AMD Launching Ryzen 5 Six Core Processors Soon (Q2 2017)

Subject: Processors | February 24, 2017 - 07:17 AM |
Tagged: Zen, six core, ryzen 5, ryzen, hexacore, gaming, amd

While AMD's Ryzen lineup and pricing has leaked out, only the top three Ryzen 7 processors are available for pre-order (with availability on March 2nd). Starting at $329 for the eight core sixteen thread Ryzen 7 1700, these processors are aimed squarely at enthusiasts craving top-end performance. It seems that enthusiasts looking for cheaper and better price/performance options for budget gaming and work machines will have to wait a bit for Ryzen 5 and Ryzen 3 which will reportedly launch in the second quarter and second half of 2017 respectively. Two six core Ryzen 5 processors will launch somewhere between April and June with the Ryzen 3 quad cores (along with mobile and "Raven Ridge" APU parts) following in the summer to end-of-year timeframe hopefully hitting that back-to-school and holiday shopping launch windows respectively.

AMD Ryzen Die Shot_six core.jpg

Image via reddit (user noiserr). Guru3d has another die shot. Six cores will be created by disabling one core from each CCX.

Thanks to leaks, the two six core Ryzen 5 CPUs are the Ryzen 5 1600X at $259 and Ryzen 5 1500 at $229. The Ryzen 5 1600X is a 95W TDP CPU with six cores and twelve threads at 3.6 GHz base to 4.0 GHz boost with 16MB of L3 cache. AMD is pitting this chip against the Intel Core i5 7600K which is a $240 quad core Kaby Lake part sans Hyper-Threading. Meanwhile, the Ryzen 5 1500 is a 65W processor clocked at 3.2 GHz base and 3.5 GHz boost with 16 MB of L3 cache.

Note that the Ryzen 5 1600X features AMD's XFR (extreme frequency) technology which the Ryzen 5 1500 lacks. Both processors are unlocked and can be overclocked, however. 

Interestingly, Antony Leather over at Forbes managed to acquire some information on how AMD is making these six core parts. According to his source, AMD is disabling one core (and its accompanying L2 cache) from each four core Core Complex (CCX). Doing this this way (rather than taking two cores from one CCX) should keep things balanced. It also allows AMD to keep all of the processors 16MB of L3 cache enabled and each of the remaining three cores of each complex will be able to access the L3 cache as normal. Previous rumors had suggested that the CCXes were "indivisible" and six cores were not possible, but it appears that AMD is able to safely disable at least one core of a complex without compromising the whole thing. I doubt we will be seeing any odd number core count CPUs from AMD though (like their old try at selling tri-core parts that later were potentially able to be unlocked). I am glad that AMD was able to create six core parts while leaving the entire L3 cache intact.

What is still not clear is whether these six core Ryzen 5 parts are made by physically disabling the core from the complex or if the cores are simply disabled/locked out in the micro code or BIOS/UEFI. It would be awesome if, in the future when yields are to the point where binning is more for product segmentation than because of actual defects, those six core processors could be unlocked! 

The top end Ryzen 7 processors are looking to be great performers and a huge leap over Excavator while at least competing with Intel's latest at multi-threaded performance (I will wait for independent benchmarks for single threaded where even from AMD the benchmark scores are close although these benchmark runs look promising). These parts are relatively expensive though, and the cheaper Ryzen 5 and Ryzen 3 (and Raven Ridge APUs) are where AMD will see the most potential sales due to a much bigger market. I am looking forward to seeing more information on the lower end chips and how they will stack up against Intel and its attempts to shift into high gear with moves like enabling Hyper-Threading on lower end Kaby Lake Pentiums and possibly on new Core i5s (that's still merely a rumor though). Intel certainly seems to be taking notice of Ryzen and the reignited competition in the desktop processor space is very promising for consumers!

Are you holding out for a six core or quad core Ryzen CPU or are you considering a jump to the high-end Ryzen 7s?

Source: TechPowerUp

AMD Ryzen Pre-order Starts Today, Specs and Performance Revealed

Subject: Processors | February 22, 2017 - 02:00 PM |
Tagged: Zen, ryzen, preorder, pre-order, handbrake, Cinebench, amd

I know that many of you have been waiting months and years to put your money down for the Zen architecture and Ryzen processors from AMD. Well that day is finally here: AMD is opening pre-orders for Ryzen 7 1800X, Ryzen 7 1700X and Ryzen 7 1700 processors.

That’s the good news. The bad news? You’ll be doing it without the guidance of independent reviews.

