3000MHz of RGB LEDs, ADATA's XPG Spectrix D40 DDR4

Subject: Memory | March 12, 2018 - 03:05 PM |
Tagged: adata, xpg spectrix d40, DDR4-3000, RGB

ADATA's new DDR4-3000 DIMMs have ASUS Aura Sync compatible RGBs, or with their own software you can download to power your lightshow if you aren't running an ASUS board.  The DIMMs each have 5 LEDs which you can program to display a single colour, cycle colours or set a gradient or you can opt for breathing or music modes if you prefer.  We won't bore you with unimportant details such as the default timings of 16-18-18 or that Modders Inc hit 3733 MHz at 18-20-20 timings with a voltage of 1.38 as that has nothing to do with shiny lights.


"The XPG line of memory modules from ADATA is considered to be its enthusiast line. The XPG SPECTRIX D40 is the first DDR-4 RAM that features RGB LED. The memory starts off with a base speed of 2,666MHz and is offered in speeds up to 4000Mhz. The kit featured in this review is the DDR-4 3,000MHz version."

Here are some more Memory articles from around the web:



Source: Modders Inc

G.Skill Launches 4700 MHz Trident Z RGB DDR4 Memory

Subject: General Tech, Memory | February 11, 2018 - 04:45 PM |
Tagged: G.Skill, Trident Z RGB, ddr4, Samsung, samsung b-die, xmp

G.Skill will soon be upgrading its Trident Z RGB line of DDR4 DIMMs with a 16 GB kit capable of running at 4700 MHz. With the claimed fastest commercial kit of RGB-equipped memory modules, the new 2 x 8 GB kit uses Samsung B-die ICs and supports XMP 2.0 memory profiles. The super-fast memory kit has been in development for quite a while and is slated for availability in Q2 2018.

GSkill Trident Z RGB.jpg

G.Skill has managed to tighten the timings on its 4700 MHz kit to CL19-19-19-39 while needing only 1.45V which is nice to see. The company has reportedly validated the new memory using a MSI Z370 Gaming Pro Carbon AC motherboard and Intel i7 8700k processor. G.Skill notes that the new kit is notable because it is the first retail kit to hit 4700 MHz as well as the first memory kit with RGB LEDs to hit that lofty memory speed. Corsair comes close at 4600 MHz with its 16 GB Vengeance LPX DDR4 kit at 15-15-15-36 which will set you back a cool $589.99 MSRP.

I am curious on the overclocking headroom on these modules actually (heh). G.Skill is reportedly using highly screened B-dies so maybe the 5,000 MHz its other kits have hit (when overclocked) would be possible. I would like to see AMD’s Infinity Fabric performance at that point when it is not being held back by memory speed especially where its upcoming APUs are concerned. On the Intel side of things, I think tighter timings are preferrable (after a certain threshold of acceptable speed of course) when pursuing the best performance so a "slower" 3600 to 4600 MHz kit at CL15 or lower might be a better buy. In any case, memory continues to be pricey, and I would uess G.Skill's new kit will hit at least $600 MSRP.

G.Skill is not yet talking pricing on these modules, but they aren’t going to be cheap. We should know more in a couple of months as we enter the second quarter.

Also read:

Source: G.Skill

SK Hynix Launches Its 8Gb GDDR6 Memory Running at 14 Gbps

Subject: Graphics Cards, Memory | January 24, 2018 - 11:04 PM |
Tagged: SK Hynix, graphics memory, gddr6, 8gb, 14Gbps

SK Hynix recently updated its product catalog and announced the availability of its eight gigabit (8 Gb) GDDR6 graphics memory. The new chips come in two SKUs and three speed grades with the H56C8H24MJR-S2C parts operating at 14 Gbps and 12 Gbps and the H56C8H24MJR-S0C operating at 12 Gbps (but at higher voltage than the -S2C SKU) and 10 Gbps. Voltages range from 1.25V for 10 Gbps and either 1.25V or 1.35V for 12 Gbps to 1.35V for 14 Gbps. Each 8 Gb GDDR6 memory chip holds 1 GB of memory and can provide up to 56 GB/s of per-chip bandwidth.

SK Hynix logo.jpg

While SK Hynix has a long way to go before competing with Samsung’s 18 Gbps GDDR6, its new chips are significantly faster than even its latest GDDR5 chips with the company working on bringing 9 Gbps and 10 Gbps GDDR5 to market. As a point of comparison, its fastest 10 Gbps GDDR5 would have a per chip bandwidth of 40 GB/s versus its 14 Gbps GDDR6 at 56 GB/s. A theoretical 8GB graphics card with eight 8 Gb chips running at 10 Gbps on a 256-bit memory bus would have maximum bandwidth of 320 GB/s. Replacing the GDDR5 with 14 Gbps GDDR6 in the same eight chip 256-bit bus configuration, the graphics card would hit 448 GB/s of bandwidth. In the Samsung story I noted that the Titan XP runs 12 8 Gb GDDR5X memory chips at 11.4 Gbps on a 384-bit bus for bandwidth of 547 GB/s. Replacing the G5X with GDDR6 would ramp up the bandwidth to 672 GB/s if running the chips at 14 Gbps.

