Ryzen and Radeon Roundup

Subject: Processors | July 31, 2017 - 03:18 PM |
Tagged: vega 64, vega 56, vega 10, Vega, radeon, amd, X399, Threadripper, ryzen, 1950x, 1920x, 1900x

Just in case you wanted to relive this weekends event, or you feel that somehow Ryan missed a detail when he was describing Threadripper or Vega, here is a roundup of other coverage of the event.  The Tech Report contrast the Vega 64 and Vega 56 with a few older NVIDIA cards as well as more modern ones, giving you a sense of the recent evolution of the GPU.  They also delve a bit into the pricing and marketing strategies which AMD has chosen, which you can check out here.

packs.png

"AMD's Radeon RX Vega graphics cards are finally here in the form of the RX Vega 64 and RX Vega 56. Join us as we see what AMD's new high-end graphics cards have in store for gamers."

Here are some more Processor articles from around the web:

Processors

AMD Outs Threadripper 1900X, 8-cores for $549, Details Availability and Preorders

Subject: Processors | July 30, 2017 - 10:30 PM |
Tagged: X399, Threadripper, ryzen, amd, 1950x, 1920x, 1900x

At SIGGRAPH in Los Angeles this week, AMD released even more details about the its upcoming Ryzen Threadripper product family ahead of its retail release in August. Though readers of PC Perspective are already well aware of the Threadripper 1950X and 1920X CPUs that were announced just a couple of weeks back, along with prices, clock speeds, performance estimates, and more. At tonight’s Capsaicin event, we learned about the on-sale, preorder date, and even a surprise new SKU option.

  i9-7980XE i9-7960X i9-7940X i9-7920X i9-7900X  i7-7820X i7-7800X TR 1950X TR 1920X TR 1900X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24 8/16
Base Clock ? ? ? ? 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz 3.8 GHz
Turbo Boost 2.0 ? ? ? ? 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 ? ? ? ? 4.5 GHz 4.5 GHz N/A N/A N/A N/A
Cache 16.5MB (?) 16.5MB (?) 16.5MB (?) 16.5MB (?) 13.75MB 11MB 8.25MB 40MB ? ?
Memory Support ? ? ? ? DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2666 Quad Channel
PCIe Lanes ? ? ? ? 44 28 28 64 64 64
TDP 165 watts (?) 165 watts (?) 165 watts (?) 165 watts (?) 140 watts 140 watts 140 watts 180 watts 180 watts 180 watts?
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799 $549

 

  TR 1950X TR 1920X TR 1900X Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Ryzen 5 1600X Ryzen 5 1600 Ryzen 5 1500X Ryzen 5 1400
Architecture Zen Zen Zen Zen Zen Zen Zen Zen Zen Zen
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm
Cores/Threads 16/32 12/24 8/16 8/16 8/16 8/16 6/12 6/12 4/8 4/8
Base Clock 3.4 GHz 3.5 GHz 3.8 GHz 3.6 GHz 3.4 GHz 3.0 GHz 3.6 GHz 3.2 GHz 3.5 GHz 3.2 GHz
Turbo/Boost Clock 4.0 GHz 4.0 GHz 4.0 GHz 4.0 GHz 3.8  GHz 3.7 GHz 4.0 GHz 3.6  GHz 3.7 GHz 3.4 GHz
Cache 40MB ? ? 20MB 20MB 20MB 16MB 16MB 16MB 8MB
Memory Support DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
PCIe Lanes 64 64 64 20 20 20 20 20 20 20
TDP 180 watts 180 watts 180 watts? 95 watts 95 watts 65 watts 95 watts 65 watts 65 watts 65 watts
Socket TR4 TR4 TR4 AM4 AM4 AM4 AM4 AM4 AM4 AM4
Price $999 $799 $549 $499 $399 $329 $249 $219 $189 $169

Let’s not bury the lead here: the Ryzen Threadripper 1900X is the third entrant into the Threadripper family and will consist of 8-cores, 16-threads, a base clock of 3.8 GHz and a Turbo clock of 4.0 GHz, while still supporting XFR for as much as 200 MHz of additional clock speed. It will still have 64 lanes of PCI Express, four channels of DDR4 memory support, and will come with a price tag of $549.

tr-15.jpg

The 1900X becomes a very interesting part for a number of reasons. Its price puts it between the Core i7-7820X and the 7800X (8-core and 6-core parts from Intel’s Skylake-X family). Even with a base clock speed of 3.8 GHz it will find itself slower than the 7820X due to lower IPC and similar clock rates. However, AMD is counting on the appeal of 64 lanes of PCIe, countering the 28 lanes on the 7820X from Intel, along with a slight cost advantage, to help it shine. The 1900X will have the same core and thread count as the Ryzen 7 family, though at higher clock speeds, a higher TDP and double the DDR4 memory channels and more than 2x the PCIe lanes. For just $50-100 more, the 1900X is a compelling option against the 1800X if you are a connectivity, storage, or multi-GPU junkie.

Continue reading about the newly announced Ryzen Threadripper 1900X!!

