Author:
Manufacturer: Various

Background and setup

A couple of weeks back, during the excitement surrounding the announcement of the GeForce GTX 1080 Ti graphics card, NVIDIA announced an update to its performance reporting project known as FCAT to support VR gaming. The updated iteration, FCAT VR as it is now called, gives us the first true ability to not only capture the performance of VR games and experiences, but the tools with which to measure and compare.

Watch ths video walk through of FCAT VR with me and NVIDIA's Tom Petersen

I already wrote an extensive preview of the tool and how it works during the announcement. I think it’s likely that many of you overlooked it with the noise from a new GPU, so I’m going to reproduce some of it here, with additions and updates. Everyone that attempts to understand the data we will be presenting in this story and all VR-based tests going forward should have a baseline understanding of the complexity of measuring VR games. Previous tools don’t tell the whole story, and even the part they do tell is often incomplete.

If you already know how FCAT VR works from reading the previous article, you can jump right to the beginning of our results here.

Measuring and validating those claims has proven to be a difficult task. Tools that we used in the era of standard PC gaming just don’t apply. Fraps is a well-known and well-understood tool for measuring frame rates and frame times utilized by countless reviewers and enthusiasts, but Fraps lacked the ability to tell the complete story of gaming performance and experience. NVIDIA introduced FCAT and we introduced Frame Rating back in 2013 to expand the capabilities that reviewers and consumers had access to. Using more sophisticated technique that includes direct capture of the graphics card output in uncompressed form, a software-based overlay applied to each frame being rendered, and post-process analyzation of that data, we could communicate the smoothness of a gaming experience, better articulating it to help gamers make purchasing decisions.

vrpipe1.png

For VR though, those same tools just don’t cut it. Fraps is a non-starter as it measures frame rendering from the GPU point of view and completely misses the interaction between the graphics system and the VR runtime environment (OpenVR for Steam/Vive and OVR for Oculus). Because the rendering pipeline is drastically changed in the current VR integrations, what Fraps measures is completely different than the experience the user actually gets in the headset. Previous FCAT and Frame Rating methods were still viable but the tools and capture technology needed to be updated. The hardware capture products we used since 2013 were limited in their maximum bandwidth and the overlay software did not have the ability to “latch in” to VR-based games. Not only that but measuring frame drops, time warps, space warps and reprojections would be a significant hurdle without further development. 

vrpipe2.png

vrpipe3.png

NVIDIA decided to undertake the task of rebuilding FCAT to work with VR. And while obviously the company is hoping that it will prove its claims of performance benefits for VR gaming, it should not be overlooked the investment in time and money spent on a project that is to be open sourced and free available to the media and the public.

vlcsnap-2017-02-27-11h31m17s057.png

NVIDIA FCAT VR is comprised of two different applications. The FCAT VR Capture tool runs on the PC being evaluated and has a similar appearance to other performance and timing capture utilities. It uses data from Oculus Event Tracing as a part of the Windows ETW and SteamVR’s performance API, along with NVIDIA driver stats when used on NVIDIA hardware to generate performance data. It will and does work perfectly well on any GPU vendor’s hardware though with the access to the VR vendor specific timing results.

fcatvrcapture.jpg

Continue reading our first look at VR performance testing with FCAT VR!!

PCPer Live! GeForce GTX 1080 Ti Live Stream with Tom Petersen

Subject: General Tech, Graphics Cards | March 10, 2017 - 11:15 AM |
Tagged: video, tom petersen, pascal, nvidia, live, gtx 1080 ti, gtx, gp102, geforce

Our review of the GeForce GTX 1080 Ti 11GB graphics card is live and ready for consumption! Make sure you check it out before this afternoon's live stream!

Did you miss our GTX 1080 Ti Live Stream? Catch the reply below!

Ready your mind and body, it’s time for another GeForce GTX live stream hosted by PC Perspective’s Ryan Shrout and NVIDIA’s Tom Petersen. The general details about the GeForce GTX 1080 Ti graphics card are already official and based on the hype train and the response on social media, there is more than a little excitement.

box1.jpg

On hand to talk about the new graphics card will be Tom Petersen, well known in our community. While the GTX 1080 Ti will be the flagship part of our live stream we will also be diving into the world of VR performance evaluation and how the new FCAT VR tool will help reviewers and standard enthusiast see where their systems stand in producing smooth, effective virtual reality gaming. We have done quite a few awesome live steams with Tom in the past, check them out if you haven't already.

pcperlive.png

NVIDIA GeForce GTX 1080 Ti and FCAT VR Live Stream

1pm PT / 4pm ET - March 9th

PC Perspective Live! Page

Need a reminder? Join our live mailing list!