Theoretical Memory Bandwidth
Chip Pin Speed Per Chip Bandwidth 256-bit bus 384-bit bus 1024-bit (one package) 4096-bit (4 packages)
10 Gbps 40 GB/s 320 GB/s 480 GB/s    

12 Gbps

48 GB/s 384 GB/s 576 GB/s    
14 Gbps 56 GB/s 448 GB/s 672 GB/s    
16 Gbps 64 GB/s 512 GB/s 768 GB/s    
18 Gbps 72 GB/s 576 GB/s 864 GB/s    
HBM2 2 Gbps 256 GB/s     256 GB/s 1 TB/s

GDDR6 is still a far cry from High Bandwidth Memory levels of performance, but it is much cheaper and easier to produce. With SK Hynix ramping up production and Samsung besting the fastest 16 Gbps G5X, it is likely that the G5X stop-gap will be wholly replaced with GDDR6 and things like the upgraded 10 Gbps GDDR5 from SK Hynix will pick up the low end. As more competition enters the GDDR6 space, prices should continue to come down and adoption should ramp up for the new standard with the next generation GPUs, game consoles, network devices, ect. using GDDR6 for all but the highest tier prosumer and enterprise HPC markets.

Also read:

Samsung Begins Mass Production Of 18 Gbps 16-Gigabit GDDR6 Memory

Subject: Memory | January 18, 2018 - 12:34 AM |
Tagged: Samsung, graphics memory, graphics cards, gddr6, 19nm

Samsung is now mass producing new higher density GDDR6 memory built on its 10nm-class process technology that it claims offers twice the speed and density of its previous 20nm GDDR5. Samsung's new GDDR6 memory uses 16 Gb dies (2 GB) featuring pin speeds of 18 Gbps (gigabits-per-second) and is able to hit data transfer speeds of up to 72 GB/s per chip.

Samsung GDDR6_PhotoFs.png

According to Samsnug, its new GDDR6 uses a new circuit design which allows it to run on a mere 1.35 volts. Also good news for Samsung and for memory supply (and thus pricing and availability of products) is that the company is seeing a 30% gain in manufacturing productivity cranking out its 16Gb GDDR6 versus its 20nm GDDR5. 

Running at 18 Gbps, the new GDDR6 offers up quite a bit of bandwidth and will allow for graphics cards with much higher amounts of VRAM. Per package, Samsung's 16Gb GDDR6 offers 72 GB/s which is twice the density, pin speed, and bandwidth than that of its 8Gb GDDR5 running at 8Gbps and 1.5V with data transfers of 32 GB/s. (Note that SK Hynix has announced it plans to produce 9Gbps and 10Gbps dies which max out at 40 GB/s.) GDDR5X gets closer to this mark, and in theory is able to hit up to 16 Gbps per pin and 64 GB/s per die, but so far the G5X used in real world products has been much slower (the Titan XP runs at 11.4 Gbps for example). The Titan XP runs 12 8Gb (1GB) dies at 11.4 Gbps on a 384-bit memory bus for maximum memory bandwidth of 547 GB/s. Moving to GDDR6 would enable that same graphics card to have 24 GB of memory (with the same number of dies) with up to 864 GB/s of bandwidth which is approaching High Bandwidth Memory levels of performance (though it still falls short of newer HBM2 and in practice the graphics card would likely be more conservative on the memory speeds). Still, it's an impressive jump in memory performance that widens the gap between GDDR6 and GDDR5X. I am curious how the GPU memory market will shake out in 2018 and 2019 with GDDR5, GDDR5X, GDDR6, HBM, HBM2, and HBM3 all being readily available for use in graphics cards and where each memory type will land especially on the mid-range and high-end consumer cards (HBM2/3 still holds the performance crown and is ideal for the HPC market).

Samsung is aiming its new 18Gbps 16Gb memory at high performance graphics cards, game consoles, vehicles, and networking devices. Stay tuned for more information on GDDR6 as it develops!

Also read:

Source: Samsung

Samsung Mass Producing Second Generation "Aquabolt" HBM2: Better, Faster, and Stronger

Subject: Memory | January 12, 2018 - 05:46 PM |
Tagged: supercomputing, Samsung, HPC, HBM2, graphics cards, aquabolt

Samsung recently announced that it has begun mass production of its second generation HBM2 memory which it is calling “Aquabolt”. Samsung has refined the design of its 8GB HBM2 packages allowing them to achieve an impressive 2.4 Gbps per pin data transfer rates without needing more power than its first generation 1.2V HBM2.


Reportedly Samsung is using new TSV (through-silicon-via) design techniques and adding additional thermal bumps between dies to improve clocks and thermal control. Each 8GB HBM2 “Aquabolt” package is comprised of eight 8Gb dies each of which is vertically interconnected using 5,000 TSVs which is a huge number especially considering how small and tightly packed these dies are. Further, Samsung has added a new protective layer at the bottom of the stack to reinforce the package’s physical strength. While the press release did not go into detail, it does mention that Samsung had to overcome challenges relating to “collateral clock skewing” as a result of the sheer number of TSVs.