Source: AMD

The best processor for under $150? Ryzen 3 shines on the testbed

Subject: Processors | July 27, 2017 - 05:58 PM |
Tagged: 1200, 1300x, amd, ryzen, ryzen 3, Zen

Two Ryzen CPUs have been revealed and tested today, opening a new battle at the lower end of the market.  These CPUs will not take any performance crowns, instead they are battling for domination in a market extremely sensitive total cost and to performance per dollar.  The Ryzen 3 1300X at $129 and 1200 at $109 need are competing against the lower end of Intel's SKUS, like the ~$80 Pentium G4560, the $165 Core i3-7350K and the i3-6100 or i3-7100 at ~$115.

The Tech Report found similar results to Ryan's testing, with performance right in line with pricing; not faster but not lagging behind by much.  In many cases the decision as to which chip to get could lie in the future of the system being built.  If you are not worried about highly parallel software which requires more cores nor planning to get a discrete GPU then Intel's offerings make sense.  On the other hand if you see multi-threaded applications as vital and plan to purchase a GPU as opposed to relying on a CPU with an iGPU then a Ryzen 3 chip could last you quite a while.  TR's full review is here and there are plenty more below the fold.

IMG_4844.jpg

"AMD's Ryzen 3 CPUs bring the Zen architecture to its most affordable price point ever. Join us as we dive into gaming and productivity workloads with these new chips to see whether they can unseat Intel's evergreen Core i3s."

Here are some more Processor articles from around the web:

Processors

AMD Teases Ryzen Threadripper Packaging, Lisa Su for Scale

Subject: Processors | July 24, 2017 - 12:19 PM |
Tagged: amd, ryzen, Threadripper, lisa su

The AMD social teams have been had at work this morning, teasing out images of the packaging for its upcoming Ryzen Threadripper retail processor.

DFgcMZKXcAAndD8.jpg

DFgqPs-UwAADON1.jpg

The first image shows a window into the packaging with the Threadripper processor clearly visible behind it. The Ryzen logo dominates the plastic cover though there is a scene of "space" or maybe the Eye of Sauron in the background. The black construction looks to be foam that opens by splitting in half, across the Ryzen logo.

The second image shows the relative size of it all, with AMD CEO Lisa Su for scale. It looks kind of like an old-time portable TV and the depth of the packaging is definitely more substantial from the first image. 

We are getting closer and closer to the official unveiling of this product family and AMD is doing a fantastic job of pulling the community along for the ride.

Source: AMD

Rumor: Intel to Launch Quad Core Kaby Lake-R CPUs for Ultraportables

Subject: Processors, Mobile | July 17, 2017 - 04:32 PM |
Tagged: ultrabook, quad core, Intel, i5-8520u, i5-7200u, hyperthreading, dell xps 13, acer swift 3, 15w

A few days ago, laptopmedia.com uncovered some listings for an unannounced revision to the Acer Swift 3 notebook.

swift-3.jpg

In addition to the new Pascal-based NVIDIA MX150 GPU announced just before Computex, astute readers will also spot an unannounced CPU from Intel – the Core i5-8250U. While the model number itself doesn't tell us much other than it's a next generation CPU, the description in the Acer product listings notes it as a quad core CPU.

Following Intel's history with the U-series parts, the 8250U would traditionally be a 15W, dual core CPU with hyperthreading enabled, with the true quad core parts starting with the 35W TDP options

We've had an indication that a quad core U-series processor was coming in the second half of this year from Intel's performance claims presented at Computex this year, but we weren't quite sure what form it would take.

Doing some additional research, we can see several results from this processor in the Geekbench database from various notebook manufacturers – including devices we would expect to be refreshed like the Dell XPS 13 and ASUS Zenbook UX490.

8250u-geekbench.png

From the Geekbench results of the XPS 13 with the i5-8520U compared to the current generation i5-7200U, we see a 54% increase in multi threaded CPU performance while only a 7% increase in single threaded performance. Keep in mind that these leaked benchmarks should be taken with a grain of salt, but we would be very impressed with these numbers in a shipping notebook.

Geekbench's processor profiler also reveals the i5-8250U to be a 4 core/8 thread processor, pointing to hyperthreading being enabled on the i5 processors as well as the i7's, like we currently see in the U-series.

kaby-lake-r.jpg

Some people have been theorizing that this 8000 series processor is from the upcoming Coffee Lake release. However, based on some of the Intel roadmap leaks from late last year, I think that this is actually a Kaby Lake-R CPU. The leaked roadmap suggests that Kaby Lake-R will launch as the 8th generation processor family, to be released in the second half of 2017.

Either way, I am excited to finally see some push forward in the 15W CPU space, which I consider to be the sweet spot between battery life and performance for most users.

Stay tuned for more information on these new Intel processors and these new notebooks as we get out hands on them!

