Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Since Samsung’s announcement of the 960 Series SSDs, I have been patiently waiting not for the 960 PRO (reviewed a few weeks back), but for the 960 EVO. It is the EVO, in my opinion, that is the big release here. Sure, it doesn’t have the quad Hexadecimal Die Packages, Package-on-Package DRAM and ultimate higher capacity of the PRO, but what it *does* potentially have is class leading performance / price in the M.2 form factor. Just as we all wanted lower cost SSDs in the 2.5” SATA form factor, M.2 is seeing greater adoption across laptops and desktop motherboards, and it’s high time we started seeing M.2 SSDs come down in price.

I know, don’t tell me, the Intel 600p carries a SATA-level cost/GB in an M.2 form factor. Sure that’s great, and while I do recommend that SSD for those on a budget, its caching scheme comes with some particularly nasty inconsistencies in sustained writes that may scare off some power users. Samsung 840/850 EVO SSDs have historically handled the transitions between SLC cache and TLC bulk writes far better than any competing units, and I’ve eagerly anticipated the chance to see how well their implementation carries over to an NVMe SSD. Fortunately for us, that day is today:

161111-133906.jpg

Specifications:

specs.png

An important point to note in the performance specs - the lowest capacity model is the only one to see its performance significantly taper in stated specifications. That is because even with its 48-layer VNAND operating in SLC mode, there are only two packages on all 960 EVOs and the 250GB capacity comes equipped with the fewest dies to spread the work across. Less parallelism leads to lower ultimate performance. Still, it is impressive to see only 250GB of flash reaching near saturation of PCIe 3.0 x4 in reads.

I've appended the 'sustained' (TLC) performance specs at the bottom of the above chart. These 'after TurboWrite' figures are the expected performance after the SLC cache has been depleted. This is nearly impossible in actual usage scenarios, as it is extremely difficult for any typical (or even power user) desktop workloads to write fast and long enough to deplete such a cache, especially considering how much larger these caches are compared to prior models.

Packaging:

161111-134300.jpg

Samsung has carried forward their simple packaging introduced with the 960 PRO. The felt pad on the bottom of the installation guide is both functional and elegant, keeping the 960 Pro safely in place during shipment.

Read on for the full review of the 250GB and 1TB Samsung 960 EVO!

More test results of the new Samsung 960 Pro, if your brain still has the free space to store it

Subject: Storage | October 18, 2016 - 03:30 PM |
Tagged: vnand, ssd, Samsung, NVMe, 960 PRO, 48-layer, 2TB

Al has already exhaustively covered the new Samsung 960 Pro in his latest article, which also happens to be the premiere of PC Perspective's new storage testing suite.  An in depth discussion of the new testing methodology can be found on the third page and you can expect to hear about it on our podcast tomorrow and perhaps in a standalone article in the near future.  Several comments have inquired as to the effect this drive would have on a system used for gaming or multimedia and how it would compare to drives like the Intel 750 and DC P3700 or OZC's RD 400.  The best place to find those comparisons is over at The Tech Report, their RoboBench transfer test features a long list of drives you can look at.  Check it out once you have finished off our article.

naked.jpg

"Samsung's 960 Pro follows up on last year's 950 Pro with denser V-NAND, a brand-new controller, and space-age label technology. We put this drive to the test to see whether its performance is truly out-of-this-world."

Here are some more Storage reviews from around the web:

Storage

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

Just under a year ago we published our review of the Samsung 950 PRO, their first foray into NVMe SSD territory. Today we have a 960 PRO, which strives to be more revolutionary than evolutionary. There are some neat new features like 16-die packages and a Package-on-Package controller/DRAM design, all cooled by a copper heat spreading label! This new model promises to achieve some very impressive results, so without further delay, let's get to it!