On the performance front, Samsung claims that Aquabolt offers up a 50% increase in per package performance versus its first generation “Flarebolt” memory which ran at 1.6Gbps per pin and 1.2V. Interestingly, Aquabolt is also faster than Samsung’s 2.0Gbps per pin HBM2 product (which needed 1.35V) without needing additional power. Samsung also compares Aquabolt to GDDR5 stating that it offers 9.6-times the bandwidth with a single package of HBM2 at 307 GB/s and a GDDR5 chip at 32 GB/s. Thanks to the 2.4 Gbps per pin speed, Aquabolt offers 307 GB/s of bandwidth per package and with four packages products such as graphics cards can take advantage of 1.2 TB/s of bandwidth.

This second generation HBM2 memory is a decent step up in performance (with HBM hitting 128GB/s and first generation HBM2 hitting 256 GB/s per package and 512 GB/s and 1 TB/s with four packages respectively), but the interesting bit is that it is faster without needing more power. The increased bandwidth and data transfer speeds will be a boon to the HPC and supercomputing market and useful for working with massive databases, simulations, neural networks and AI training, and other “big data” tasks.

Aquabolt looks particularly promising for the mobile market though with future products succeeding the current mobile Vega GPU in Kaby Lake-G processors, Ryzen Mobile APUs, and eventually discrete Vega mobile graphics cards getting a nice performance boost (it’s likely too late for AMD to go with this new HBM2 on these specific products, but future refreshes or generations may be able to take advantage of it). I’m sure it will also see usage in the SoCs uses in Intel’s and NVIDIA’s driverless car projects as well.

Source: Samsung

Studying the effect of frequency and timing for Coffee

Subject: Memory | October 18, 2017 - 04:20 PM |
Tagged: coffee lake, i7 8700k, Intel

The performance of AMD's Ryzen chips depend heavily on the frequency of the RAM installed thanks to how Infinity Fabric works.  TechPowerUp decided to see how sensitive Intel's Coffee Lake processors are, testing the performance with RAM speeds from 2133MHz up to 4000MHz as well as modifying the timings.  Not to spoil the results for you, we can reveal something else their tests revealed, G.SKILL's Trident Z DDR4-3866 16GB kit is impressively flexible, they were stable at 15 different combinations of timings and frequencies.  Check out the full results to discover the sweet spot.


"We take a close look at memory speeds, latencies and command rate on Intel's latest Core i7-8700K with Z370. Scenarios tested include fail-safe 2133 MHz, the platform default of 2666 MHz and overclocked memory speeds from 3000 MHz to 4000 MHz - at various timings."

Here are some more Memory articles from around the web:



Source: TechPowerUp

Corsair Overclocks With a Vengeance, Launches DDR4 4600 MHz Memory Kit

Subject: Memory | September 21, 2017 - 11:46 AM |
Tagged: X399, ryzen, overclocking, Intel X299, ddr4-4600, ddr4, corsair

Corsair has launched a new Vengeance LPX DDR4 memory kit that is capable of hitting 4600 MHz at 1.5 volts. The new kit is a 16GB (2 x 8GB) kit that Corsair reportedly co-developed with AsRock for fine tune using their X299 OC Formula motherboard. The DDR4 kit is made using hand sorted Samsung B-dies and it supports Intel XMP 2.0 standards allowing it to clock at 4600 MHz with a single setting change in the UEFI.

Corsair Vengeance LPX 4600 MHz.jpg

The Vengeance LPX DIMMs run with CAS timings of 19-26-26-46 and need only 1.5V to clock at 4600 MHz. This kit will be ideal for Intel’s X299 as well as AMD’s X399 platforms. While Ryzen and Threadripper platforms may need a bit more tweaking to get working, they would benefit the most from the higher clocked memory allowing the Infinity Fabric to clock higher.

Being one of the highest factory clocked DIMMs, they come at a cost. The new RAM kit (CMK16GX4M2F4600C19) is available now for $549.99 with a lifetime limited warranty.

For something a bit more tame, earlier this week Corsair launched a 2 x 8GB kit (CMK16GX4M2F4500C19) clocked at 4500 MHz with CL19-19-19-39 timings (at 1.45V) that is also available now for $479.99 MSRP. Enthusiasts might be better off buying the cheaper kit and overclocking them (though not guaranteed and might need a bit more than 1.5V) while workstation and enterprise customers with corporate expense accounts can opt for the more expensive but factory clocked 4600 MHz kit.

At time of writing the new kits were not up on Amazon yet, but they should be shortly. You can find the cheaper 4500 MHz kit on Corsair's web store but it is listed at $504.99 currently. If you wait a bit, that price should go down closer to MSRP as other retailers put up their listings.

Source: TechPowerUp

G.SKILL Announces New DDR4 for AMD Ryzen Threadripper

Subject: Memory | August 10, 2017 - 03:31 PM |
Tagged: Zen, Threadripper, ryzen, amd, G.Skill, flare x, quad channel

G.SKILL have launched several new kits specifically designed for Threadripper systems, all under the name of Flare X.   There are three 32GB kits and a single massive 128GB kit to choose from, all quad channel and all tested for compatibility with Threadripper.