Counting Cores ... Intel on the Bench

Subject: Processors | July 14, 2017 - 06:06 PM |
Tagged: Intel, i7-7700k, i7-7800x, kaby lake, skylake-x

There is a $50 difference in price between these two chips, $390 versus $340, which will be within the price range of many of enthusiasts.  The i7-7700K's cores run at a higher frequency but there are only four whereas the i7-7800X has a half dozen.  The memory configuration is also a factor, with the Skylake chip offering quad channel memory while the Kaby Lake only offers dual channel.  The size of the cache may not have a huge impact on gaming performance but you need to consider the number of PCIe lanes; is 16 sufficient or will you need 28?

Techspot seeks to answer this question with a large number of gaming benchmarks, including PlayerUnknown's Battlegrounds.

2017-07-12-image.jpg

"Although we consider the Ryzen 5 1600 to be the sweet spot for building a new high-end gaming rig, many of you interested in going Intel want to know whether it makes more sense to buy the Core i7-7700K or the new 7800X?"

Here are some more Processor articles from around the web:

Processors

Source: Techspot

Rumor: Intel May Discontinue Pentium G4560 Processor

Subject: Processors | July 10, 2017 - 11:11 PM |
Tagged: value, rumor, report, processor, pentium, kaby lake, Intel, G4560, cpu, budget

Update 07/11/17: We have now heard from Intel on this subject, and they provided this statement regarding the availability of the Pentium G4560 processor:

"We continue to offer the Intel Pentium SKU referenced. What you have observed on websites are possibly part of a normal demand fluctuation."

(The original post follows.)


Cannibalization of its Core i3 sales might have Intel quietly killing off its best value CPU, if unnamed sources in a DigiWorthy report (via TechPowerUp) can be believed.

Intel-Pentium-G4560-Kaby-Lake_02.jpg

Image credit: ComputerBase via DigiWorthy

Sound far-fetched? It seems at least plausible that Intel might consider some sort of CPU-related moves to maintain profit margins with Ryzen providing some very real competition after several years of Intel dominance. The popularity of the 2-core/4-thread Pentium G4560 - a (theoretically) ~$60 Kaby Lake part that provides a very nearly Core i3-level experience (some features are missing) is not at all surprising, and the current lack of availability and subsequently higher pricing (lowest in-stock price at around $80 at time of publication) suggests that something is up with this CPU.

G4560_History.png

Chart via PCPartPicker

A low of $78.89 for the CPU with an MSRP of $64 is about a $15 markup, but this price is just going to increase if no fresh stock hits the market as these sell out.

Now some editorial: Why would Intel introduce what is essentially a slightly hobbled Core i3 into the market at half the cost of their cheapest Core i3 to begin with? I enthusiastically endorsed this seemingly questionable business decision (along with all of the buyers of this often out-of-stock CPU) when it first hit the market a few months ago, and now - if rumors are to be believed - the company might just be killing it off. This would be a move reminiscent of Nintendo's recent NES Classic, which was apparently too popular for its $59.99 price tag (and scalpers worldwide rejoiced). Nintendo, of course, killed the NES Classic when it was at its height of popularity, perhaps as it was just not profitable enough to justify continued production? (And besides, a soon-to-be-$300-on-eBay SNES Classic was in the works.)

Might the Pentium G4560 be Intel's NES Classic? It seems a little too likely for comfort.

Source: TechPowerUp

The evolution of Skulls, digging through the Trail and in the Canyon

Subject: Processors | July 6, 2017 - 01:36 PM |
Tagged: Skull Canyon, skulltrail, Intel

Remember back in 2007 when Intel introduced the Skulltrail system, that unique system built on a QX9775s motherboard and an pair of LGA771 CPUs with support for four GPUs?  It has been a decade and we have a new Intel Skull-themed product, the Skull Canyon NUC so why not compare the two?  That is exactly what TechPowerUp did, reassembling a Skulltrail system and watercooling it to pit it against the tiny little NUC.  Before you click, consider for a moment if you truly believe a limited edition system that was more powerful than any enthusiast system can really be surpassed by a low power, tiny form factor NUC with modern components.  Then head over and see if you were right.

psoter.jpg

"A battle of the ages - can the biggest and baddest setup from 2008 beat out the pocket-sized NUC? We ran each through a large variety of tests, from professional applications to gaming, to see just how far Intel's technology has come."

Here are some more Processor articles from around the web:

Processors

 

Source: TechPowerUp

Plan 9 from Skylake-X

Subject: Processors | June 28, 2017 - 03:03 PM |
Tagged: 7900x, Core i9, Intel, skylake-x, x299

The Tech Report recently wrapped up the first part of their review of Intel's new Core i9-7900X, focusing on its effectiveness in production machine.  Their benchmarks cover a variety of scientific tasks such as PhotoWorxx, FPU Julia and Mandel as well as creativity benchmarks like picCOLOR, DAWBench DSP 2017 and STARS Euler3D.  During their testing they saw the same peaks in power consumption as Ryan did in his review, 253W under a full Blender load.  Their follow up review will focus on the new chips gaming prowess, for now you should take a look at how your i9-7900X will perform for you when you are not playing around.

skylake-basics.png

"Intel's Core i9-7900X and its Skylake-X brethren bring AVX-512 support, a new cache hierarchy, and a new on-die interconnect to high-end desktops. We examine how this boatload of high-performance computing power advances the state of the art in productivity applications."