The event will take place Thursday, March 9th at 4pm ET / 1pm PT at http://www.pcper.com/live. There you’ll be able to catch the live video stream as well as use our chat room to interact with the audience, asking questions for me and Tom to answer live. 

Tom has a history of being both informative and entertaining and these live streaming events are always full of fun and technical information that you can get literally nowhere else. Previous streams have produced news as well – including statements on support for Adaptive Sync, release dates for displays and first-ever demos of triple display G-Sync functionality. You never know what’s going to happen or what will be said!

This just in fellow gamers: Tom is going to be providing a GeForce GTX 1080 Ti graphics card to give away during the live stream! We won't be able to ship it until the end of next week, but one lucky viewer of the live stream will be able to get their paws on the fastest graphics card we have ever tested!! Make sure you are scheduled to be here on March 9th at 1pm PT / 4pm ET!!

icon2.jpg

Win this beauty.

If you have questions, please leave them in the comments below and we'll look through them just before the start of the live stream. Of course you'll be able to tweet us questions @pcper and we'll be keeping an eye on the IRC chat as well for more inquiries. What do you want to know and hear from Tom or I?

So join us! Set your calendar for this coming Thursday at 4pm ET / 1pm PT and be here at PC Perspective to catch it. If you are a forgetful type of person, sign up for the PC Perspective Live mailing list that we use exclusively to notify users of upcoming live streaming events including these types of specials and our regular live podcast. I promise, no spam will be had!

Author:
Manufacturer: NVIDIA

Flagship Performance Gets Cheaper

UPDATE! If you missed our launch day live stream, you can find the reply below:

It’s a very interesting time in the world of PC gaming hardware. We just saw the release of AMD’s Ryzen processor platform that shook up the processor market for the first time in a decade, AMD’s Vega architecture has been given the brand name “Vega”, and the anticipation for the first high-end competitive part from AMD since Hawaii grows as well. AMD was seemingly able to take advantage of Intel’s slow innovation pace on the processor and it was hoping to do the same to NVIDIA on the GPU. NVIDIA’s product line has been dominant in the mid and high-end gaming market since the 900-series with the 10-series products further cementing the lead.

box1.jpg

The most recent high end graphics card release came in the form of the updated Titan X based on the Pascal architecture. That was WAY back in August of 2016 – a full seven months ago! Since then we have seen very little change at the top end of the product lines and what little change we did see came from board vendors adding in technology and variation on the GTX 10-series.

Today we see the release of the new GeForce GTX 1080 Ti, a card that offers only a handful of noteworthy technological changes but instead is able to shake up the market by instigating pricing adjustments to make the performance offers more appealing, and lowering the price of everything else.

The GTX 1080 Ti GP102 GPU

I already wrote about the specifications of the GPU in the GTX 1080 Ti when it was announced last week, so here’s a simple recap.

  GTX 1080 Ti Titan X (Pascal) GTX 1080 GTX 980 Ti TITAN X GTX 980 R9 Fury X R9 Fury R9 Nano
GPU GP102 GP102 GP104 GM200 GM200 GM204 Fiji XT Fiji Pro Fiji XT
GPU Cores 3584 3584 2560 2816 3072 2048 4096 3584 4096
Base Clock 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1000 MHz 1126 MHz 1050 MHz 1000 MHz up to 1000 MHz
Boost Clock 1582 MHz 1480 MHz 1733 MHz 1076 MHz 1089 MHz 1216 MHz - - -
Texture Units 224 224 160 176 192 128 256 224 256
ROP Units 88 96 64 96 96 64 64 64 64
Memory 11GB 12GB 8GB 6GB 12GB 4GB 4GB 4GB 4GB
Memory Clock 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 7000 MHz 500 MHz 500 MHz 500 MHz
Memory Interface 352-bit 384-bit G5X 256-bit G5X 384-bit 384-bit 256-bit 4096-bit (HBM) 4096-bit (HBM) 4096-bit (HBM)
Memory Bandwidth 484 GB/s 480 GB/s 320 GB/s 336 GB/s 336 GB/s 224 GB/s 512 GB/s 512 GB/s 512 GB/s
TDP 250 watts 250 watts 180 watts 250 watts 250 watts 165 watts 275 watts 275 watts 175 watts
Peak Compute 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 5.63 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS 7.20 TFLOPS 8.19 TFLOPS
Transistor Count 12.0B 12.0B 7.2B 8.0B 8.0B 5.2B 8.9B 8.9B 8.9B
Process Tech 16nm 16nm 16nm 28nm 28nm 28nm 28nm 28nm 28nm
MSRP (current) $699 $1,200 $599 $649 $999 $499 $649 $549 $499

