latency percentile
Intel’s architecture day press release contains the following storage goodness mixed within all of the talk about 3D chip packaging:
Memory and Storage: Intel discussed updates on Intel® Optane™ technology and the products based upon that technology. Intel® Optane™ DC persistent memory is a new product that converges memory-like performance with the data persistence and large capacity of storage. The revolutionary technology brings more data closer to the CPU for faster processing of bigger data sets like those used in AI and large databases. Its large capacity and data persistence reduces the need to make time-consuming trips to storage, which can improve workload performance. Intel Optane DC persistent memory delivers cache line (64B) reads to the CPU. On average, the average idle read latency with Optane persistent memory is expected to be about 350 nanoseconds when applications direct the read operation to Optane persistent memory, or when the requested data is not cached in DRAM. For scale, an Optane DC SSD has an average idle read latency of about 10,000 nanoseconds (10 microseconds), a remarkable improvement.2  In cases where requested data is in DRAM, either cached by the CPU’s memory controller or directed by the application, memory sub-system responsiveness is expected to be identical to DRAM (<100 nanoseconds).
The company also showed how SSDs based on Intel’s 1 Terabit QLC NAND die move more bulk data from HDDs to SSDs, allowing faster access to that data.
Did you catch that? 3D XPoint memory in DIMM form factor is expected to have an access latency of 350 nanoseconds! That’s down from 10 microseconds of the PCIe-based Optane products like Optane Memory and the P4800X. I realize those are just numbers, and showing a nearly 30x latency improvement may be easier visually, so here: Above is an edit to my Bridging the Gap chart from the P4800X review, showing where this new tech would fall in purple. That’s all we have to go on for now, but these are certainly exciting times. Consider that non-volatile storage latencies have improved by nearly 100,000x over the last decade, and are now within striking distance (less than 10x) of DRAM! Before you get too excited, realize that Optane DIMMs will be showing up in enterprise servers first, as they require specialized configurations to treat DIMM slots as persistent storage instead of DRAM. That said, I’m sure the tech will eventually trickle down to desktops in some form or fashion. If you’re hungry for more details on what makes 3D XPoint tick, check out how 3D XPoint works in my prior article.