Here are some more Processor articles from around the web:

Processors

 

Microcode Bug Affects Intel Skylake and Kaby Lake CPUs

Subject: Processors | June 26, 2017 - 08:53 AM |
Tagged: xeon, Skylake, processor, pentium, microcode, kaby lake, Intel, errata, cpu, Core, 7th generation, 6th generation

A microcode bug affecting Intel Skylake and Kaby Lake processors with Hyper-Threading has been discovered by Debian developers (who describe it as "broken hyper-threading"), a month after this issue was detailed by Intel in errata updates back in May. The bug can cause the system to behave 'unpredictably' in certain situations.

Intel CPUs.jpg

"Under complex micro-architectural conditions, short loops of less than 64 instructions that use AH, BH, CH or DH registers as well as their corresponding wider register (eg RAX, EAX or AX for AH) may cause unpredictable system behaviour. This can only happen when both logical processors on the same physical processor are active."

Until motherboard vendors begin to address the bug with BIOS updates the only way to prevent the possibility of this microcode error is to disable HyperThreading. From the report at The Register (source):

"The Debian advisory says affected users need to disable hyper-threading 'immediately' in their BIOS or UEFI settings, because the processors can 'dangerously misbehave when hyper-threading is enabled.' Symptoms can include 'application and system misbehaviour, data corruption, and data loss'."

The affected models are 6th and 7th-gen Intel processors with HyperThreading, which include Core CPUs as well as some Pentiums, and Xeon v5 and v6 processors.

Source: The Register

AIDA64 Version 5.92 Released

Subject: Processors | June 19, 2017 - 11:48 PM |
Tagged: LGA2066, Intel X299, Intel Skylake-X, Intel Kaby Lake-X, FinalWire, aida64

01-aida64.png

Courtesy of FinalWire

Today, FinalWire Ltd. announced the release of version 5.92 of their diagnostic and benchmarking tool, AIDA64. This new version updates their Extreme Edition, Engineer Edition, and Business Edition of the software, available here.

The latest version of AIDA64 has been optimized to work with Intel's newest processors, the Skylake-X and Kaby Lake-X processors, as well as the Intel X299 "Union Point" chipset. The benchmarks and performance tests housed within AIDA64 have been updated for the Intel X299 chipset and processor line to utilize Advanced Vector Extensions 2 (AVX2), Fused Multiply-Add (FMA) instructions, and AES-NI hardware acceleration integrated into the new line of Intel processors.

New features include:

  • AVX2 and FMA accelerated 64-bit benchmarks for Intel Skylake-X and Kaby Lake-X CPUs
  • Improved support for AMD Ryzen 5 and Ryzen 7 processors
  • Support for Pertelian (RS232) external LCD device
  • Corsair K55 RGB LED keyboard support
  • Corsair Glaive RGB LED mouse support
  • 20 processor groups support
  • NVMe 1.3, WDDM 2.2 support
  • Advanced support for Areca RAID controllers
  • GPU details for AMD Radeon RX 500 Series
  • GPU details for nVIDIA GeForce GT 1030, GeForce MX150, Titan Xp

Software updates new to this release (since AIDA64 v5.00):

  • AVX and FMA accelerated FP32 and FP64 ray tracing benchmarks
  • Vulkan graphics accelerator diagnostics
  • RemoteSensor smartphone and tablet LCD integration
  • Logitech Arx Control smartphone and tablet LCD integration
  • Microsoft Windows 10 Creators Update support
  • Proper DPI scaling to better support high-resolution LCD and OLED displays
  • AVX and FMA accelerated 64-bit benchmarks for AMD A-Series Bristol Ridge and Carrizo APUs
  • AVX2 and FMA accelerated 64-bit benchmarks for AMD Ryzen Summit Ridge processors
  • AVX2 and FMA accelerated 64-bit benchmarks for Intel Broadwell, Kaby Lake and Skylake CPUs
  • AVX and SSE accelerated 64-bit benchmarks for AMD Nolan APU
  • Optimized 64-bit benchmarks for Intel Apollo Lake, Braswell and Cherry Trail processors
  • Preliminary support for AMD Zen APUs and Zen server processors
  • Preliminary support for Intel Gemini Lake SoC and Knights Mill HPC CPU
  • Improved support for Intel Cannonlake, Coffee Lake, Denverton CPUs
  • Advanced SMART disk health monitoring
  • Hot Keys to switch LCD pages, start or stop logging, show or hide SensorPanel
  • Corsair K65, K70, K95, Corsair Strafe, Logitech G13, G19, G19s, G910, Razer Chroma RGB LED keyboard support
  • Corsair, Logitech, Razer RGB LED mouse support
  • Corsair and Razer RGB LED mousepad support
  • AlphaCool Heatmaster II, Aquaduct, Aquaero, AquaStream XT, AquaStream Ultimate, Farbwerk, MPS, NZXT GRID+ V2, NZXT Kraken X52, PowerAdjust 2, PowerAdjust 3 sensor devices support
  • Improved Corsair Link sensor support
  • NZXT Kraken water cooling sensor support
  • Corsair AXi, Corsair HXi, Corsair RMi, Enermax Digifanless, Thermaltake DPS-G power supply unit sensor support
  • Support for EastRising ER-OLEDM032 (SSD1322), Gravitech, LCD Smartie Hardware, Leo Bodnar, Modding-FAQ, Noteu, Odospace, Saitek Pro Flight Instrument Panel, Saitek X52 Pro, UCSD LCD devices
  • Portrait mode support for AlphaCool and Samsung SPF LCDs
  • System certificates information
  • Support for LGA-1151 and Socket AM4 motherboards
  • Advanced support for Adaptec and Marvell RAID controllers
  • Autodetect information and SMART drive health monitoring for Intel and Samsung NVMe SSDs