Taipei, Taiwan (10 Aug 2017) – G.SKILL International Enterprise Co., Ltd., the world’s leading manufacturer of extreme performance memory and gaming peripherals, announces all-new DDR4 specifications and expanding the Flare X series, designed for AMD processors and platforms. Compatible with the new Ryzen™ Threadripper™ processors and AMD X399 chipset motherboards, these new DDR4 specifications are designed to achieve high frequency at DDR4-3600MHz 32GB (8GBx4), as well as a massive total capacity at DDR4-2933MHz 128GB (16GBx8). Included in the mix of new quad-channel DDR4 memory kits are DDR4-3200MHz CL14 32GB (8GBx4) and DDR4-3466MHz CL16 32GB (8GBx4).

Ultra-High Frequency Flare X Series Memory Kits at DDR4-3600MHz 32GB (8GBx4)
With improved overclocking performance on the latest AMD Ryzen™ Threadripper™ processors on the X399 chipset, G.SKILL is announcing the DDR4-3600MHz CL16-18-18-38 with 32GB (8GBx4) total capacity running in quad-channel mode, under the Flare X series. Tested for maximum stability, this kit’s frequency speed marks the fastest memory kit ever released thus far for an AMD platform.

Massive Kit Capacity, No Compromises: DDR4-2933MHz 128GB (16GBx8)
One of the advantages introduced by the AMD X399 platform is the increase to 8 memory slots on AMD platforms, allowing the support for massive 128GB capacity kits running in quad-channel mode. Tested using the highest standards for memory stability on AMD Ryzen™ Threadripper™ platforms, G.SKILL announces the Flare X series DDR4-2933MHz CL14-14-14-34 128GB (16GBx8) memory kit running at 1.35V, perfect for systems requiring high-capacity, high-bandwidth memory kits.

Source: G.SKILL

AMD Will Sell Wraith Max CPU Cooler Separately

Subject: Memory | August 6, 2017 - 11:41 AM |
Tagged: wraith max, Wraith, ryzen, fm2, amd, AM4

Amidst all the big AMD announcements recently, the company quietly revealed that it would begin selling the Wraith Max CPU cooler separately at retail. The Wraith Max heatsink and fan was previously only available in OEM systems and in boxed SKUs of the highest end Ryzen processors (mainly the 1700X and 1800X). The cooler is a refreshed and upgraded version of the company’s original Wraith cooler that measures 105 x 105 x 85mm and features a boxy horizontal cooler with a copper baseplate and heatpipes with a shrouded 92mm fan along with a RGB LED ring around the fan that can be controlled via motherboard software.

AMD Wraith Max CPU Cooler.png

The Wraith Max is rated at 140W TDP and is connected to the system using a fan header and USB (for controlling the lighting). AMD further rates the cooler at a fairly quiet 38 dBA. The Wraith Max supports all of the usual AMD sockets including AM4, AM3, and FM2 (no Threadripper support of course heh), but there is no official support for Intel sockets.

The Wraith Max cooler will retail for $59 USD. I have been keeping an eye on the usual online retailers and have not yet seen it listed, but it should be available soon. Hopefully there will be more reviews of the cooler now that it is a retail product on its own, and maybe we can get Sebastian to take a look at it and compare it to the original Wraith cooler (and his usual lineup of course) he reviewed last year.

Source: AMD

G.Skill Readies DDR4-4400 Kits for Intel's X299 HEDT Platform

Subject: Memory | June 29, 2017 - 02:03 PM |
Tagged: x299, trident z, samsung 8Gb, overclocking, G.Skill, ddr4

G.Skill recently announced new DDR4 memory kits for the Intel X299 HEDT platform. The new kits include a dual channel DDR4 4400 MHz kit for Kaby Lake X and a quad channel DDR4 4200 MHz kit for Skylake X. The dual channel kit is available under the company’s Trident Z RGB and Trident Z Black brands depending on whether you want RGB lighting or simple black heatspreaders. The quad channel DDR4-4200 kit is only available in non-RGB Trident Z modules.

Trident Z.png

According to G.Skill, all of the new memory kits use Samsung 8Gb dies and feature CAS latencies of 19-19-19-39. The quad channel 4200 MHz DDR4 modules need 1.40V to hit those specifications, and while it is not yet known what the higher clocked dual channel DDR4 4400 MHz kits need to hit CL19 timings I would presume they need a bit more.

GSkill Memory Kits.jpg

The new kits will be available in an 8GB x 2 (16GB) 4400 MHz kit and up to 64 GB (8GB x 8) 4200 MHz kits. Pricing has not yet been announced, but the new RAM kits should be available soon. While Intel processors do not get as much of a boost from increased memory speeds as AMD’s APUs and Ryzen CPUs do, there are still noticeable gains to be had with faster memory though gamers should still prioritize graphics cards and processors over memory when picking parts for a budget build.

Note that since these kits are using Samsung 8Gb ICs, they also have a good chance of working with Ryzen, but check with your motherboard manufacturer and reviews before ponying up the cash. 