161018-080624.jpg

Specifications:

specs-1.png

specs-2.png

Specs have not changed since the announcement. Highlights include

  • A new 5-core Polaris controller (with one die solely dedicated to coordinating IO's to/from the host)
  • 4-Landing Design - It's tough fitting four flash packages onto an M.2 2280 SSD, but Samsung has done it, thanks to the below feature.
  • Package-on-Package - The controller and DRAM are stacked within the same package, saving space.
  • Hexadecimal Die Packages - For the 960 Pro to reach 2TB of capacity, 16 48-layer MLC V-NAND packages must be present within each package. That's a lot of dies per package!

Packaging:

161018-080414.jpg

161018-080517.jpg

Nice touch with the felt pad on the bottom of the installation guide. This pad keeps the 960 Pro safely in place during shipment.

Read on for the full review of the 2TB Samsung 960 PRO!

Podcast #392 - Samsung 850 EVO V2, VR Build Guides, the End of Tick-Tock, and more!

Subject: General Tech | March 24, 2016 - 01:47 PM |
Tagged: western digital, VR, vnand, vive, video, Samsung, podcast, Oculus, hgst, He8, CRYORIG C7, 8tb red, 850 EVO

PC Perspective Podcast #392 - 03/24/2016

Join us this week as we discuss the Samsung 850 EVO V2, VR Build Guides, the End of Tick-Tock, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

What Micron's Upcoming 3D NAND Means for SSD Capacity, Performance, and Cost

Subject: Storage | February 14, 2016 - 02:51 PM |
Tagged: vnand, ssd, Samsung, nand, micron, Intel, imft, 768Gb, 512GB, 3d nand, 384Gb, 32 Layer, 256GB

You may have seen a wave of Micron 3D NAND news posts these past few days, and while many are repeating the 11-month old news with talks of 10TB/3.5TB on a 2.5"/M.2 form factor SSDs, I'm here to dive into the bigger implications of what the upcoming (and future) generation of Intel / Micron flash will mean for SSD performance and pricing.

progression-3-.png

Remember that with the way these capacity increases are going, the only way to get a high performance and high capacity SSD on-the-cheap in the future will be to actually get those higher capacity models. With such a large per-die capacity, smaller SSDs (like 128GB / 256GB) will suffer significantly slower write speeds. Taking this upcoming Micron flash as an example, a 128GB SSD will contain only four flash memory dies, and as I wrote about back in 2014, such an SSD would likely see HDD-level sequential write speeds of 160MB/sec. Other SSD manufacturers already recognize this issue and are taking steps to correct it. At Storage Visions 2016, Samsung briefed me on the upcoming SSD 750 Series that will use planar 16nm NAND to produce 120GB and 250GB capacities. The smaller die capacities of these models will enable respectable write performance and will also enable them to discontinue their 120GB 850 EVO as they transition that line to higher capacity 48-layer VNAND. Getting back to this Micron announcement, we have some new info that bears analysis, and that pertains to the now announced page and block size:

  • 256Gb MLC: 16KB Page / 16MB Block / 1024 Pages per Block

  • 384Gb TLC: 16KB Page / 24MB Block / 1536 Pages per Block

To understand what these numbers mean, using the MLC line above, imagine a 16MB CD-RW (Block) that can write 1024 individual 16KB 'sessions' (Page). Each 16KB can be added individually over time, and just like how files on a CD-RW could be modified by writing a new copy in the remaining space, flash can do so by writing a new Page and ignoring the out of date copy. Where the rub comes in is when that CD-RW (Block) is completely full. The process at this point is very similar actually, in that the Block must be completely emptied before the erase command (which wipes the entire Block) is issued. The data has to go somewhere, which typically means writing to empty blocks elsewhere on the SSD (and in worst case scenarios, those too may need clearing before that is possible), and this moving and erasing takes time for the die to accomplish. Just like how wiping a CD-RW took a much longer than writing a single file to it, erasing a Block takes typically 3-4x as much time as it does to program a page.