About FinalWire

AIDA64 is developed by FinalWire Ltd., headquartered in Budapest, Hungary. The company’s founding members are veteran software developers who have worked together on programming system utilities for more than two decades. Currently, they have ten products in their portfolio, all based on the award-winning AIDA technology: AIDA64 Extreme, AIDA64 Engineer, AIDA64 Network Audit, AIDA64 Business and AIDA64 for Android,, iOS, Sailfish OS, Tizen, Ubuntu Touch and Windows Phone. For more information, visit www.aida64.com.

Intel Skylake-X and Skylake-SP Utilize Mesh Architecture for Intra-Chip Communication

Subject: Processors | June 15, 2017 - 04:00 PM |
Tagged: xeon scalable, xeon, skylake-x, skylake-sp, skylake-ep, ring, mesh, Intel

Though we are just days away from the release of Intel’s Core i9 family based on Skylake-X, and a bit further away from the Xeon Scalable Processor launch using the same fundamental architecture, Intel is sharing a bit of information on how the insides of this processor tick. Literally. One of the most significant changes to the new processor design comes in the form of a new mesh interconnect architecture that handles the communications between the on-chip logical areas.

Since the days of Nehalem-EX, Intel has utilized a ring-bus architecture for processor design. The ring bus operated in a bi-directional, sequential method that cycled through various stops. At each stop, the control logic would determine if data was to be the collected to deposited with that module. These ring bus stops are located at memory controllers, CPU cores / caches, the PCI Express interface, memory controllers, LLCs, etc. This ring bus was fairly simple and easily expandable by simply adding more stops on the ring bus itself.

xeon-processor-5.jpg

However, over several generations, the ring bus has become quite large and unwieldly. Compare the ring bus from Nehalem above, to the one for last year’s Xeon E5 v5 platform.

intel-xeon-e5-v4-block-diagram-hcc.jpg

The spike in core counts and other modules caused a ballooning of the ring that eventually turned into multiple rings, complicating the design. As you increase the stops on the ring bus you also increase the physical latency of the messaging and data transfer, for which Intel compensated by increasing bandwidth and clock speed of this interface. The expense of that is power and efficiency.

For an on-die interconnect to remain relevant, it needs to be flexible in bandwidth scaling, reduce latency, and remain energy efficient. With 28-core Xeon processors imminent, and new IO capabilities coming along with it, the time for the ring bus in this space is over.

Starting with the HEDT and Xeon products released this year, Intel will be using a new on-chip design called a mesh that Intel promises will offer higher bandwidth, lower latency, and improved power efficiency. As the name implies, the mesh architecture is one in which each node relays messages through the network between source and destination. Though I cannot share many of the details on performance characteristics just yet, Intel did share the following diagram.

intelmesh.png

As Intel indicates in its blog on the mesh announcements, this generic diagram “shows a representation of the mesh architecture where cores, on-chip cache banks, memory controllers, and I/O controllers are organized in rows and columns, with wires and switches connecting them at each intersection to allow for turns. By providing a more direct path than the prior ring architectures and many more pathways to eliminate bottlenecks, the mesh can operate at a lower frequency and voltage and can still deliver very high bandwidth and low latency. This results in improved performance and greater energy efficiency similar to a well-designed highway system that lets traffic flow at the optimal speed without congestion.”

The bi-directional mesh design allows a many-core design to offer lower node to node latency than the ring architecture could provide, and by adjusting the width of the interface, Intel can control bandwidth (and by relation frequency). Intel tells us that this can offer lower average latency without increasing power. Though it wasn’t specifically mentioned in this blog, the assumption is that because nothing is free, this has a slight die size cost to implement the more granular mesh network.

Using a mesh architecture offers a couple of capabilities and also requires a few changes to the cache design. By dividing up the IO interfaces (think multiple PCI Express banks, or memory channels), Intel can provide better average access times to each core by intelligently spacing the location of those modules. Intel will also be breaking up the LLC into different segments which will share a “stop” on the network with a processor core. Rather than the previous design of the ring bus where the entirety of the LLC was accessed through a single stop, the LLC will perform as a divided system. However, Intel assures us that performance variability is not a concern:

Negligible latency differences in accessing different cache banks allows software to treat the distributed cache banks as one large unified last level cache. As a result, application developers do not have to worry about variable latency in accessing different cache banks, nor do they need to optimize or recompile code to get a significant performance boosts out of their applications.