Source: G.Skill

G.Skill Memory Used In World Record Breaking DDR4 5,500 MHz Overclock

Subject: Memory | June 7, 2017 - 08:49 PM |
Tagged: G.Skill, overclocking, ddr4, x299, liquid nitrogen, computex

Amidst the flood of new product announcements at Computex, G.Skill was busy hosting an overclocking competition where its memory was used to in a record breaking overclock that saw DDR4 memory clocked at an impressive 5,500 MHz. Professional overclocker Toppc broke his 5,000 MHz record from last year with the new overclock that was accomplished on Intel’s X299 platform.


Toppc used a MSI X299 Gaming Pro Carbon AC motherboard, Intel Core X-series processor, G.Skill DDR4 memory built using Samsung 8Gb ICs, and, of course, copious amounts of liquid nitrogen! Looking at the HWBot page, it appears Toppc specifically used an Intel Core i7-7740K (Kaby Lake X) processor and 8GB G.Skill Trident Z RGB RAM (CL 14-14-14-14 stock). Both the CPU and memory modules were cooled with liquid nitrogen for the overclock. The CPU-Z screenshot shows the processor running 1 cores / 2 threads with a 133.06 bus speed. It also shows an 8x multiplier and core speed of 1064.46 but I am questioning whether or not it is accurately reading the Kaby Lake X part correctly as running at those speeds wouldn’t need such exotic cooling – perhaps it is needed to run at the 133.06 bus speed and to keep the memory controller from overheating (or melting hehe).

G.Skill is currently pushing the envelope on standard air cooled DIMMs with a prototype kit hitting 4,800 MHz. The company's CVP Tequila Huang stated in a press release:

“We are seeing amazing overclocking potential for these newly released hardware and we believe that more overclocking benchmark records will be achieved very soon by professional overclockers worldwide."

I am interested to see if it will have any additional headroom in the memory overclocking department and if so how long the 5.5 GHz world record will stand.

Source: G.Skill

Micron Pushes GDDR5X To 16Gbps, Expects To Launch GDDR6 In Early 2018

Subject: Memory | June 7, 2017 - 01:02 AM |
Tagged: micron, gddr6, gddr5x

JEDEC made the GDDR5X memory standard official almost a year and a half ago where it launched at 10 Gbps and quickly hit 12 Gbps. Set to bridge the gap between GDDR5 and the upcoming GDDR6, the “G5X” standard is quickly catching up to and matching the speeds that GDDR6 will run at.

Specifically, Micron’s Graphics Design Team in Munich was able to achieve an impressive 16 Gbps in their high speed test environment. The team was able to hit 16 Gbps on a “meaningful sampling” of its mass production GDDR5X silicon which makes the feat much more impressive as it means these higher speeds are moving closer to reality than theory. Micron measured a PRBS11 (psuedorandom binary sequence) pattern read at 16 Gbps using an oscilloscope and also showed off a chart that compared the stable data rate timing margin versus data rate from 10 Gbps to 16 Gbps.

Micron GDDR5X.png

In addition to teasing the 16 Gbps memory speed (it will be awhile yet before we see products like graphics cards running memory at those speeds), Micron announced that it expects to being mass productions of GDDR6 chips in early 2018. GDDR6 will see a new (larger) FBGA1180 package, faster base sort speeds (GDDR6 will start at 12Gbps vs G5X's 10Gbps), and moving to a dual channel approach with channels that will have half as many I/O links (GDDR5X is x16/x32 while GDDR6 will be x8/16 per channel). It will be interesting to see how this move will stack up to G5X, but in theory Micron will be able to push clocks even higher (maybe even higher than 16 Gbps) by having more but simpler channels (and it may be easier for graphics card manufacturers to wire up their cards to the memory chips.

SK Hynix, who showed off its first GDDR6 chip at GTC, appears to be following the same I/O design as Micron with two channel memory at x8 or x16 per channel.

Are you ready for faster GDDR5X? Hopefully these new faster G5X chips come out soon to give AMD and NVIDIA a more appealing alternative to HBM and HBM2 for mid-range and high end consumer graphics cards since High Bandwidth Memory seems to still be suffering from limited supply and is holding the GPU guys back on being able to crank up the production lines!

Also read:

Source: Micron

Computex 2017: G.Skill Shows Off High-Speed Trident Z RGB Memory Kits

Subject: Memory | June 1, 2017 - 08:30 PM |
Tagged: x299, Trident Z RGB, Threadripper, ryzen, LGA 2066, G.Skill, ddr4, computex 2017, computex

G.Skill was in full force at Computex in Taipei, Taiwan this week with not just one but three systems based on Intel’s new X299 platform each featuring flashy G.Skill Trident Z RGB memory clocked above 4GHz!

GSkill DDR4 Computex 2017.png

Hexus.net got hands-on at Computex 2017.