For some of you, that won’t matter. And I can respect that! Getting your hands on Ryzen and supporting the disruption that it offers is something not only AMD fans have been preparing for, but tens of thousands of un-upgraded enthusiasts as well.

slides1wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Proudly announced at our meeting with AMD this week, Zen not only met the 40% IPC goals it announced more than a year ago, but exceeded it! AMD claims more than a 52% increase in instructions per clock over Excavator and that is a conservative metric based on side conversations. This does a couple of things for the CPU market immediately: first it resets performance expectations for what Ryzen will offer when reviews do go live and second, it may actually put some worry into Intel.

AMD is allowing us to share baseline specifications of the processors, including clock speeds and core counts, as well as some selected benchmarks that show the Ryzen CPUs in an (obviously) favorable light.

  Ryzen R7 1800X Ryzen R7 1700X Ryzen R7 1700 Core i7-6900K Core i7-6800K Core i7-7700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts
Price $499 $399 $329 $1050 $450 $350

AMD is being extremely aggressive with these prices and with the direct comparisons. The flagship Ryzen 7 1800X will run you just $499, the 1700X at $399 and the 1700 at $329. For AMD’s own comparisons, they pitted the Ryzen 7 1800X against the Core i7-6900K from Intel, selling for more than 2x the cost. Both CPUs have 8 cores and 16 threads, the AMD Ryzen part has higher clock speeds as well. If IPC is equivalent (or close), then it makes sense that the 1800X would be a noticeably faster part. If you care about performance per dollar even more…you should be impressed.

For the other comparisons, AMD is pitting the Ryzen 7 1700X with 8 cores and 16 threads against the Core i7-6800K, with 6 cores and 12 threads. Finally, the Ryzen 7 1700, still with an 8C/16T setup, goes against the Core i7-7700K with just 4 cores and 8 threads.

Here is a summary of the performance comparisons AMD is allowing to be showed.

perf1-wm.jpg

perf2-wm.jpg

Though it's only a couple of benchmarks, and the results are highly siloed to show Ryzen in the best light, the results are incredibly impressive. In Cinebench R15, the Ryzen 1800X is 9% faster than the Core i7-6900K but at half the price; even the Ryzen R7 1700X is beating it. The 1700X is 34% faster than the Core i7-6800K, and the 1700 is 31% faster than the quad-core Core i7-7700K. The only single threaded result AMD gave us shows matching performance from the Core i7-6900K based on the Intel Broadwell architecture and the new Ryzen R7 1800X. This might suppress some questions about single threaded performance of Ryzen before reviews, but Broadwell is a couple generations old in Intel’s lineup, so we should expect Kaby Lake to surpass it.

The Handbrake benchmark results only included Core i7-7700K and the Ryzen R7 1700, with the huge advantage going to AMD. Not unexpected considering the 2x delta in core and thread count.

perf3-wm.jpg

Finally, the performance per dollar conversion on the Cinebench scores is a substantially impactful visual. With a more than 2x improvement from the Ryzen 7 1800X to the Core i7-6900K, power-hungry users on a budget will have a lot to think about.

slides2wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Clearly, AMD is very proud of the Ryzen processor and the Zen architecture, and they should be. This is a giant leap forward for the company compared to previous desktop parts. If you want to buy in today and pre-order, we have links below. If you’d rather wait for a full review from PC Perspective (or other outlets), you only have to wait until March 2nd.

Update Feb 22 @ 4:27am: An official Intel spokesman did respond to today's AMD news with the following: 

“We take any competition seriously but as we’ve learned, consumers usually take a ‘wait and see’ approach on performance claims for untested products. 7th Gen Intel® Core™ delivers the best experiences, and with 8th Gen Intel Core and new technologies like Intel® Optane™ memory coming soon, Intel will not stop raising the bar.” ­

While nothing drastic, the Intel comment is interesting in a couple of ways. First, the fact that Intel is responding at all means that they are rattled to some degree. Second, mention of the 8th Gen Core processor series indicates that they want potential buyers to know that something beyond Kaby Lake is coming down the pipe, a break from Intel's normally stoic demeanor.

Source: AMD

Podcast #437 - EVGA iCX, Zen Architecture, Optane, and more!