There is a lot to dissect when it comes to this new mesh architecture for Xeon Scalable and Core i9 processors, including its overall effect on the LLC cache performance and how it might affect system memory or PCI Express performance. In theory, the integration of a mesh network-style interface could drastically improve the average latency in all cases and increase maximum memory bandwidth by giving more cores access to the memory bus sooner. But, it is also possible this increases maximum latency in some fringe cases.

Further testing awaits for us to find out!

Source: Intel

Putting the Ryzen 5 to work

Subject: Processors | June 9, 2017 - 03:02 PM |
Tagged: amd, ryzen 5, productivity, ryzen 7 1800x, Ryzen 5 1500X, AMD Ryzen 5 1600, Ryzen 5 1600X, ryzen 5 1400

The Tech Report previously tested the gaming prowess of AMD's new processor family and are now delving into the performance of productivity software on Ryzen.  Many users who are shopping for a Ryzen will be using it for a variety of non-gaming tasks such as content creation, coding or even particle flow analysis.  The story is somewhat different when looking through these tests, with AMD taking the top spot in many benchmarks and in others being surpassed only by the Core i7 6700k, in some tests that chip leaves all competition in the dust by a huge margin.  For budget minded shoppers, the Ryzen 5 1600 barely trails both the i7-7700K and the 1600X in our productivity tests making it very good bargain for someone looking for a new system.  Check out the full suite of tests right here.

ryzen5-nonX.jpg

"Part one of our AMD Ryzen 5 review proved these CPUs have game, but what happens when we have to put the toys away and get back to work? We ran all four Ryzen 5 CPUs through a wide range of productivity testing to find out."

Here are some more Processor articles from around the web:

Processors

 

Details on Intel's Gemini Lake SoC Leak: A Refined Apollo Lake Coming Soon

Subject: Processors | May 31, 2017 - 02:33 PM |
Tagged: Intel, goldmont+, gemini lake, apollo lake, 14nm

Information recently leaked on the successor to Intel’s low power Apollo Lake SoCs dubbed Gemini Lake. Several sites via FanlessTech claim that Gemini Lake will launch by the end of the year and will be the dual and quad core processors used to power low cost notebooks, tablets, 2-in-1 convertibles, and SFF desktop and portable PCS.

Intel-2016-2017-Processor-Roadmap-Kaby-Lake-Coffee-Lake-Cannonlake.jpg

A leaked Intel roadmap.

Gemini Lake appears to be more tick than tock in that it uses a similar microarchitecture as Apollo Lake and relies mainly on process node improvements with the refined 14nm+ process to increase power efficiency and performance per watt. On the CPU side of things, Gemini Lake utilizes the Goldmont+ microarchitecture and features two or four cores paired with 4MB of L2 cache. Intel has managed to wring higher clockspeeds while lowering power draw out of the 14nm process. A doubling of the L2 cache versus Apollo Lake will certainly give the chip a performance boost. The SoC will use Intel Gem9 graphics with up to 18 Execution Units (similar to Apollo Lake) but the GPU will presumably run at higher clocks. Additionally, the Gemini Lake SoC will integrate a new single channel DDR4 memory controller that will support higher memory speeds, s WLAN controller (a separate radio PHY is still required on the motherboard) supporting 802.11 b/g/n and Bluetooth 4.0.

Should the leaked information turn out to be true, he new Gemini Lake chips are shaping up to be a good bit faster than their predecessor while sipping power with TDPs of up to 6W for mobile devices and 10W for SFF desktop.

The lower power should help improve battery life a bit which is always a good thing. And if they can pull off higher performance as well all the better!

Unfortunately, it is sounding like Gemini Lake will not be ready in te for the back to school or holiday shopping seasons this year. I expect to see a ton of announcements on devices using the new SoCs at CES though!

Also read:

 

Source:

Computex 2017: ASUS, HP, Lenovo to Build Qualcomm Snapdragon 835 Windows 10 Machines

Subject: Processors, Mobile | May 31, 2017 - 03:30 AM |
Tagged: snapdragon 835, snapdragon, qualcomm, Lenovo, hp, Gigabit LTE, asus

Back in December of 2016, Qualcomm and Microsoft announced a partnership to bring Windows to platforms based on the Snapdragon platform. Not Windows RT redux, not Windows mobile, not Windows Mini, full blown Windows with 100% application support and compatibility. It was a surprising and gutsy move after the tepid response (at best) to the ARM-based Windows RT launch several years ago. Qualcomm and Microsoft assure us that this time things are different, thanks to a lot of learning and additional features that make the transition seamless for consumers.