During the event, G.Skill had three systems set up showing off its newest Trident Z RGB kits running on X299 motherboards. The kits included a 16GB (2 x 8GB) kit running at 4,400 MHz with 19-19-19-39 timings on a Gigabyte X299-SOC Champion motherboard. Moving up to 32GB (2 x 16GB DIMMs), G.Skill showed off a kit running on an ASRock X299 OC Formula board at 4,000 MHz with 17-18-18-38 timings. Finally, G.Skill showed an eight module 64GB kit (8 x 8GB) running at 4,200 MHz with 19-21-21-41 timings on an Asus PRIME X299-Deluxe.

At the event a G.Skill representative made the point to Hexus.net (they have a video of the G.Skill booth) that adding LEDs to memory modules does not have to mean sacrificing performance.

Interestingly, Hexus also saw a demonstration of a prototype Trident Z memory kit (the red/silver non RGB type) running at an extremely impressive 4,800 MHz on an ASRock X299 OC Formula!

It has been a long time since I’ve been excited this about memory, but with all the major players pushing speeds as far as they can and the impending launch of new high-end desktop platforms from AMD and Intel things are about to get interesting!

Also read:

Source: Hexus.net

Need memory for that dream X299 build? Perhaps Crucial Ballistix Elite DDR4-3466 would do you

Subject: Memory | May 30, 2017 - 04:09 PM |
Tagged: crucial, crucial ballistix elite, ddr4-3466

In amongst all the new kit announced at Computex that we can't test yet, it is nice to see a review or three.  With the move to DDR4 support, we need to look at what effect frequency has on the new chips; we have certainly learned that Ryzen prefers high frequency RAM but how about an i7-6700k?  Benchmark Reviews tested Crucial's Ballistix Elite kit, with timings of 16-18-18 @ 3466MHz with that chip and you can see the full results here.  The difference on the Intel system is nowhere near as pronounced as on an AMD system but there is another reason to consider this kit for an Intel build; no RGBs to speak of whatsoever!


"In this article Benchmark Reviews examines Crucial’s Ballistix Elite DDR4 enthusiast memory, which runs at an eye-watering 3466Mhz. We’ll test it against “standard” DDR4 to see what difference this extra performance makes."

Here are some more Memory articles from around the web:



Intel Persistent Memory Using 3D XPoint DIMMs Expected Next Year

Subject: General Tech, Memory, Storage | May 26, 2017 - 10:14 PM |
Tagged: XPoint, Intel, HPC, DIMM, 3D XPoint

Intel recently teased a bit of new information on its 3D XPoint DIMMs and launched its first public demonstration of the technology at the SAP Sapphire conference where SAP’s HANA in-memory data analytics software was shown working with the new “Intel persistent memory.” Slated to arrive in 2018, the new Intel DIMMs based on the 3D XPoint technology developed by Intel and Micron will work in systems alongside traditional DRAM to provide a pool of fast, low latency, and high density nonvolatile storage that is a middle ground between expensive DDR4 and cheaper NVMe SSDs and hard drives. When looking at the storage stack, the storage density increases along with latency as it gets further away from the CPU. The opposite is also true, as storage and memory gets closer to the processor, bandwidth increases, latency decreases, and costs increase per unit of storage. Intel is hoping to bridge the gap between system DRAM and PCI-E and SATA storage.

Intel persistent memory DIMM.jpg

According to Intel, system RAM offers up 10 GB/s per channel and approximately 100 nanoseconds of latency. 3D XPoint DIMMs will offer 6 GB/s per channel and about 250 nanoseconds of latency. Below that is the 3D XPoint-based NVMe SSDs (e.g. Optane) on a PCI-E x4 bus where they max out the bandwidth of the bus at ~3.2 GB/s and 10 microseconds of latency. Intel claims that non XPoint NVMe NAND solid state drives have around 100 microsecomds of latency, and of course, it gets worse from there when you go to NAND-based SSDs or even hard drives hanging of the SATA bus.

Intel’s new XPoint DIMMs have persistent storage and will offer more capacity that will be possible and/or cost effective with DDR4 DRAM. In giving up some bandwidth and latency, enterprise users will be able to have a large pool of very fast storage for storing their databases and other latency and bandwidth sensitive workloads. Intel does note that there are security concerns with the XPoint DIMMs being nonvolatile in that an attacker with physical access could easily pull the DIMM and walk away with the data (it is at least theoretically possible to grab some data from RAM as well, but it will be much easier to grab the data from the XPoint sticks. Encryption and other security measures will need to be implemented to secure the data, both in use and at rest.

Intel Slide XPoint Info.jpg

Interestingly, Intel is not positioning the XPoint DIMMs as a replacement for RAM, but instead as a supplement. RAM and XPoint DIMMs will be installed in different slots of the same system and the DDR4 RAM will be used for the OS and system critical applications while the XPoint pool of storage will be used for storing data that applications will work on much like a traditional RAM disk but without needing to load and save the data to a different medium for persistent storage and offering a lot more GBs for the money.