With that explained, of significance here are the growing page and block sizes in this higher capacity flash. Modern OS file systems have a minimum bulk access size of 4KB, and Windows versions since Vista align their partitions by rounding up to the next 2MB increment from the start of the disk. These changes are what enabled HDDs to transition to Advanced Format, which made data storage more efficient by bringing the increment up from the 512 Byte sector up to 4KB. While most storage devices still use 512B addressing, it is assumed that 4KB should be the minimum random access seen most of the time. Wrapping this all together, the Page size (minimum read or write) is 16KB for this new flash, and that is 4x the accepted 4KB minimum OS transfer size. This means that power users heavy on their page file, or running VMs, or any other random-write-heavy operations being performed over time will have a more amplified effect of wear of this flash. That additional shuffling of data that must take place for each 4KB write translates to lower host random write speeds when compared to lower capacity flash that has smaller Page sizes closer to that 4KB figure.

schiltron-IMFT-edit.jpg

A rendition of 3D IMFT Floating Gate flash, with inset pulling back some of the tunnel oxide layer to show the location of the floating gate. Pic courtesy Schiltron.

Fortunately for Micron, their choice to carry Floating Gate technology into their 3D flash has netted them some impressive endurance benefits over competing Charge Trap Flash. One such benefit is a claimed 30,000 P/E (Program / Erase) cycle endurance rating. Planar NAND had dropped to the 3,000 range at its lowest shrinks, mainly because there was such a small channel which could only store so few electrons, amplifying the (negative) effects of electron leakage. Even back in the 50nm days, MLC ran at ~10,000 cycle endurance, so 30,000 is no small feat here. The key is that by using that same Floating Gate tech so good at controlling leakage for planar NAND on a new 3D channel that can store way more electrons enables excellent endurance that may actually exceed Samsung's Charge Trap Flash equipped 3D VNAND. This should effectively negate the endurance hit on the larger Page sizes discussed above, but the potential small random write performance hit still stands, with a possible remedy being to crank up the Over-Provisioning of SSDs (AKA throwing flash at the problem). Higher OP means less active pages per block and a reduction in the data shuffling forced by smaller writes.

25nm+penny.jpg

A 25nm flash memory die. Note the support logic (CMOS) along the upper left edge.

One final thing helping out Micron here is that their Floating Gate design also enables a shift of 75% of the CMOS circuitry to a layer *underneath* the flash storage array. This logic is typically part of what you see 'off to the side' of a flash memory die. Layering CMOS logic in such a way is likely thanks to Intel's partnership and CPU development knowledge. Moving this support circuitry to the bottom layer of the die makes for less area per die dedicated to non-storage, more dies per wafer, and ultimately lower cost per chip/GB.

progression slide.png

Samsung's Charge Trap Flash, shown in both planar and 3D VNAND forms.

One final thing before we go. If we know anything about how the Intel / Micron duo function, it is that once they get that freight train rolling, it leads to relatively rapid advances. In this case, the changeover to 3D has taken them a while to perfect, but once production gains steam, we can expect to see some *big* advances. Since Samsung launched their 3D VNAND their gains have been mostly iterative in nature (24, 32, and most recently 48). I'm not yet at liberty to say how the second generation of IMFT 3D NAND will achieve it, but I can say that it appears the next iteration after this 32-layer 256Gb (MLC) /384Gb (TLC) per die will *double* to 512Gb/768Gb (you are free to do the math on what that means for layer count). Remember back in the day where Intel launched new SSDs at a fraction of the cost/GB of the previous generation? That might just be happening again within the next year or two.

CES 2016: Fasetto Teases Link SSD Storage Platform

Subject: Storage, Shows and Expos | January 5, 2016 - 01:39 AM |
Tagged: CES, CES 2016, Fasetto, Link, wifi, NAS, ssd, Samsung, vnand, 802.11ac

Fasetto is a company previously known as one of those cross-platform file-sharing web apps, but I was shocked to see them with a space at CES Unveiled. Companies without physical products tend to fall flat at this type of venue, but as I walked past, boy was I mistaken!