The big reveal for this week is the initial list of partners that Qualcomm has brought on board to build Windows 10 system around the Snapdragon 835 Mobile Platform. ASUS, HP, and Lenovo will offer machines based around that SoC, though details on form factors, time frames, pricing and anything else you WANT to know about it, is under wraps. These are big time names though, leaders in the PC notebook space, and I think their input to the platform is going to be just as valuable as them selling and marketing it. HP is known for enterprise solutions, Lenovo for mass market share, and ASUS for innovative design and integration.

win10onSD-15.jpg

(If you want to see an Android-based representation of performance on a mobile-based Snapdragon 835 processor, check out our launch preview from March.)

Also on the show floor, Qualcomm begins its marketing campaign aimed to show the value that Snapdragon offers to the Windows ecosystem. Today that is exemplified in a form factor difference comparing the circuit board layout of a Snapdragon 835-based notebook and a “typical” competitor machine.

board1.jpg

board2.jpg

Up top, Qualcomm is showing us the prototype for the Windows 10 Snapdragon 835 Mobile Platform. It has a total area of 50.4 cm2 and just by eyeballing the two images, there is a clear difference in scope. The second image shows only what Qualcomm will call a “competing commercial circuit board” with an area of 98.1 cm2. That is a decrease in PCB space of 48% (advantage Qualcomm) and gives OEMs a lot of flexibility in design that they might not have had otherwise. They can use that space to make machines thinner, lighter, include a larger battery, or simply to innovate outside the scope of what we can imagine today.

Continue reading about the Qualcomm Snapdragon 835 Mobile Platform with Windows 10 announcement!

Source: Qualcomm

Computex 2017: AMD Threadripper will include 64 lanes of PCI Express 3.0, Demos with Quad Vega FE

Subject: Processors | May 30, 2017 - 10:49 PM |
Tagged: Threadripper, ryzen, PCI Express, amd

During AMD’s Computex keynote, the company confirmed that the every one of the upcoming Threadripper HEDT platform first announced earlier in May, will include 64 lanes of PCI Express 3.0. There will not be a differentiation in the product line with PCIe lanes or in memory channels (all quad-channel DDR4). This potentially gives AMD the advantage for system connectivity, as the Intel Skylake-X processor just announced yesterday will only sport of 44 lanes of PCIe 3.0 on chip.

tr1.jpg

Having 64 lanes of PCI Express on Threadripper could be an important differentiation point for the platform, offering the ability to run quad GPUs at full x16 speeds, without the need of any PLX-style bridge chips. You could also combine a pair of x16 graphics cards, and still have 32 lanes left for NVMe storage, 10 GigE networking devices, multi-channel SAS controllers, etc. And that doesn’t include any additional lanes that the X399 chipset may end up providing. We still can’t wait to see what motherboard vendors like ASUS, MSI and Gigabyte create with all that flexibility.

tr2.jpg

Holy hell.

On-stage, we saw a couple of demonstrations of what this connectivity capability can provide. First, a Threadripper system was shown powering Radeon RX Vega graphics cards running the new Prey PC title at 4K.

On-stage, we saw a couple of demonstrations of what this connectivity capability can provide. First, a Threadripper system was shown running the same Blender rendering demo used in the build up to the initial Ryzen CPU launch.

tr3.jpg

Next, CEO Lisa Su came back on stage to demo AMD Threadripper running with a set of four Radeon Vega Frontier Edition cards running together for ray tracing.

tr4.jpg

And finally, a gaming demo! AMD Ryzen Threadripper was demoed with dual Radeon RX Vega (the gaming versions) graphics cards running at 4K/Ultra settings on the new Prey PC title. No frame rates were mentioned, no FRAPS in the corner, etc.

(Side note: Radeon Vega FE was confirmed for June 27th launch. Radeon RX Vega will launch at SIGGRAPH at the end of July!)

We still have a ways to go before we can make any definitive comments on Threadripper, and with Intel announcing processors with core counts as high as 18 just yesterday, it’s fair to say that some of the excitement has been dwindling. However, with aggressive pricing and the right messaging from AMD, they still have an amazing opportunity to break away a large segment of the growing, and profitable, HEDT market from Intel.

Source: AMD

Computex 2017: AMD Demos Ryzen Mobile SoC with Vega Graphics

Subject: Processors, Mobile | May 30, 2017 - 10:43 PM |
Tagged: amd, ryzen, mobile, Vega

As part of the company’s press conference from Computex 2017, AMD displayed for the first time to the public a working notebook utilizing the upcoming Ryzen SoC with on-die Vega graphics. The CPU is a 4-core / 8-thread design and the system was shown playing back some basic video.

Untitled-1.jpg

We don’t really have any more detail than that on the platform, other availability in second half of this year. The system being shown was impressively built, with a sub-15mm ultra-portable form factor, putting to rest concerns over AMD’s ability to scale Zen and Vega to the lower required power numbers. AMD claims that Ryzen mobile will offer 50% better CPU performance and 40% better GPU performance than the 7th Generation AMD APU. I can't wait to test this myself, but with a jump like that AMD should be competitive in the processor space again and continue its dominance in integrated graphics.

mobile1.jpg

The Vega on-die integration was first mentioned at the company’s financial analyst day, though if you were like me, it went unnoticed in the wave of Threadripper and EPYC news. This iteration is obviously not using a non-HBM2 memory implementation, but I don’t yet know if there is any kind of non-system-memory cache on the processor to help improve integrated graphics performance.

chip1.jpg

For a product not slated to be released until the end of this year, seeing a low profile, high performance demo of the platform is a good sign for AMD and a welcome indicator that the company could finally fight back in the mobile notebook space.