The GTX 1080 Ti looks a whole lot like the TITAN X launched in August of last year. Based on the 12B transistor GP102 chip, the new GTX 1080 Ti will have 3,584 CUDA core with a 1.60 GHz Boost clock. That gives it the same processor count as Titan X but with a slightly higher clock speed which should make the new GTX 1080 Ti slightly faster by at least a few percentage points and has a 4.7% edge in base clock compute capability. It has 28 SMs, 28 geometry units, 224 texture units.

GeForce_GTX_1080_Ti_Block_Diagram.png

Interestingly, the memory system on the GTX 1080 Ti gets adjusted – NVIDIA has disabled a single 32-bit memory controller to give the card a total of 352-bit wide bus and an odd-sounding 11GB memory capacity. The ROP count also drops to 88 units. Speaking of 11, the memory clock on the G5X implementation on GTX 1080 Ti will now run at 11 Gbps, a boost available to NVIDIA thanks to a chip revision from Micron and improvements to equalization and reverse signal distortion.

The move from 12GB of memory on the GP102-based Titan X to 11GB on the GTX 1080 Ti is an interesting move, and evokes memories of the GTX 970 fiasco where NVIDIA disabled a portion of that memory controller but left the memory that would have resided on it ON the board. At that point, what behaved as 3.5GB of memory at one speed and 500 MB at another speed, was the wrong move to make. But releasing the GTX 970 with "3.5GB" of memory would have seemed odd too. NVIDIA is not making the same mistake, instead building the GTX 1080 Ti with 11GB out the gate.

Continue reading our review of the NVIDIA GeForce GTX 1080 Ti 11GB graphics card!

Ryzen shine! It is time for your AMD roundup

Subject: Processors | March 2, 2017 - 03:08 PM |
Tagged: Ryzen 1700X, Zen, x370, video, ryzen, amd

Having started your journey with Ryan's quick overview of the performance of the 1800X and anxiously awaiting our further coverage now that we have both the parts and the time to test them you might want to take a peek at some other coverage. [H]ard|OCP tested the processor which many may be looking at due to the more affordable pricing, the Ryzen 1700X.  Their test system is based on a Gigabyte A370-Gaming 5 with 16GB of Corsair Vengeance DDR4-3600 which ran at 2933MHz during testing; Kyle reached out to vendors who assured him an update will make 3GHz reachable will arrive soon.  Part of their testing focused on VR performance, so make sure to check out the full article.

1488169187kcPgB2ioTd_1_2.jpg

"Saying that we have waited for a long time for a "real" CPU out of AMD would be a gross misunderstatement, but today AMD looks to remedy that. We are now offered up a new CPU that carries the branding name of Ryzen. Has AMD risen from the CPU graveyard? You be the judge after looking at the data."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP
Author:
Subject: Processors
Manufacturer: AMD

AMD Ryzen 7 Processor Specifications

It’s finally here and its finally time to talk about. The AMD Ryzen processor is being released onto the world and based on the buildup of excitement over the last week or so since pre-orders began, details on just how Ryzen performs relative to Intel’s mainstream and enthusiast processors are a hot commodity. While leaks have been surfacing for months and details seem to be streaming out from those not bound to the same restrictions we have been, I think you are going to find our analysis of the Ryzen 7 1800X processor to be quite interesting and maybe a little different as well.

Honestly, there isn’t much that has been left to the imagination about Ryzen, its chipsets, pricing, etc. with the slow trickle of information that AMD has been sending out since before CES in January. We know about the specifications, we know about the architecture, we know about the positioning; and while I will definitely recap most of that information here, the real focus is going to be on raw numbers. Benchmarks are what we are targeting with today’s story.

Let’s dive right in.

The Zen Architecture – Foundation for Ryzen

Actually, as it turns out, in typical Josh Walrath fashion, he wrote too much about the AMD Zen architecture to fit into this page. So, instead, you'll find his complete analysis of AMD's new baby right here: AMD Zen Architecture Overview: Focus on Ryzen

ccx.png

AMD Ryzen 7 Processor Specifications

Though we have already detailed the most important specifications for the new AMD Ryzen processors when the preorders went live, its worth touching on them again and reemphasizing the important ones.

  Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Core i7-6900K Core i7-6800K Core i7-7700K Core i5-7600K Core i7-6700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake Kaby Lake Skylake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+ 14nm+ 14nm
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8 4/4 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz 3.8 GHz 4.0 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz 4.2 GHz 4.2 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB 8MB 8MB
Memory Support DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Quad Channel
DDR4-2400
Quad Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts 91 watts 91 watts
Price $499 $399 $329 $1050 $450 $350 $239 $309

All three of the currently announced Ryzen processors are 8-core, 16-thread designs, matching the Core i7-6900K from Intel in that regard. Though Intel does have a 10-core part branded for consumers, it comes in at a significantly higher price point (over $1500 still). The clock speeds of Ryzen are competitive with the Broadwell-E platform options though are clearly behind the curve when it comes the clock capabilities of Kaby Lake and Skylake. With admittedly lower IPC than Kaby Lake, Zen will struggle in any purely single threaded workload with as much as 500 MHz deficit in clock rate.

One interesting deviation from Intel's designs that Ryzen gets is a more granular boost capability. AMD Ryzen CPUs will be able move between processor states in 25 MHz increments while Intel is currently limited to 100 MHz. If implemented correctly and effectively through SenseMI, this allows Ryzen to get 25-75 MHz of additional performance in a scenario where it was too thermally constrainted to hit the next 100 MHz step. 

DSC02636.jpg

XFR (Extended Frequency Range), supported on the Ryzen 7 1800X and 1700X (hence the "X"), "lifts the maximum Precision Boost frequency beyond ordinary limits in the presence of premium systems and processor cooling." The story goes, that if you have better than average cooling, the 1800X will be able to scale up to 4.1 GHz in some instances for some undetermined amount of time. The better the cooling, the longer it can operate in XFR. While this was originally pitched to us as a game-changing feature that bring extreme advantages to water cooling enthusiasts, it seems it was scaled back for the initial release. Only getting 100 MHz performance increase, in the best case result, seems a bit more like technology for technology's sake rather than offering new capabilities for consumers.

cpu2.jpg

Ryzen integrates a dual channel DDR4 memory controller with speeds up to 2400 MHz, matching what Intel can do on Kaby Lake. Broadwell-E has the advantage with a quad-channel controller but how useful that ends of being will be interesting to see as we step through our performance testing.

One area of interest is the TDP ratings. AMD and Intel have very different views on how this is calculated. Intel has made this the maximum power draw of the processor while AMD sees it as a target for thermal dissipation over time. This means that under stock settings the Core i7-7700K will not draw more than 91 watts and the Core i7-6900K will not draw more than 140 watts. And in our testing, they are well under those ratings most of the time, whenever AVX code is not being operated. AMD’s 95-watt rating on the Ryzen 1800X though will very often be exceed, and our power testing proves that out. The logic is that a cooler with a 95-watt rating and the behavior of thermal propagation give the cooling system time to catch up. (Interestingly, this is the philosophy Intel has taken with its Kaby Lake mobile processors.)

lisa-29.jpg

Obviously the most important line here for many of you is the price. The Core i7-6900K is the lowest priced 8C/16T option from Intel for consumers at $1050. The Ryzen R7 1800X has a sticker price less than half of that, at $499. The R7 1700X vs Core i7-6800K match is interesting as well, where the AMD CPU will sell for $399 versus $450 for the 6800K. However, the 6800K only has 6-cores and 12-threads, giving the Ryzen part an instead 25% boost in multi-threaded performance. The 7700K and R7 1700 battle will be interesting as well, with a 4-core difference in capability and a $30 price advantage to AMD.

Continue reading our review of the new AMD Ryzen 7 1800X processor!!

Author:
Manufacturer: Corsair

Woof

The Corsair Bulldog, version 2.0, is now shipping and upgrades the internal components to a Z270 motherboard and upgrade fans with improved noise profiles. Other than that, the Bulldog looks, style, form and function remain unchanged.
 
 
The design is likely still dividing opinions; the short squat form factor with angular exterior will appeal to some, but the dimensions are perfectly suited to sitting in or around a TV and entertainment center. And because of the spacing and design of the interior, the mini ITX form factor can support any performance level of GPU and Intel's latest Kaby Lake processors. This gives users the flexibility to build for ultimate performance, making the dream of a 4K-ready gaming PC in the living room a possibility.
 
DSC02379.jpg
 
Our quick video review will talk about the design, installation process and our experiences with the system running some premium components.
 
bulldog1.jpg
  • Corsair Bulldog 2.0 (includes case, PSU, MB and CPU cooler)
  • Intel Core i7-7700K
  • 16GB Corsair Vengeance DDR4
  • Corsair Z270 Motherboard mini ITX
  • Corsair Hydro GTX 1080
  • 480GB Neutron GTX SSD
  • 600 watt Corsair PSU

The barebones kit starts at $399 through Corsair.com and includes the case, the motherboard, CPU cooler and 600-watt power supply. Not a bad price for those components!

bulldog2.jpg

You won't find any specific benchmarks in the video above, but you will find some impressions playing Resident Evil 7 in HDR mode at 4K resolution with the specs above, all on an LG OLED display. (Hint: it's awesome.) 

Author:
Subject: Processors
Manufacturer: AMD

Get your brains ready

Just before the weekend, Josh and I got a chance to speak with David Kanter about the AMD Zen architecture and what it might mean for the Ryzen processor due out in less than a month. For those of you not familiar with David and his work, he is an analyst and consultant on processor architectrure and design through Real World Tech while also serving as a writer and analyst for the Microprocessor Report as part of the Linley Group. If you want to see a discussion forum that focuses on architecture at an incredibly detailed level, the Real World Tech forum will have you covered - it's an impressive place to learn.

zenpm-4.jpg

David was kind enough to spend an hour with us to talk about a recently-made-public report he wrote on Zen. It's definitely a discussion that dives into details most articles and stories on Zen don't broach, so be prepared to do some pausing and Googling phrases and technologies you may not be familiar with. Still, for any technology enthusiast that wants to get an expert's opinion on how Zen compares to Intel Skylake and how Ryzen might fare when its released this year, you won't want to miss it.

Sapphire Releases AMD Radeon RX460 with 1024 Shaders

Subject: Graphics Cards | January 18, 2017 - 08:43 PM |
Tagged: video, unlock, shaders, shader cores, sapphire, radeon, Polaris, graphics, gpu, gaming, card, bios, amd, 1024

As reported by WCCFtech, AMD partner Sapphire has a new 1024 stream processor version of the RX460 listed on their site (Chinese language), and this product reveal of course comes after it became known that RX460 graphics cards had the potential to have their stream processor count unlocked from 896 to 1024 via BIOS update.

Sapphire_201712151752.jpg

Sapphire RX460 1024SP 4G D5 Ultra Platinum OC (image credit: Sapphire)

The Sapphire RX460 1024SP edition offers a full Polaris 11 core operating at 1250 MHz, and it otherwise matches the specifications of a stock RX460 graphics card. Whether this product will be available outside of China is unknown, as is the potential pricing model should it be available in the USA. A 4GB Radeon RX460 retails for $99, while the current step-up option is the RX470, which doubles up on this 1024SP RX460's shader count with 2048, with a price increase of about 70% ($169).

Radeon_Chart.PNG

AMD Polaris GCN 4.0 GPU lineup (Credit WCCFtech)

As you may note from the chart above, there is also an RX470D option between these cards that features 1792 shaders, though this option is also China-only.

Source: WCCFtech
Author:
Manufacturer: AMD

Performance and Impressions

This content was sponsored by AMD.

Last week in part 1 of our look at the Radeon RX 460 as a budget gaming GPU, I detailed our progress through component selection. Centered around an XFX 2GB version of the Radeon RX 460, we built a machine using an Intel Core i3-6100, ASUS H110M motherboard, 8GB of DDR4 memory, both an SSD and a HDD, as well as an EVGA power supply and Corsair chassis. Part 1 discussed the reasons for our hardware selections as well as an unboxing and preview of the giveaway to come.

In today's short write up and video, I will discuss my impressions of the system overall as well as touch on the performance in a handful of games. Despite the low the price, and despite the budget moniker attributed to this build, a budding PC gamer or converted console gamer will find plenty of capability in this system.

Check out prices of Radeon RX 460 graphics cards on Amazon!!

Let's quickly recap the components making up our RX 460 budget build.