While XPoint is set to arrive next year along with Cascade Lake Xeons, it will likely be a couple of years before the technology takes off. Supporting it is going to require hardware and software support for the workstations and servers as well as developers willing to take advantage of it when writing their specialized applications. Fortunately, Intel started shipping the memory modules to its partners for testing earlier this year. It is an interesting technology and the DIMM solution and direct CPU interface will really let the 3D XPoint memory shine and reach its full potential. It will primarily be useful for the enterprise, scientific, and financial industries where there is a huge need for faster and lower latency storage that can accommodate massive (multiple terabyte+) data sets that continue to get larger and more complex. It is a technology that likely will not trickle down to consumers for a long time, but I will be ready when it does. In the meantime, I am eager to see what kinds of things it will enable the big data companies and researchers to do! Intel claims it will not only be useful at supporting massive in-memory databases and accelerating HPC workloads but for things like virtualization, private clouds, and software defined storage.

What are your thoughts on this new memory tier and the future of XPoint?

Also read:

Source: Intel

CORSAIR Launches DOMINATOR PLATINUM Special Edition Torque

Subject: Memory | May 11, 2017 - 02:43 PM |
Tagged: corsair, Corsair Dominator Platinum, ddr4, special edition torque, bulldog, DDR4-3600

Corsair have launched a new limited edition line of DDR4-3600 DIMMs, the DOMINATOR PLATINUM Special Edition Torque.  The DIMMs feature brushed black aluminum heatsinks with orange accents and a heat-treated effect top bar.  They do indeed feature lighting for the LED addicted and will fit in with your other bright components.  They are XMP 2.0 certified for easy setup, or you can overclock to your own preferences as these DIMMs went through comprehensive testing.


As part of the release Corsair contracted case modder Lee Harrington to transform a Bulldog case into a classic hot rod.  It has a flaming paint job, pneumatic hood struts, working headlights and a whole lot of Torque; you can see the full gallery here.


You can read the PR below the prices.


FREMONT, CA – May 11th, 2017 - CORSAIR, a world leader in enthusiast memory, high-performance gaming hardware and PC components today announced the immediate availability of its new DOMINATOR PLATINUM Special Edition Torque DDR4 memory. Inspired by those for whom speed is an obsession, each module features a uniquely heat-treated effect top bar, combining the iconic DOMINATOR PLATINUM design with the aesthetic of high-performance engines. Completed by a brushed black aluminum heatsink, stunning built-in lighting and orange accents, each kit is individually numbered using high precision laser engraving, guaranteeing exclusivity. Available in limited quantities, DOMINATOR PLATINUM Special Edition Torque DDR4 memory is built for speed – inside and out.

Fully compatible with the latest Intel® X99 and 200-series motherboards, each module is individually hand screened for added quality assurance and overclocking headroom. For the speed-obsessed looking to push their system to the limit and reach peak performance, DOMINATOR PLATINUM Special Edition’s custom 10-layer PCB provides superior signalling for greater overclocking potential, allowing every DOMINATOR PLATINUM Special Edition Torque module to be safely overclocked to at least 3,600MHz. What’s more, with CORSAIR’s patented DHX cooling technology, the aluminum heat-spreader is built right into the PCB, ensuring rapid heat dissipation and lower temperatures.

To celebrate the launch of DOMINATOR PLATINUM Special Edition Torque, CORSAIR commissioned renowned case modder Lee Harrington to create a chassis worthy of housing these limited edition DDR4 modules. Starting with a CORSAIR BULLDOG SFF kit, Lee created a stunning homage to 60’s hot-rods, complete with flaming paint job, pneumatic hood struts and working headlights. To see more of this amazing system build, check out the full builder’s gallery at the link below.

Source: Corsair

Glowing RAM from G.Skill to match all your other RGBs

Subject: Memory | May 4, 2017 - 02:01 PM |
Tagged: G.Skill, G.Skill Trident Z, 32GB, ddr4-3200, RGB

What is the point of light emanating from all of your components from keyboard to PSU if your RAM doesn't match?  G.Skill realized this is a pressing issue on the minds of enthusiasts everywhere and infected their Trident Z RAM with RGB-itis.  The four modules in this 32GB kit have a total of 16 LEDs which can glow together or separately using the G.Skill control utility, which is still in Beta and caused some minor headaches for Kitguru.  You can see the lights here, as well as some benchmarks if you are more into that kind of thing.


"Take a really close look and you will see the G.Skill logo is carried on a plastic diffuser that covers the LEDs, instead of the aluminium heat spreader, however that is the only clue that this DDR4 memory packs four RGB LEDs on each module."

Here are some more Memory articles from around the web:


Source: Kitguru

G.Skill Releasing DDR4 4333 MHz Memory Kit, Working on DDR4 4500 MHz

Subject: Memory | April 22, 2017 - 04:40 PM |
Tagged: z270, G.Skill Trident Z, G.Skill, dual channel, ddr4

For enthusiasts with a need for speed, G.Skill unleashed a new DDR4 memory kit recently that ratchets up two 8GB modules to 4333 MHz out of the box. The new 16GB kit will soon take the top spot in the company’s Trident Z series and will come with the traditional brushed metal heat spreader with red accent.


The new 16 GB (2 x 8GB sticks) Trident Z memory kit was validated on Intel’s Z270 platform using an Asus ROG Maximus IX Apex motherboard and an overclocked Intel Core i5-7600K. (The processor was clocked at 4200.20 MHz on a x40.0 multiplier and 104.98 MHz bus speed.) The DDR4 kit is running with CAS latencies of 19-19-19-39 and is needs 1.40 volts.