Source: AMD

Computex 2017: Intel 8th Gen Core Processors 30% Faster than 7th Gen

Subject: Processors | May 30, 2017 - 03:00 AM |
Tagged: Intel, computex 2017, computex, coffee lake, 8th generation core

During it's keynote at Computex today, Intel announced the high performane Skylake-X and Kaby Lake-X platforms with CPU core counts as high as 18 (!!) but also gave a brief mention of its upcoming Coffee Lake product, the 8th Generation Core product family.

To quote directly from the Intel press information:

"As we move toward the next generation of computing, Intel also shared its commitment to deliver 8th generational Intel® Core™ processor-based devices by the holiday season, boasting more than 30 percent improvement in performance versus the 7th Gen Intel® Core™ processor."

That is quite the claim, but let's dive into the details.

Based on SYSmark* 2014 v1.5 (Windows Desktop Application Performance). Comparing 7th Gen i7-7500U, PL1=15W TDP, 2C4T, Turbo up to 3.5GHz, Memory: 2x4GB DDR4-2133, vs. Estimates for 8th Gen Core i7: PL1=15W TDP, 4C8T, Turbo up to 4 GHz, Memory: 2x4GB DDR4-2400, Storage: Intel® SSD, Windows* 10 RS2. Power policy assumptions: AC mode. Note: Kaby Lake U42 performance estimates are Pre-Silicon and are subject to change. Pre-Si projections have +/- 7% margin of error.

In a more readable format:

  8th Gen
Core i7
7th Gen
Core i7-7500U
Code name Coffee Lake Kaby Lake
Process Tech 14nm Double Plus Good 14nm+
Cores/Threads 4/8 2/4
Base Clock ? 2.7 GHz
Turbo Clock 4.0 GHz 3.5 GHz
TDP 15 watt 15 watt
Memory 8GB 8GB
Memory Clock 2400 MHz 2133 MHz

The 30% performance claim comes from both a doubling of core and thread count (2- to 4-cores) but also a 500 MHz higher peak Turbo Clock, going from Kaby Lake to Coffee Lake. The testing was done using SYSmark 2014 v1.5, a benchmark that is very burst-centric and is comparable to common productivity tasks. Even with a 15% increase in peak clock speed and a 2x core/thread count, Intel is still able to maintain a 15 watt TDP with this CPU.

intelcoffeelake.jpg

While we might at first expect much larger performance gains with those clock and core count differences, keep in mind that SYSmark as a test has never scaled in such a way. We don't yet know what other considerations might be in place for the 8th Generation Core processor platforms, and how they might affect performance for single of multi-threaded applications.

Intel has given us very little information today on the Coffee Lake designs, but it seems we'll know all about this platform before the end of the year.

Source: Intel

AMD Announces #Ryzen7Seconds Sweepstakes

Subject: Processors | May 26, 2017 - 11:57 PM |
Tagged: ryzen, giveaway, amd

Between now and July 7th, 2017, which could also be written as 7/7/17, AMD is hosting a sweepstakes (not a contest) to promote Ryzen 7. The premise is that fans will create a video of themselves doing seven different activities in seven seconds. Prizes will be awarded for randomly selected, eligible entries. Alternatively, you can enter by doing some things on Twitter… the details are available on AMD’s website.

This is the reason why I said “not a contest”. According to the rules, these videos will not actually be judged; it's pure luck. The drawing will occur on (roughly) June 2nd, June 9th, June 16th, June 23rd, June 30th, and two drawings on July 7th. Each drawing is for an AMD Ryzen 7 1700X, with one winner per drawing.

Source: AMD

Ryzen and the art of benchmark maintenance

Subject: Processors | May 19, 2017 - 04:15 PM |
Tagged: amd, ryzen, ryzen 5 1400, ryzen 5 1600

Neoseeker tested out the 4 core Ryzen 5 1400 and 6 core 1600 model to see how they stack up against other lower cost processors.  They ran the tests at the highest stable overclock they could reach, interestingly both were able to hit a 3.8 GHz base clock, paired with DDR4-2400.  The processors were cooled with AMD's Wraith Max cooler so it is possible to push these CPUs further if you are willing to overvolt.  Drop by to see how these two processor match up to the competition.

04.jpg

"The two AMD processors for review today are the newest budget offerings of the Ryzen 5 series with the Ryzen 1400 and 1600 models. The Ryzen 1400 is a four core/eight thread and the Ryzen 1600 is a six core/twelve thread processor, with both having a base operating speed of 3.2 GHz. The boost clock for the Ryzen 1400 is 3.4 GHz while the Ryzen 1600 is able to boost to 3.6 GHz."

Here are some more Processor articles from around the web:

Processors

 

Source: Neoseeker