Subject: Editorial | February 16, 2017 - 06:36 PM |
Tagged: Zen, Z170, webkit, webgpu, podcast, Optane, nvidia, Intel, icx, evga, ECS, crucial, Blender, anidees, amd

PC Perspective Podcast #437 - 02/16/17

Join us for EVGA iCX, Zen Architechure, Intel Optane, new NVIDIA and AMD driver releases, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Allyn Malventano, Ken Addison, Josh Walrath, Jermey Hellstrom

Program length: 1:32:21

Source:
Author:
Subject: Processors
Manufacturer: AMD

Get your brains ready

Just before the weekend, Josh and I got a chance to speak with David Kanter about the AMD Zen architecture and what it might mean for the Ryzen processor due out in less than a month. For those of you not familiar with David and his work, he is an analyst and consultant on processor architectrure and design through Real World Tech while also serving as a writer and analyst for the Microprocessor Report as part of the Linley Group. If you want to see a discussion forum that focuses on architecture at an incredibly detailed level, the Real World Tech forum will have you covered - it's an impressive place to learn.

zenpm-4.jpg

David was kind enough to spend an hour with us to talk about a recently-made-public report he wrote on Zen. It's definitely a discussion that dives into details most articles and stories on Zen don't broach, so be prepared to do some pausing and Googling phrases and technologies you may not be familiar with. Still, for any technology enthusiast that wants to get an expert's opinion on how Zen compares to Intel Skylake and how Ryzen might fare when its released this year, you won't want to miss it.

Podcast #436 - ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

Subject: Editorial | February 9, 2017 - 03:50 PM |
Tagged: podcast, Zen, Windows 10 Game Mode, webcam, ryzen, quadro, Optane, nvidia, mini-stx, humble bundle, gddr6, evga, ECS, atom, amd, 4k

PC Perspective Podcast #436 - 02/09/17

Join us for ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Allyn Malventano, Ken Addison, Josh Walrath, Jermey Hellstrom

Program length: 1:32:21

Podcast topics of discussion:

  1. Week in Review:
  2. News items of interest:
    1. 1:14:00 Zen Price Points Leaked
  3. Hardware/Software Picks of the Week
  4. Closing/outro
 
 

Source:

AMD Details Zen at ISSCC

Subject: Processors | February 9, 2017 - 02:38 AM |
Tagged: Zen, Skylake, Samsung, ryzen, kaby lake, ISSCC, Intel, GLOBALFOUNDRIES, amd, AM4, 14 nm FinFET

Yesterday EE Times posted some interesting information that they had gleaned at ISSCC.  AMD released a paper describing the design process and advances they were able to achieve with the Zen architecture manufactured on Samsung’s/GF’s 14nm FinFETT process.  AMD went over some of the basic measurements at the transistor scale and how it compares to what Intel currently has on their latest 14nm process.

icon.jpg

The first thing that jumps out is that AMD claimes that their 4 core/8 thread x86 core is about 10% smaller than what Intel has with one of their latest CPUs.  We assume it is either Kaby Lake or Skylake.  AMD did not exactly go over exactly what they were counting when looking at the cores because there are some significant differences between the two architectures.  We are not sure if that 44mm sq. figure includes the L3 cache or the L2 caches.  My guess is that it probably includes L2 cache but not L3.  I could be easily wrong here.

Going down the table we see that AMD and Samsung/GF are able to get their SRAM sizes down smaller than what Intel is able to do.  AMD has double the amount of L2 cache per core, but it is only about 60% larger than Intel’s 256 KB L2.  AMD also has a much smaller L3 cache as well than Intel.  Both are 8 MB units but AMD comes in at 16 mm sq. while Intel is at 19.1 mm sq.  There will be differences in how AMD and Intel set up these caches, and until we see L3 performance comparisons we cannot assume too much.

Zen-comparison.png

(Image courtesy of ISSCC)

In some of the basic measurements of the different processes we see that Intel has advantages throughout.  This is not surprising as Intel has been well known to push process technology beyond what others are able to do.  In theory their products will have denser logic throughout, including the SRAM cells.  When looking at this information we wonder how AMD has been able to make their cores and caches smaller.  Part of that is due to the likely setup of cache control and access.

One of the most likely culprits of this smaller size is that the less advanced FPU/SSE/AVX units that AMD has in Zen.  They support AVX-256, but it has to be done in double the cycles.  They can do single cycle AVX-128, but Intel’s throughput is much higher than what AMD can achieve.  AVX is not the end-all, be-all but it is gaining in importance in high performance computing and editing applications.  David Kanter in his article covering the architecture explicitly said that AMD made this decision to lower the die size and power constraints for this product.

Ryzen will undoubtedly be a pretty large chip overall once both modules and 16 MB of L3 cache are put together.  My guess would be in the 220 mm sq. range, but again that is only a guess once all is said and done (northbridge, southbridge, PCI-E controllers, etc.).  What is perhaps most interesting of it all is that AMD has a part that on the surface is very close to the Broadwell-E based Intel i7 chips.  The i7-6900K runs at 3.2 to 3.7 GHz, features 8 cores and 16 threads, and around 20 MB of L2/L3 cache.  AMD’s top end looks to run at 3.6 GHz, features the same number of cores and threads, and has 20 MB of L2/L3 cache.  The Intel part is rated at 140 watts TDP while the AMD part will have a max of 95 watts TDP.

If Ryzen is truly competitive in this top end space (with a price to undercut Intel, yet not destroy their own margins) then AMD is going to be in a good position for the rest of this year.  We will find out exactly what is coming our way next month, but all indications point to Ryzen being competitive in overall performance while being able to undercut Intel in TDPs for comparable cores/threads.  We are counting down the days...

Source: AMD
Author:
Subject: Motherboards
Manufacturer: AMD

AM4 Edging Closer to Retail

Many of us were thinking that one of the bigger stories around CES would be the unveiling of a goodly chunk of AM4 motherboards.  AM4 has been around for about half a year now, but only in system integrator builds (such as HP).  These have all been based around Bristol Ridge APU (essentially an updated Carrizo APU).  These SOCs are not exactly barn burners, but they provide a solid foundation for a low-cost build.  The APUs features 2 modules/4 cores, a GCN based GPU, and limited southbridge I/O functionality.

am4_01.jpg

During all this time the motherboards available from these OEMs are very basic units not fit for retail.  Users simply could not go out and buy a Bristol Ridge APU and motherboard for themselves off of Newegg, Amazon, and elsewhere.  Now after much speculation we finally got to see the first AM4 retail style boards unveiled at this year’s CES.  AMD showed off around 16 boards based on previously unseen B350 and X370 chipsets.

AMD has had a pretty limited number of chipsets that they have introduced over the years.  Their FM2+ offerings spanned the A series of chipsets, but they added very little in terms of functionality as compared to the 900 series that populate the AM3+ world.  The latest offering from AMD was the A88x which was released in September 2013.  At one time there was supposed to be a 1000 series of chipsets for AM3+, but those were cancelled and we have had the 900 series (which are identical to the previous 800 series) since 2011.  This has been a pretty stagnant area for AMD and their partners.  3rd party chips have helped shore up the feature divide between AMD and Intel’s regular release of new chipsets and technologies attached to them.

am4_02.jpg

There are three primary chipsets being released as well as two physical layer chips that allow the use of the onboard southbridge on Ryzen and Bristol Ridge.  The X370 for the enthusiast market, the B350 for the mainstream, and then the budget A320.  The two chipset options for utilizing the SOC’s southbridge functionality are the X300 and A/B300.

Before we jump into the chipsets we should take a look at what kind of functionality Ryzen and Bristol Ridge have that can be leveraged by motherboard manufacturers.  Bristol Ridge is a true SOC in that it contains the GPU, CPU, and southbridge functionality to stand alone.  Ryzen is different in that it does not have the GPU portion so it still requires a standalone graphics card to work.  Bristol Ridge is based off of the older Carrizo design and does not feature the flexibility in its I/O connections that Ryzen does.

am4_03.png

Bristol Ridge features up to 8 lanes of PCI-E 3.0.  The I/O on it includes 2 native SATA6G ports as well as the ability to either utilize two more PCI-e lanes or have them as x2 NVME.  That is about as flexible as it gets.  It also natively supports four USB 3.1 gen 1 ports.  For a chip that was designed to be a mobile focused SoC it makes sense that it will not max out PCI-E lanes or SATA ports.  It still is enough to satisfy most mobile and SFF builds.

Click here to read more about AMD's AM4 platform!

Author:
Subject: Processors
Manufacturer: AMD
Tagged: Zen, ryzen, processor, cpu, amd

Ryzen coming in 2017

As much as we might want it to be, today is not the day that AMD launches its new Zen processors to the world. We’ve been teased with it for years now, with trickles of information at event after event…but we are going to have to wait a little bit longer with one more tease at least. Today’s AMD is announcing the official branding of the consumer processors based on Zen, previously code named Summit Ridge, along with a clock speed data point and a preview of five technology that will help it be competitive with the Intel Core lineup.

ryzen-22.jpg

The future consumer desktop processor from AMD will now officially be known as Ryzen. That’s pronounced “RISE-IN” not “RIS-IN”, just so we are all on the same page. CEO Lisa Su was on stage during the reveal at a media event last week and claimed that while media, fans and AMD fell in love with the Zen name, it needed a differentiation from the architecture itself. The name is solid – not earth shattering though I foresee a long life of mispronunciation ahead of it.

Now that we have the official branding behind us, let’s get to the rest of the disclosed information we can reveal today.

ryzen-24.jpg

We already knew that Summit Ridge would ship with an 8 core, 16 thread version (with lower core counts at lower prices very likely) but now we know a frequency and a cache size. AMD tells us that there will be a processor (the flagship) that will have a base clock of 3.4 GHz with boost clocks above that. How much above that is still a mystery – AMD is likely still tweaking its implementation of boost to get as much performance as possible for launch. This should help put those clock speed rumors to rest for now.

The 20MB of cache matches the Core i7-6900K, though obviously with some dramatic architecture differences between Broadwell and Zen, the effect and utilization of that cache will be interesting measure next year.

ryzen-10.jpg

We already knew that Ryzen will be utilizing the AM4 platform, but it’s nice to see it reiterated a modern feature set and expandability. DDR4 memory, PCI Express Gen3, native USB 3.1 and NVMe support – there are all necessary building blocks for a modern consumer and enthusiast PC. We still should see how many of these ports the chipset offers and how aggressive motherboard companies like ASUS, MSI and Gigabyte are in their designs. I am hoping there are as many options as would see for an X99/Z170 platform, including budget boards in the $100 space as well as “anything and everything” options for those types of buyers that want to adopt AMD’s new CPU.

Continue reading our latest preview of AMD Zen, now known as Ryzen!

Podcast #427 - Leaked Zen Prices, Kaby Lake Performance Leaks, GTX 1050 Ti Upgrades

Subject: Editorial | December 1, 2016 - 04:54 PM |
Tagged: Zen, video, Samsung, podcast, microsoft, megaprocessor, Lenovo, kaby lake, Intel, GTX 1050 Ti, arm, amd

PC Perspective Podcast #427 - 12/01/16

Join us this week as we discuss leaked Zen prices, Kaby Lake performance leaks, GTX 1050 Ti upgrades and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Ryan Shrout, Allyn Malventano, Josh Walrath, Jeremy Hellstrom

Program length: 1:20:41

  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Rumor: Leaked Zen Prices and SKUs

Subject: Processors | November 29, 2016 - 02:26 AM |
Tagged: amd, Zen, Summit Ridge

Guru3D got hold of a product list, which includes entries for AMD’s upcoming Zen architecture.

Four SKUs are thus rumored to exist:

  • Zen SR3: (65W, quad-core, eight threads, ~$150 USD)
  • Zen SR5: (95W, hexa-core, twelve threads, ~$250 USD)
  • Zen SR7: (95W, octo-core, sixteen threads, ~$350 USD)
  • Special Zen SR7: (95W, octo-core, sixteen threads, ~$500 USD)

The sheet also states that none of these are supposed to contain integrated graphics, like we see on the current FX line. There is some merit to using integrated GPUs for specific tasks, like processing video while the main GPU is busy or doing a rapid, massively parallel calculation without the latency of memory copies, but AMD is probably right to not waste resources, such as TDP, fighting our current lack of compatible software and viable use cases for these SKUs.

amd-2016-summit-ridge-guru3d.png

Image Credit: Guru3D

The sheet also contains benchmarks for Cinebench R15. While pre-rendered video is a task that really should be done on GPUs at this point, especially with permissive, strong, open-source projects like Cycles, they do provide a good example of multi-core performance that scales. In this one test, the Summit Ridge 7 CPU ($350) roughly matches the Intel Core i7-6850K ($600), again, according to this one unconfirmed benchmark. It doesn’t list clock rates, but other rumors claim that the top-end chip will be around 3.2 GHz base, 3.5 GHz boost at stock, with manual overclocks exceeding 4 GHz.

These performance figures suggest that Zen will not beat Skylake on single-threaded performance, but it might be close. That might not matter, however. CPUs, these days, are kind-of converging around a certain level of per-thread performance, and are differentiating with core count, price, and features. Unfortunately, there doesn’t seem to have been many leaks regarding enthusiast-level chipsets for Zen, so we don’t know if there will be compelling use cases yet.

Zen is expected early in 2017.

Source: Guru3D