Our Radeon RX 460 Build

  Budget Radeon RX 460 Build
Processor Intel Core i3-6100 - $109
Cooler CRYORIG M9i - $19
Motherboard ASUS H110M-A/M.2 - $54
Memory 2 x 4GB Crucial Ballistix DDR4-2400 - $51
Graphics Card XFX Radeon RX 460 2GB - $98
Storage 240GB Sandisk SSD Plus - $68
1TB Western Digital Blue - $49
Case Corsair Carbide Series 88R - $49
Power Supply EVGA 500 Watt - $42
Monitor Nixues VUE24A 1080p 144Hz FreeSync - $251
Total Price $549 on Amazon; $799 with monitor on Amazon

For just $549 I was able to create shopping list of hardware that provides very impressive performance for the investment.

02.jpg

The completed system is damn nice looking, if I do say so myself. The Corsair Carbide 88R case sports a matte black finish with a large window to peer in at the hardware contained within. Coupled with the Nixeus FreeSync display and some Logitech G mouse and keyboard hardware we love, this is a configuration that any PC gamer would be proud to display.

03.jpg

Continue reading our performance thoughts on the RX 460 budget PC build!

Author:
Manufacturer: AMD

Our Radeon RX 460 Build

This content was sponsored by AMD.

Be sure you check out part 2 of our story where we detail the performance our RX 460 build provides as well as our contest page where you can win this PC from AMD and PC Perspective!

Just before CES this month, AMD came to me asking about our views and opinions on its Radeon RX 460 line of graphics cards, how the GPU is perceived in the market, and how I felt they could better position it to the target audience. It was at that point that I had to openly admit to never actually having installed and used an RX 460 GPU before. I know, shame on me.

I like to pride myself and PC Perspective on being one of the top sources of technical information in the world of PCs, gaming or otherwise, and in particular on GPUs. But a pitfall that I fall into, and I imagine many other reviewers and media do as well, is that I overly emphasize the high end of the market. And that I tend to shift what is considered a “budget” product up the scale more than I should. Is a $250 graphics card really a budget product that the mass market is going to purchase? No, and the numbers clearly point to that as fact. More buyers purchase cards in the sub-$150 segment than in any other, upgrading OEMs PCs and building low cost boxes for themselves and for the family/friends.

So, AMD came to me with a proposal to address this deficiency in my mental database. If we were willing to build a PC based on the RX 460, testing it and evaluating it honestly, and then give that built system back to the community, they would pay for the hardware and promotion of such an event. So here we are.

To build out the RX 460-based PC, I went to the experts in the world of budget PC builds, the /r/buildapc subreddit. The community here is known for being the best at penny-pinching and maximizing the performance-per-dollar implementations on builds. While not the only types of hardware they debate and discuss in that group, it definitely is the most requested. I started a thread there to ask for input and advice on building a system with the only requirements being inclusion of the Radeon RX 460 and perhaps an AMD FreeSync monitor.

Check out prices of Radeon RX 460 graphics cards on Amazon!!

The results were impressive; a solid collection of readers and contributors gave me suggestions for complete builds based around the RX 460. Processors varied, memory configurations varied, storage options varied, but in the end I had at least a dozen solid options that ranged in price from $400-800. With the advice of the community at hand, I set out to pick the components for our own build, which are highlighted below:

Our Radeon RX 460 Build

  Budget Radeon RX 460 Build
Processor Intel Core i3-6100 - $109
Cooler CRYORIG M9i - $19
Motherboard ASUS H110M-A/M.2 - $54
Memory 2 x 4GB Crucial Ballistix DDR4-2400 - $51
Graphics Card XFX Radeon RX 460 2GB - $98
Storage 240GB Sandisk SSD Plus - $68
1TB Western Digital Blue - $49
Case Corsair Carbide Series 88R - $49
Power Supply EVGA 500 Watt - $42
Monitor Nixues VUE24A 1080p 144Hz FreeSync - $251
Total Price $549 on Amazon; $799 with monitor on Amazon

I’ll go in order of presentation for simplicity sake. First up is the selection of the Intel Core i3-6100 processor. This CPU was the most popular offering in the /r/buildapc group and has been the darling of budget gaming builds for a while. It is frequently used because of it $109 price tag, along with dual-core, HyperThreaded performance at 3.7 GHz; giving you plenty of headroom for single threaded applications. Since most games aren’t going to utilize more than four threads, the PC gaming performance will be excellent as well. One frequent suggestion in our thread was the Intel Pentium G4560, a Kaby Lake based part that will sell for ~$70. That would have been my choice but it’s not shipping yet, and I don’t know when it will be.

cpu.jpg

Continue reading our budget build based on the Radeon RX 460!