Aligning with the start of the International Workshop on OpenCL (IWOCL) 2017 in Toronto, Ontario, Canada, The Khronos Group has published the finalized specification for OpenCL 2.2 and SPIR-V 1.2. The headlining feature for this release is the OpenCL C++ kernel language, which SPIR-V 1.2 fully supports. Kernels are the portion of code that execute on the compute devices, such as GPUs, FPGAs, super computers, multi-core CPUs, and so forth.

The OpenCL C++ kernel language is a subset of the C++14 standard, bringing many of its benefits to these less-general devices. Classes help data and code to be more tightly integrated. Templates help define logic in a general way for whatever data type implements whatever it requires, which is useful for things like custom containers. Lambda expressions make it easy to write one-off methods, rather than forcing the developer to name something that will only be used once, like comparing two data types for a special sort in one specific spot of code.

Exposing these features to the OpenCL device also enables The Khronos Group to further the SYCL standard, which aims for “single-source” OpenCL development. Having the code that executes on OpenCL-compatible devices contain roughly the same features as the host code is kind-of necessary to let them be written together, rather than exist as two pools.

The final OpenCL 2.2 and SPIR-V 1.2 specs are available now, and on GitHub for the first time.