Not content to sit on its laurels, G.Skill is reportedly also working on cranking speeds up even further with a prototype DDR4 kit running at 4400 MHz and a “proof of concept” test of a 16 GB kit running at 4500 MHz. The DDR4-4500 kit is being stress tested while specifications are still under development and it will be “some time” before it is ready for market. G.Skill did manage to at least run Windows and some benchmarks at those RAM clock speeds though using the same Z270 platform listed above (with the Core i5 7600K clocked at 4360.36 MHz on a 108.98 MHz bus and x40.0 multiplier). The benchmark runs reported up to 65 GB/s write speeds, 55 GB/s read speeds, and 52 GB/s copy speeds specifically. DDR4 has come a long way in the speed department to where it is today and apparently still has room to grow.


Unfortunately, as is the case with most announcements of this nature, no official pricing and availability was mentioned. Looking around online, I would expect the 16GB DDR4-4333 kit to come in somewhere around $280 and be available within the next month or so.

I would love to see what a kit this fast would do for Ryzen as far as alleviating the CCX-to-CCX bottleneck over the Infinity Fabric assuming the Ryzen memory controller can handle those speeds! Also, faster memory has helped AMD’s APUs in the past, so these extremely fast kits that are coming out should pair well with AMD's upcoming Raven Ridge though they will need to come down in price a lot to actually meet the budget of a good budget gaming build (right now with the kits in the $250+ range it would be better to just put the premium into a graphics card – though that kind of defeats the purpose of using the APU heh).

Source: G.Skill

G.SKILL wants to make sure you have enough RAM, Trident Z RGB DDR4-3333MHz 128GB kit

Subject: Memory | April 7, 2017 - 03:50 PM |
Tagged: Trident Z RGB, intel z270, Intel X99, G.Skill, DDR4-3333MHz, AM4, 128Gb

You did read that correctly, the new Trident Z RGB kit consists of eight 16GB DIMMs which should give you more than enough memory to play with in a variety of ways, including a decent sized RAM drive. There are also some smaller kits available as well as different frequencies, something that Ryzen users should take a peek at as AMD's new chip loves fast RAM.  They do not specify AMD support but one would expect to be able to utilize these chips. This particular kit sports timings of CL16-18-18-38 and below you can see the sizes, frequencies and timings of the other Trident Z RGB kits.


As the name implies, these DIMMs do indeed have LEDs on them, supporting a wide variety of colours and with a variety of modes so you can have dynamic lighting effects, if that is your desire.  You can see a video of them in action below.

PR below the fold

Source: G.SKILL

G.Skill Launches New DDR4 Memory For Ryzen CPUs Up to 3466 MHz

Subject: Memory | March 8, 2017 - 12:46 AM |
Tagged: ryzen, overclocking, gskill, ddr4, AM4

G.Skill recently announced two new series of DDR4 memory geared towards AMD’s new AM4 platform and Ryzen CPUs. The FORTIS series comes in kits up to 64 GB at 2400 MHz while the Flare X series features kits up to 32 GB at 3466 MHz.

GSkill Fortis and Flare X DDR4 for Ryzen.png

The FORTIS series come in black with graphics on the sides. At launch, there will be kits in 16 GB, 32 GB, and 64 GB capacities clocked at 2,133 and 2,400 MHz. These kits run at 1.2V.

Flare X reportedly uses “carefully selected” IC chips that have been tested and validated for the AM4 platform and Ryzen processors. These kits run at 1.35V out of the box and come in 16 GB, 32 GB, and 64 GB at 3200 MHz with 14-14-14-34 timings or in a 16 GB (2x8GB) kit clocked at 3466 MHz with 16-16-16-36 timings.

It is worth noting that Ryzen officially supports memory up to 3200 MHz without needing to overclock the bus speed using one of eight memory straps/dividers (this is apparently a limitation of the UEFI and not Ryzen's memory controllers). In order to take advantage of DDR4 with higher clocks, you will need to overclock the base clock (which is made easier/possible on motherboards with external clock generators). G.Skill showed two examples using a Ryzen 7 1700 and an Asus Crosshair VI Hero motherboard where they got a 4x16GB kit clocked at 3467MHz (16-16-16-36 CR1) by setting a 25.4 x multiplier and 118.16 MHz bus speed. The other example was DDR4 at 3200 MHz with a multiplier of 28.4 and 119.99 MHz bus speed. It is interesting that they were able to push the bus speed that high while maintaining stability. G.Skill posted two CPU-Z validation screen shots on its news announcement.

G.Skill did not announce pricing, but it did state the new memory kits would be available later this month. Looking around on Newegg, it seems some of the lower speed kits with 4GB DIMMs are available right now but the new kits with higher clocks and 8GB and 16GB DIMMs are not available yet. The less exciting Fortis series does appear to be available though with a 2x8GB 16GB DDR4-2400 priced at $124.99. Even the Fortis series isn’t fully launched yet though since the 2x16GB and 4x16GB kits aren’t listed.

Source: G.Skill