160104-221226a.jpg

To give the size a bit of perspective here, that's a business card sitting in front of the 'Link', which only measures 1.9x1.9x0.9" and weighs just under 4 ounces. That's a belt clip to the right of it. Ok, now that we have the tiny size and low weight described, what has Fasetto packed into that space?

  • Aluminum + ABS construction
  • Waterproof to 45 feet (and it floats!)
  • Bluetooth 4.0 LE
  • 802.11AC dual band WiFi (reportedly 4x4)
  • 4GB RAM
  • Quad core ARM CPU
  • 9-axis compass/accelerometer/gyro
  • 1350 mAh Li battery
  • Wireless charging (Chi style)
  • Up to 2TB SSD

For a portable storage device, that is just an absolutely outstanding spec sheet! The Link is going to run an OS designed specifically for this device, and will have plugin support (simple add-on apps that can access the accelerometer and log movement, for example).

The BIG deal with this device is of course the ability to act as a portable wireless storage device. In that respect it can handle 20 simultaneous devices, stream to seven simultaneously, and can also do the expected functions like wireless internet pass-through. Claimed standby power is two weeks and active streaming is rated at up to 8 hours. Even more interesting is that I was told the internal storage will be Samsung 48-layer VNAND borrowed from their T3 (which explains why the Fasetto Link will not be available until late 2016). This is sure to be a hit with photographers, as WiFi compatible cameras should be able to stream photos to the Link as the photos are being taken, eliminating the need to offload cameras at the end of a shoot.

We will definitely be working with Fasetto to help shake out any bugs prior to the release of this little gem. I suspect it might just be the most groundbreaking storage product that we see come out of this CES.

Coverage of CES 2016 is brought to you by Logitech!

PC Perspective's CES 2016 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

950pro_sec01.jpg

This is it. This is the day we have been waiting for.  Ever since we feasted our eyes on the NVMe version of the Samsung SM951, we’ve been begging Samsung to release this as a consumer product. Bonus points if it was powered by their 3D VNAND technology. It took them a while, but they came through, officially announcing the 950 PRO exactly one month ago, and launching them today! Not only will we dive into the performance of this new model, we will also include its results in our new Latency Distribution and Percentile testing.

Specifications:

specs.png

Nothing has changed since the announcement. All specs remain the same very impressive 2.2-2.5 GB/s reads, 0.9-1.5 GB/s writes, and upwards of 300k IOPS, all from an M.2 2280 SSD consuming only 7 Watts!

While the 950 PROs will work with the built-in Microsoft NVMe driver (present in Windows 8 and up), Samsung has also provided their own driver, which will increase performance. The same was true for the Intel SSD 750 Series.

Packaging:

DSC09120.jpg

There’s really not much to this packaging, but it’s the most ‘retail’ we’ve seen for packaging of a simple M.2 SSD.

Read on for the full review of the 256GB and 512GB Samsung 950 PROs!!

Podcast #368 - full GTX 980s in notebooks, Samsung's NVMe 950 Pro, Jim Keller leaving AMD and more!

Subject: General Tech | September 24, 2015 - 03:22 PM |
Tagged: podcast, video, amd, Jim Keller, Zen, Samsung, 950 PRO, NVMe, M.2, vnand, Thrustmaster, tx f458, Lenovo, Thinkpad, x1 carbon, x250, t450s, helix

PC Perspective Podcast #368 - 09/24/2015

Join us this week as we discuss full GTX 980s in notebooks, Samsung's NVMe 950 Pro, Jim Keller leaving AMD and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, and Morry Teitelman

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

 

Samsung Announces New Branding and Future SSD Capacity Expansion with their New 48-Layer V-NAND

Subject: Storage | September 22, 2015 - 06:10 PM |
Tagged: vnand, V-NAND, Samsumg, 4TB, 48-layer, 2TB, 1TB

During yesterday's SSD Summit, obscured by their 950 PRO launch was new branding for their 32 (and now 48) layer Vertical NAND technology:

V-NAND branding.JPG

This new branding is more in line with what folks were calling their NAND anyway (Samsung was previously using the term '3D VNAND'. Dropping the 3D made sense, as it was implied with the 'V').

Also of interest were some announcements of upcoming higher capacities of their existing models:

capacity-1.JPG

4TB 850 EVO and PRO? Yes please.

capacity-2.JPG

1TB in the 850 EVO M.2 edition, and while there is no slide for this, the 950 PRO is also expected to be updated with a 1TB model within the same time frame as well.

How is all of this expansion possible? The answer is their third generation V-NAND, which is 48 layers and 256 GBit (32 GB) capacity per die. Samsung intends to roll this flash out and update all model lines currently using V-NAND technology. This decision was made by Samsung's Senior VP of Marketing, UnSoo Kim:

DSC06006.jpg

...now before you get out the pitchforks and form up the 'don't change the flash without a new model' lynch mob, I'd like to point out a few things that make this change different than what you might have seen in the past.

  • Samsung is trying to prevent confusion by adding product lines with nearly identical specs.
  • Samsung is being very open about this change (others were secretive / deceptive).
  • Samsung has promised that they will only implement this change in a way that *increases* the performance and *decreases* the power consumption of these products.

I did leave the Q+A with some further questions about this change. The lower capacities of the 850 EVO still see slower write performance when writing straight to TLC flash (SLC cache is full). This is because there are fewer dies available to write the data, and each die can only write so fast in TLC mode. Since the 48-layer V-NAND is to have double the capacity per die, that would mean half the dies per SSD and possibly slower write speeds in the overall product.

I approached UnSoo Kim after the Q+A and asked this specific question, and his answer was both interesting and refreshing. First, he understood my question immediately and assured me that they will not roll out 256Gbit 48-layer V-NAND into their smaller capacity models - in order to prevent any performance reduction over their current 32-layer equipped parts. Second, he told me that they also intend to produce a 128Gbit variant of 48-layer V-NAND at some point in the future, and use *that* part to substitute the 128Gbit 32-layer V-NAND in those smaller capacity models, keeping the die counts (and therefore sequential write speeds) equal. That additional variant of their third generation V-NAND is the only way (in my mind) that they could update their smaller capacity parts without losing performance, and it was great to see that Samsung has thought out the execution of this rollout in such a proper manner.

Samsung Launches 950 PRO - 300,000 IOPS and 2.5 GB/sec from a M.2 V-NAND SSD!

Subject: Storage | September 22, 2015 - 02:39 AM |
Tagged: vnand, V-NAND, ssd, Samsung, pcie, NVMe, M.2 2280, M.2, 950 PRO, 512GB, 256GB

I’ve been waiting a long time for Samsung to put their V-NAND flash memory into a PCIe connected SSD, and such a product has just been officially announced at the Samsung SSD Global Summit.

DSC06308.jpg

Samsung’s new product launching will be called the 950 PRO. This will be an M.2 2280 form factor product running at PCIe 3.0 x4. Equipped with Samsung’s 32-layer V-NAND and using the NVMe protocol enabled by a new UBX controller, the 950 PRO will be capable of up to an impressive 300,000 random read IOPS. Random writes come in at 110,000 IOPS and sequential throughputs are expected to be 2.5 GB/sec reads and 1.5 GB/sec for writes. Available capacities will be 256GB and 512GB.

specs-sequential.JPG

specs-random.JPG

Pricing:

The 950 PRO will be shipping with a 5-year warranty rated at 200 terabytes written for the 256GB model and 400 TBW for the 512GB. That works out to just over 100GB per day for both capacities.

These hit retail in October and we currently have samples in hand for testing.

DSC06330.jpg

(for those curious, both capacities only have components on the front side of the PCB)

Full press blast after the break.

Source: Samsung