Cray has been a huge name in the supercomputer market for years, and with the new XK6 they are promising to deliver a supercomputer capable of 50 Thousand Trillion operations per second. Powered by AMD Operton CPUs and NVIDIA GPUs, each XK6 blade is comprised of 2 Gemini interconnects pairing four AMD Opteron CPUs with four NVIDIA Tesla X2090 embedded graphics cards. The graphics cards in each blade have access to 6GB of GDDR5 memory, and are connected via PCI-E 2.0 links to the Opteron processors. The CPUS have access to four DDR3 memory slots “running at 1.6GHz for every G34 socket,” according to The Register. This amounts to 32GB per two-socket node when using 4GB sticks.

Cray plans to wait until AMD releases the 16 core 32nm Opteron CPUs in Q3, dubbed the Opteron 6200s. The Register quotes AMD’s CEO Thomas Siefert as promising the processors are based on the new Bulldozer cores (and would be compatible with the current G34 sockets) “would ship by summer.”

Further, they claim that Cray’s goal with the XK6 was to keep the new blades within the same thermal boundaries as its predecessor, despite the inclusion of GPUs into the mix. Cray has indicated that, due to their success in remaining within the thermal envelope, their customers will be able to use XE6 and XK6 blades interchangeably and will allow them to customize their supercomputer load-out to meet the demands of their specific computing workloads.

Each cabinet is capable of storing up to 24 blades, and can deliver up to 50 kilowatts of power. Each of the Tesla X2090 GPUS are capable of 665 gigaflops during double-precision floating point operations, something that GPUs excel at. As each XK6 blade contains 4 GPUS, and each cabinet can hold 24 blades, customers are looking at 63.8 teraflops of computing power solely from the graphics cards. On the CPU side of things, Cray is not able to release specifications on the processors as AMD has yet to deliver the chips in question. The Register estimates that each XK6 blade will provide 3.5 teraflops of floating point computing power, which amounts to approximately 84 teraflops per cabinet.

With a claimed capability to utilize up to 300 cabinets full of XK6 blades, customers are looking at approximately 44 petaflops of computing horsepower, with GPUs delivering 19.14 petaflops, and the CPUs estimated to provide 25.2 petaflops of floating point computational power.

The first customer of this system will be the Swiss National Supercomputing Centre. According to the Seattle Times, the center’s director Professor Thomas Schulthess stated that they chose the Cray XK6 based supercomputer not for it’s raw performance, but because “the Cray XK6 promises to be the first general-purpose supercomputer based on GPU technology, and we are very much looking forward to exploring its performance and productivity on real applications relevant to our scientists.”