under load.  Along the way we picked up tips on 3D printing a delidder and thankfully there was not much death along the way.  One of their findings from this testing was that it can be beneficial to reattach the lid after changing out the thermal interface material and they have published a guide on how to do so.   You will need a variety of tools, from Permatex Red RTV to razor blades, by way of isopropyl alcohol and syringes; as well as a steady hand.  You may have many of the items on hand already and none are exceptionally expensive.

1487134654mHmb7IfVSy_1_10_l.jpg

"So we have covered a lot about taking your shiny new Intel CPUs apart lately, affectionately known as "delidding." What we have found in our journey is that "relidding" the processor might be an important part of the process as well. But what if you do not have a fancy tool that will help you put Humpty back together again?"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP