King of content creation, Threadripper takes the crown

Subject: Processors | August 10, 2017 - 03:55 PM |
Tagged: Zen, X399, Threadripper, ryzen, amd, 1950x, 1920x

When you look at the results Ryan posted, it was clear that when it comes to video rendering and other content creation it is AMD's chip which comes out ahead in performance, and at a better price point that Intel's Core i9.  Don't just take our word for it, many others reviewed the new chips, including [H]ard|OCP.  Their results agree, showing that the only advantage Intel has is in single threaded applications, in which case the frequency of the 4.6GHz Intel part can outpace the 4GHz Threadripper.  Those picking up Threadripper have no interest in single threaded applications, they prefer their programs to be spread across multiple cores and not only does Threadripper have the most cores, it allows you to flip between NUMA and UMA depending on your preference.  Check out [H]'s review here before continuing below the fold.

05.jpg

"The day is finally upon us that many CPU enthusiasts have been waiting for. We get to see what AMD's new Threadripper CPU is all about in terms of performance, and in attempts to cool the beast. There has been no lack of hype for months now, so let's see if it is all justified."

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

G.SKILL Announces New DDR4 for AMD Ryzen Threadripper

Subject: Memory | August 10, 2017 - 03:31 PM |
Tagged: Zen, Threadripper, ryzen, amd, G.Skill, flare x, quad channel

G.SKILL have launched several new kits specifically designed for Threadripper systems, all under the name of Flare X.   There are three 32GB kits and a single massive 128GB kit to choose from, all quad channel and all tested for compatibility with Threadripper.

image004.jpg

unnamed.png

Taipei, Taiwan (10 Aug 2017) – G.SKILL International Enterprise Co., Ltd., the world’s leading manufacturer of extreme performance memory and gaming peripherals, announces all-new DDR4 specifications and expanding the Flare X series, designed for AMD processors and platforms. Compatible with the new Ryzen™ Threadripper™ processors and AMD X399 chipset motherboards, these new DDR4 specifications are designed to achieve high frequency at DDR4-3600MHz 32GB (8GBx4), as well as a massive total capacity at DDR4-2933MHz 128GB (16GBx8). Included in the mix of new quad-channel DDR4 memory kits are DDR4-3200MHz CL14 32GB (8GBx4) and DDR4-3466MHz CL16 32GB (8GBx4).

Ultra-High Frequency Flare X Series Memory Kits at DDR4-3600MHz 32GB (8GBx4)
With improved overclocking performance on the latest AMD Ryzen™ Threadripper™ processors on the X399 chipset, G.SKILL is announcing the DDR4-3600MHz CL16-18-18-38 with 32GB (8GBx4) total capacity running in quad-channel mode, under the Flare X series. Tested for maximum stability, this kit’s frequency speed marks the fastest memory kit ever released thus far for an AMD platform.

Massive Kit Capacity, No Compromises: DDR4-2933MHz 128GB (16GBx8)
One of the advantages introduced by the AMD X399 platform is the increase to 8 memory slots on AMD platforms, allowing the support for massive 128GB capacity kits running in quad-channel mode. Tested using the highest standards for memory stability on AMD Ryzen™ Threadripper™ platforms, G.SKILL announces the Flare X series DDR4-2933MHz CL14-14-14-34 128GB (16GBx8) memory kit running at 1.35V, perfect for systems requiring high-capacity, high-bandwidth memory kits.

Source: G.SKILL
Author:
Subject: Processors
Manufacturer: AMD

Who is this for, anyway?

Today is a critically important day for AMD. With the launch of reviews and the on-sale date for its new Ryzen Threadripper processor family, AMD is reentering the world of high-end consumer processors that it has been absent from for a decade, if not longer. Intel has dominated this high priced, but high margin, area of the market since the release of the Core i7-900 series of Nehalem CPUs in 2008, bringing workstation and server class hardware down to the content creator and enthusiast markets. Even at that point AMD had no competitive answer, with only the Phenom X4 in our comparison charts. It didn’t end well.

AMD has made no attempt of stealth with the release of Ryzen Threadripper, instead adopting the “tease and repeat” campaign style that Radeon has utilized in recent years for this release. The result of which is an already-knowledgeable group of pre-order ready consumers; not a coincidence. Today I will summarize the data we already know for those of you just joining us and dive into the importance of the new information we can provide today. That includes interesting technical details on the multi-die implementation and latency, overclocking, thermals, why AMD has a NUMA/UMA issue, gaming performance and of course, general system and workload benchmarks.

Strap in.

A Summary of Threadripper

AMD has been pumping up interest and excitement for Ryzen Threadripper since May, with an announcement of the parts at the company’s financial analyst day. It teased 16 cores and 32 threads of performance for a single consumer socket, something that we had never seen before. At Computex, Jim Anderson got on stage and told us that each Threadripper processor would have access to 64 lanes of PCI Express, exceeding the 40 lanes of Intel’s top HEDT platforms and going well above the 28 lanes that the lower end of its family offers.

05.jpg

In mid-July the official announcement of the Ryzen Threadripper 1950X and 1920X occurred, with CEO Lisa Su and CVP John Taylor having the honors. This announcement broke with most of the important information including core count, clock speeds, pricing, and a single performance benchmark (Cinebench). On July 24th we started to see pictures of the Threadripper packaging show up on AMD social media accounts, getting way more attention than anyone expected a box for a CPU could round up. At the end of July AMD announced a third Threadripper processor (due in late August). Finally, on August 3rd, I was allowed to share an unboxing of the review kit and the CPU itself as well as demonstrate the new installation method for this sled-based processor.

It’s been a busy summer.

Continue reading our review of the AMD Ryzen Threadripper 1950X and 1920X!

The best processor for under $150? Ryzen 3 shines on the testbed

Subject: Processors | July 27, 2017 - 05:58 PM |
Tagged: 1200, 1300x, amd, ryzen, ryzen 3, Zen

Two Ryzen CPUs have been revealed and tested today, opening a new battle at the lower end of the market.  These CPUs will not take any performance crowns, instead they are battling for domination in a market extremely sensitive total cost and to performance per dollar.  The Ryzen 3 1300X at $129 and 1200 at $109 need are competing against the lower end of Intel's SKUS, like the ~$80 Pentium G4560, the $165 Core i3-7350K and the i3-6100 or i3-7100 at ~$115.

The Tech Report found similar results to Ryan's testing, with performance right in line with pricing; not faster but not lagging behind by much.  In many cases the decision as to which chip to get could lie in the future of the system being built.  If you are not worried about highly parallel software which requires more cores nor planning to get a discrete GPU then Intel's offerings make sense.  On the other hand if you see multi-threaded applications as vital and plan to purchase a GPU as opposed to relying on a CPU with an iGPU then a Ryzen 3 chip could last you quite a while.  TR's full review is here and there are plenty more below the fold.

IMG_4844.jpg

"AMD's Ryzen 3 CPUs bring the Zen architecture to its most affordable price point ever. Join us as we dive into gaming and productivity workloads with these new chips to see whether they can unseat Intel's evergreen Core i3s."

Here are some more Processor articles from around the web:

Processors

Author:
Subject: Processors
Manufacturer: AMD
Tagged: 1200, 1300x, amd, ryzen, ryzen 3, Zen

Battle for the Mainstream

With today's release of the Ryzen 3 processors, AMD completes the circle of the mainstream Ryzen processor family. Starting with the 8-core Ryzen 7 that disrupted the high end of the market, followed by the Ryzen 5 that shook up the Core i5 segment, Ryzen 3 goes after the world of the Core i3 targeting budget PC builders, gamers, and even enterprising business consumers willing to build their own machines or looking for information here on what to select.

We already learned about the Ryzen 3 products launching today, the 1300X and the 1200, from a video that AMD CEO Lisa Su posted a couple of weeks ago. But pricing and performance were still an unknown, both of which we are going to show you in great detail today. What can a $129 and $109 processor get you with four true cores?

IMG_4827.JPG

As you'll soon see, the Ryzen 3 product family competes against the Intel Core i3 line in terms of pricing but is definitely a concern for the Core i5 family when it comes to multi-threaded workloads. Let's dive into the specifications and see what AMD has put together for us.

Specifications

The devil is in the details and as we will see the core counts and clock speeds of Ryzen 3 make it very compelling for a wide range of consumers.

  Ryzen 3 1300X Ryzen 3 1200 Pentium G4560 Core i3-7100 Core i3-7350K Ryzen 5 1600X Ryzen 5 1500X Core i5-7600K Core i5-7500
Architecture Zen Zen Kaby Lake Kaby Lake Kaby Lake Zen Zen Kaby Lake Kaby Lake
Process Tech 14nm 14nm 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm+ 14nm+
Cores/Threads 4/4 4/4 2/4 2/4 2/4 6/12 4/8 4/4 4/4
Base Clock 3.4 GHz 3.1 GHz 3.5 GHz 3.9 GHz 4.2 GHz 3.6 GHz 3.5 GHz 3.8 GHz 3.4 GHz
Turbo/Boost Clock 3.7 GHz 3.4 GHz - - - 4.0 GHz 3.7 GHz 4.2 GHz 3.8 GHz
Cache 8MB 8MB 3MB 3MB 4MB 16MB 16MB 6MB 6MB
Memory Support DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
TDP 65 watts 65 watts 54 watts 51 watts 60 watts 95 watts 65 watts 91 watts 65 watts
Price $129 $109 $80 $119 $149 $229 $189 $239 $204

Continue reading our review of the AMD Ryzen 3 1300X and 1200 processors!

Author:
Subject: Processors
Manufacturer: AMD

Just a little taste

In a surprise move with no real indication as to why, AMD has decided to reveal some of the most exciting and interesting information surrounding Threadripper and Ryzen 3, both due out in just a few short weeks. AMD CEO Lisa Su and CVP of Marketing John Taylor (along with guest star Robert Hallock) appear in a video being launched on the AMD YouTube website today to divulge the naming, clock speeds and pricing for the new flagship HEDT product line under the Ryzen brand.

people.jpg

We already know a lot of about Threadripper, AMD’s answer to the X299/X99 high-end desktop platforms from Intel, including that they would be coming this summer, have up to 16-cores and 32-threads of compute, and that they would all include 64 lanes of PCI Express 3.0 for a massive amount of connectivity for the prosumer.

Now we know that there will be two models launching and available in early August: the Ryzen Threadripper 1920X and the Ryzen Threadripper 1950X.

  Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Threadripper 1950X Threadripper 1920X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24
Base Clock ? ? ? ? 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz
Turbo Boost 2.0 ? ? ? ? 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 ? ? ? ? 4.5 GHz 4.5 GHz N/A N/A N/A
Cache 16.5MB (?) 16.5MB (?) 16.5MB (?) 16.5MB (?) 13.75MB 11MB 8.25MB 40MB ?
Memory Support ? ? ? ? DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel
PCIe Lanes ? ? ? ? 44 28 28 64 64
TDP 165 watts (?) 165 watts (?) 165 watts (?) 165 watts (?) 140 watts 140 watts 140 watts 180 watts 180 watts
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799

 

  Threadripper 1950X Threadripper 1920X Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Ryzen 5 1600X Ryzen 5 1600 Ryzen 5 1500X Ryzen 5 1400
Architecture Zen Zen Zen Zen Zen Zen Zen Zen Zen
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm 14nm
Cores/Threads 16/32 12/24 8/16 8/16 8/16 6/12 6/12 4/8 4/8
Base Clock 3.4 GHz 3.5 GHz 3.6 GHz 3.4 GHz 3.0 GHz 3.6 GHz 3.2 GHz 3.5 GHz 3.2 GHz
Turbo/Boost Clock 4.0 GHz 4.0 GHz 4.0 GHz 3.8  GHz 3.7 GHz 4.0 GHz 3.6  GHz 3.7 GHz 3.4 GHz
Cache 40MB ? 20MB 20MB 20MB 16MB 16MB 16MB 8MB
Memory Support DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
PCIe Lanes 64 64 20 20 20 20 20 20 20
TDP 180 watts 180 watts 95 watts 95 watts 65 watts 95 watts 65 watts 65 watts 65 watts
Socket TR4 TR4 AM4 AM4 AM4 AM4 AM4 AM4 AM4
Price $999 $799 $499 $399 $329 $249 $219 $189 $169

Continue reading about the announcement of the Ryzen Threadripper and Ryzen 3 processors!

Author:
Subject: Processors
Manufacturer: AMD

EPYC makes its move into the data center

Because we traditionally focus and feed on the excitement and build up surrounding consumer products, the AMD Ryzen 7 and Ryzen 5 launches were huge for us and our community. Finally seeing competition to Intel’s hold on the consumer market was welcome and necessary to move the industry forward, and we are already seeing the results of some of that with this week’s Core i9 release and pricing. AMD is, and deserves to be, proud of these accomplishments. But from a business standpoint, the impact of Ryzen on the bottom line will likely pale in comparison to how EPYC could fundamentally change the financial stability of AMD.

AMD EPYC is the server processor that takes aim at the Intel Xeon and its dominant status on the data center market. The enterprise field is a high margin, high profit area and while AMD once had significant share in this space with Opteron, that has essentially dropped to zero over the last 6+ years. AMD hopes to use the same tactic in the data center as they did on the consumer side to shock and awe the industry into taking notice; AMD is providing impressive new performance levels while undercutting the competition on pricing.

Introducing the AMD EPYC 7000 Series

Targeting the single and 2-socket systems that make up ~95% of the market for data centers and enterprise, AMD EPYC is smartly not trying to swing over its weight class. This offers an enormous opportunity for AMD to take market share from Intel with minimal risk.

epyc-13.jpg

Many of the specifications here have been slowly shared by AMD over time, including at the recent financial analyst day, but seeing it placed on a single slide like this puts everything in perspective. In a single socket design, servers will be able to integrate 32 cores with 64 threads, 8x DDR4 memory channels with up to 2TB of memory capacity per CPU, 128 PCI Express 3.0 lanes for connectivity, and more.

Worth noting on this slide, and was originally announced at the financial analyst day as well, is AMD’s intent to maintain socket compatibility going forward for the next two generations. Both Rome and Milan, based on 7nm technology, will be drop-in upgrades for customers buying into EPYC platforms today. That kind of commitment from AMD is crucial to regain the trust of a market that needs those reassurances.

epyc-14.jpg

Here is the lineup as AMD is providing it for us today. The model numbers in the 7000 series use the second and third characters as a performance indicator (755x will be faster than 750x, for example) and the fourth character to indicate the generation of EPYC (here, the 1 indicates first gen). AMD has created four different core count divisions along with a few TDP options to help provide options for all types of potential customers. It is worth noting that though this table might seem a bit intimidating, it is drastically more efficient when compared to the Intel Xeon product line that exists today, or that will exist in the future.  AMD is offering immediate availability of the top five CPUs in this stack, with the bottom four due before the end of July.

Continue reading about the AMD EPYC data center processor!

Author:
Manufacturer: AMD

We are up to two...

UPDATE (5/31/2017): Crystal Dynamics was able to get back to us with a couple of points on the changes that were made with this patch to affect the performance of AMD Ryzen processors.

  1. Rise of the Tomb Raider splits rendering tasks to run on different threads. By tuning the size of those tasks – breaking some up, allowing multicore CPUs to contribute in more cases, and combining some others, to reduce overheads in the scheduler – the game can more efficiently exploit extra threads on the host CPU.
     
  2. An optimization was identified in texture management that improves the combination of AMD CPU and NVIDIA GPU.  Overhead was reduced by packing texture descriptor uploads into larger chunks.

There you have it, a bit more detail on the software changes made to help adapt the game engine to AMD's Ryzen architecture. Not only that, but it does confirm our information that there was slightly MORE to address in the Ryzen+GeForce combinations.

END UPDATE

Despite a couple of growing pains out of the gate, the Ryzen processor launch appears to have been a success for AMD. Both the Ryzen 7 and the Ryzen 5 releases proved to be very competitive with Intel’s dominant CPUs in the market and took significant leads in areas of massive multi-threading and performance per dollar. An area that AMD has struggled in though has been 1080p gaming – performance in those instances on both Ryzen 7 and 5 processors fell behind comparable Intel parts by (sometimes) significant margins.

Our team continues to watch the story to see how AMD and game developers work through the issue. Most recently I posted a look at the memory latency differences between Ryzen and Intel Core processors. As it turns out, the memory latency differences are a significant part of the initial problem for AMD:

Because of this, I think it is fair to claim that some, if not most, of the 1080p gaming performance deficits we have seen with AMD Ryzen processors are a result of this particular memory system intricacy. You can combine memory latency with the thread-to-thread communication issue we discussed previously into one overall system level complication: the Zen memory system behaves differently than anything we have seen prior and it currently suffers in a couple of specific areas because of it.

In that story I detailed our coverage of the Ryzen processor and its gaming performance succinctly:

Our team has done quite a bit of research and testing on this topic. This included a detailed look at the first asserted reason for the performance gap, the Windows 10 scheduler. Our summary there was that the scheduler was working as expected and that minimal difference was seen when moving between different power modes. We also talked directly with AMD to find out its then current stance on the results, backing up our claims on the scheduler and presented a better outlook for gaming going forward. When AMD wanted to test a new custom Windows 10 power profile to help improve performance in some cases, we took part in that too. In late March we saw the first gaming performance update occur courtesy of Ashes of the Singularity: Escalation where an engine update to utilize more threads resulted in as much as 31% average frame increase.

Quick on the heels of the Ryzen 7 release, AMD worked with the developer Oxide on the Ashes of the Singularity: Escalation engine. Through tweaks and optimizations, the game was able to showcase as much as a 30% increase in average frame rate on the integrated benchmark. While this was only a single use case, it does prove that through work with the developers, AMD has the ability to improve the 1080p gaming positioning of Ryzen against Intel.

rotr-screen4-small.jpg

Fast forward to today and I was surprised to find a new patch for Rise of the Tomb Raider, a game that was actually one of the worst case scenarios for AMD with Ryzen. (Patch #12, v1.0.770.1) The patch notes mention the following:

The following changes are included in this patch

- Fix certain DX12 crashes reported by users on the forums.

- Improve DX12 performance across a variety of hardware, in CPU bound situations. Especially performance on AMD Ryzen CPUs can be significantly improved.

While we expect this patch to be an improvement for everyone, if you do have trouble with this patch and prefer to stay on the old version we made a Beta available on Steam, build 767.2, which can be used to switch back to the previous version.

We will keep monitoring for feedback and will release further patches as it seems required. We always welcome your feedback!

Obviously the data point that stood out for me was the improved DX12 performance “in CPU bound situations. Especially on AMD Ryzen CPUs…”

Remember how the situation appeared in April?

rotr.png

The Ryzen 7 1800X was 24% slower than the Intel Core i7-7700K – a dramatic difference for a processor that should only have been ~8-10% slower in single threaded workloads.

How does this new patch to RoTR affect performance? We tested it on the same Ryzen 7 1800X benchmarks platform from previous testing including the ASUS Crosshair VI Hero motherboard, 16GB DDR4-2400 memory and GeForce GTX 1080 Founders Edition using the 378.78 driver. All testing was done under the DX12 code path.

tr-1.png

tr-2.png

The Ryzen 7 1800X score jumps from 107 FPS to 126.44 FPS, an increase of 17%! That is a significant boost in performance at 1080p while still running at the Very High image quality preset, indicating that the developer (and likely AMD) were able to find substantial inefficiencies in the engine. For comparison, the 8-core / 16-thread Intel Core i7-6900K only sees a 2.4% increase from this new game revision. This tells us that the changes to the game were specific to Ryzen processors and their design, but that no performance was redacted from the Intel platforms.

Continue reading our look at the new Rise of the Tomb Raider patch for Ryzen!

AMD Teases Ryzen Mobile APUs with Zen CPU Cores and On-Die Vega Graphics

Subject: Processors | May 18, 2017 - 01:01 AM |
Tagged: Zen, Vega, ryzen mobile, ryzen, raven ridge, APU, amd

AMD teased its upcoming Zen-based APUs aimed at mobile devices during its Financial Analyst Day where the company revealed the "Raven Ridge" parts will be aptly known as Ryzen Mobile. The Tech Report managed to acquire a couple slides which confirm some of the broader specifications and reveal how they stack up to AMD's latest Bristol Ridge A-Series APUs – at least as far as AMD's internal testing is concerned (which is to say not independently verified yet so take with a grain of salt).

AMD Ryzen Mobile APUs.jpg

Ryzen Mobile appears to be the new consumer-facing brand name for what has so far been code named "Raven Ridge". These parts will use a Zen-based CPU, Vega GPU, and integrated chipset. Thanks to the slides, it is now confirmed that the Vega-based graphics processor will be on-die. What has not been confirmed is whether the chipset will be on die or on package and exact specifications on CPU cores counts, GPU Compute Units, cache, memory support, and I/O like PCI-E lanes (you know, all the good stuff! heh). Note that rumors so far point towards Raven Ridge / Ryzen Mobile utilizing a single 4-core (8-thread) CCX, per core L2, 8MB shared L3 cache, and a Vega-based GPU with 1024 cores. HBM2 has also been rumored for awhile but we will have to wait for more leaks and/or an official announcement to know for sure if these Ryzen Mobile parts aimed for the second half of 2017 will have that (hopefully!).

With that said, according to AMD, Ryzen Mobile will offer up to 50% better CPU performance, 40% better GPU performance, and will use up to 50% less power than the previous 7th generation (Excavator-based) A-Series APUs (e.g. FX 9830P and A12-9730P). Those are some pretty bold claims, but still within the realm of possibility. Zen and Vega are both much more efficient architectures and AMD is also benefiting from a smaller process node (TSMC 28nm vs Samsung / GlobalFoundries 14nm FinFET). I do wonder how high the APUs will be able to clock on the CPU side of things with 4 GHz seeming to be the wall for most Zen-based Summit Ridge chips, so most of the CPU performance improvement claims will have to come from architecture changes rather than increases in clockspeeds (the highest clocked A-Series Bristol Ridge ran at up to 3.7 GHz and I would expect Raven Ridge to be around that, maybe the flagship part turbo-ing a bit more). Raven Ridge will benefit from the shared L3 cache and, more importantly, twice as many threads (4 vs 8) and this may be where AMD is primarily getting that 50% more CPU performance number from. On the graphics side of things, it looks like Bristol Ridge with its R7 graphics (GCN 3 (Tonga/Fiji on the Desktop)) had up to 512 cores. Again, taking the rumors into account which say that Raven Ridge will have a 1024 core Vega GPU, this may be where AMD is getting the large performance increase from (the core increase as well as newer architecture). On the other hand, the 40% number could suggest Ryzen Mobile will not have twice the GPU cores. I would guess that 1024 might be possible, but running at lower clocks and that is where the discrepancy is. I will admit I am a bit skeptical about the 1024 (16 CU) number though because that is a huge jump... I guess we will see though!

Further, I am curious if Ryzen Mobile will use HBC (high bandwidth cache) and if HBM2 does turn out to be utilized how that will play into the HBC and whether or not we will finally see the fruits of AMD's HSA labors! I think we will see most systems use DDR4, but certainly some SKUs could use HBM2 and that would definitely open up a lot of performance possibilities on mobile!

There is still a lot that we do not know, but Ryzen Mobile is coming and AMD is making big promises that I hope it delivers on. The company is aiming the new chips at a wide swath of the mobile market from budget laptops and tablets to convertibles and even has their sights set on premium thin and lights. The mobile space is one where AMD has struggled with in getting design wins even when they had good parts for that type of system. They will really need to push and hit Ryzen Mobile out of the park to make inroads into the laptop, tablet, and ultrabook markets!

AMD plans to launch the consumer version of Ryzen Mobile in the second half of this year (presumably with systems featuring the new APUs out in time for the holidays if not for the back to school end of summer rush). The commercial SKUs (which I think refers to the Ryzen equivalent of AMD Pro series APUs.Update: Mobile Ryzen Pro) will follow in the first half of 2018.

What are your thoughts on Ryzen Mobile and the alleged performance and power characteristics? Do you think the rumors are looking more or less correct?

Also read:

Source: Tech Report

AMD's 16-Core Ryzen Threadripper CPUs Coming This Summer

Subject: Processors | May 16, 2017 - 07:22 PM |
Tagged: Zen, Threadripper, ryzen, processor, HEDT, cpu, amd

AMD revealed their entry into high-end desktop (HEDT) with the upcoming Ryzen "Threadripper" CPUs, which will feature up to 16 cores and 32 threads.

Threadripper 2.png

Little information was revealed along with the announcement, other than to announce availablility as "summer 2017", though rumors and leaks surrounding Threadripper have been seen on the internet (naturally) leading up to today's announcement, including this one from Wccftech. Not only will Threadripper (allegedly) offer quad-channel memory support and 44 PCI Express lanes, but they are also rumored to be released in a massive 4094-pin package (same as "Naples" aka EPYC) that most assuredly will not fit into the AM4 socket.

WCCFTECH Chart 2.png

Image credit: Wccftech

These Threadripper CPUs follow the lead of Intel's HEDT parts on X99, which are essentially re-appropriated Xeons with higher clock speeds and some feature differences such as a lack of ECC memory support. It remains to be seen what exactly will separate the enthusiast AMD platform from the EPYC datacenter platform, though the rumored base clock speeds are much higher with Threadripper.

Source: AMD