Forza Motorsport 7 Performance

The first full Forza Motorsport title available for the PC, Forza Motorsport 7 on Windows 10 launched simultaneously with the Xbox version earlier this month. With native 4K assets, HDR support, and new visual features like fully dynamic weather, this title is an excellent showcase of what modern PC hardware can do.

forza7-screen.png

Now that both AMD and NVIDIA have released drivers optimized for Forza 7, we've taken an opportunity to measure performance across an array of different GPUs. After some significant performance mishaps with last year's Forza Horizon 3 at launch on PC, we are excited to see if Forza Motorsport 7 brings any much-needed improvements. 

For this testing, we used our standard GPU testbed, including an 8-core Haswell-E processor and plenty of memory and storage.

  PC Perspective GPU Testbed
Processor Intel Core i7-5960X Haswell-E
Motherboard ASUS Rampage V Extreme X99
Memory G.Skill Ripjaws 16GB DDR4-3200
Storage OCZ Agility 4 256GB (OS)
Adata SP610 500GB (games)
Power Supply Corsair AX1500i 1500 watt
OS Windows 10 x64 
Drivers AMD: 17.10.1 (Beta)
NVIDIA: 387.92

As with a lot of modern console-first titles, Forza 7 defaults to "Dynamic" image quality settings. This means that the game engine is supposed to find the best image settings for your hardware automatically, and dynamically adjust them so that you hit a target frame rate (adjustable between 30 and 60fps) no matter what is going on in the current scene that is being rendered.

While this is a good strategy for consoles, and even for casual PC gamers, it poses a problem for us trying to measure equivalent performance across GPUs. Luckily the developers of Forza Motorsport 7, Turn 10 Studios, still let you disable the dynamic control and configure the image quality settings as you desire.

One quirk however though is that in order for V-Sync to be disabled, the rendering resolution within the game must match the native resolution of your monitor. This means that if you are running 2560x1440 on your 4K monitor, you must first set the resolution within windows to 2560x1440 in order to run the game in V-Sync off mode.

forza7-settings.png

We did our testing with an array of three different resolutions (1080p, 1440p, and 4K) at maximum image quality settings. We tested both AMD and NVIDIA graphics cards in similar price and performance segments. The built-in benchmark mode for this game was used, which does feature some variance due to dynamic weather patterns. However, our testing within the full game matched the results of the benchmark mode closely, so we used it for our final results.

forza7-avgfps.png

Right off the bat, I have been impressed at how well optimized Forza Motorsport 7 seems to be on the PC. Compared to the unoptimized disaster that was Forza Horizon 3 when it launched on PC last year, it's clear that Turn 10 Studios and Microsoft have come a long way.

Even gamers looking to play on a 4K display at 60Hz can seemingly get away with the cheaper, and more mainstream GPUs such as the RX 580 or the GTX 1060 with acceptable performance in most scenarios.

Games on high-refresh-rate displays don't appear to have the same luxury. If you want to game at a resolution such as 2560x1440 at a full 144Hz, neither the RX Vega 64 or GTX 1080 will do this with maximum image quality settings. Although these GPUs appear to be in the margin where you could turn down a few settings to achieve your full refresh rate.

For some reason, the RX Vega cards didn't seem to show any scaling in performance when moving from 2560x1440 to 1920x1080, unlike the Polaris-based RX 580 and the NVIDIA options. We aren't quite sure of the cause of this and have reached out to AMD for clarification.

As far as frame times are concerned, we also gathered some data with our Frame Rating capture analysis system

Forza7_2560x1440_PLOT.png

Forza7_2560x1440_STUT.png

Taking a look at the first chart, we can see while the GTX 1080 frame times are extremely consistent, the RX Vega 64 shows some additional variance.

However, the frame time variance chart shows that over 95% of the frame times of the RX Vega 64 come in at under 2ms of variance, which will still provide a smooth gameplay experience in most scenarios. This matches with our experience while playing on both AMD and NVIDIA hardware where we saw no major issues with gameplay smoothness.

forza7-screen2.png

Forza Motorsport 7 seems to be a great addition to the PC gaming world (if you don't mind using the Microsoft store exclusively) and will run great on a wide array of hardware. Whether or not you have a NVIDIA or AMD GPU, you should be able to enjoy this fantastic racing simulator. 

How much does the driver matter when playing Forza 7?

Subject: General Tech | October 18, 2017 - 01:59 PM |
Tagged: forza motorsport 7, amd, nvidia, vega 64, vega 56, gtx 1070, GTX 1080, gtx 1080 ti, gaming

[H]ard|OCP recently used Forza 7 in their GPU benchmarks and discovered that AMD's Vega 64 outperformed the GTX 1080 by a noticeable margin.  NVIDIA responded by releasing two new drivers in quick succession, claiming performance improvements of up to 25% in this title, which prompted [H] to revisit there results with the newest drivers from both companies.  They tested at both 1440p and at 4K and saw changes, though perhaps not as great as NVIDIA first announced.  Take a look at the review here and consider the question they pose in their conclusions.

b4553952-fd88-4522-8cba-49488b75cc37.jpg

"Forza Motorsport 7 gaming performance has changed, video cards stack up differently when compared. We take Forza Motorsport 7 and apply new NVIDIA GeForce 387.92 and AMD Crimson ReLive 17.10.1 drivers to find out how these compare, what performance differences there are, and if AMD Radeon RX Vega is still king in this game."

Here is some more Tech News from around the web:

Gaming

Source: [H]ard|OCP

New GPU Launch, New Attempt to Unlock Stuff

Subject: Graphics Cards | August 30, 2017 - 09:27 PM |
Tagged: amd, Vega, vega 56, vega 64

Because so many different video cards are made from a handful of chip designs, there is a group of people who like to see whether a lower-end SKU can be unlocked to behave like a higher-end one. In this case, kdtree on the ChipHell forums has apparently flashed the new AMD RX Vega 56 with the vBIOS from an AMD RX Vega 64. Personally, I would find that a little sketchy, given the difference in stream processor count, but they’re the one with the graphics card.

amd-2017-vegabiosflash-chiphell-kdtree.jpg

Image Credit: kdtree from ChipHell forums

Turns out, it did something, but it did not magically create an RX Vega 64. The extra 512 shaders are probably disabled at the hardware level, such as with a laser. Your first reaction is probably “well, of course it is...” but, if you remember Polaris, users have software-modified 4GB cards into 8GB cards... so there is some precedence for “maybe AMD put more on the card than they said on the box”.

Oh right, so what did it do? It apparently gave the card a significant overclock. It’s hard to tell under the watermark, but the modified Vega 56 was just a percent or so away from the Vega 64 on 3DMark. I’m guessing a conventional overclock might do the same, but who knows.

The sound and Fury of the RX Vega 56

Subject: Graphics Cards | August 28, 2017 - 04:41 PM |
Tagged: vega 56, amd, radeon, R9 Fury

Having wrapped up their initial review of AMD's new RX Vega 56, [H]ard|OCP was curious how it stacks up in a direct competition with last generations R9 Fury.  The comparison is interesting, ROPs and Texture Units are the same in both cards, while the Fury uses HBM1 at a 4096bit interface while the Vega 56 uses HBM2 at 2048; clocks are 500MHz versus 800MHz respectively.  The prices are quite different, the Fury clocked in at $550 while the Vega 56 should be available at $400; not that there is any stock at any price. 

Check out the full article for specifics; the short answer is that you can expect the new Vega card to boast an average 25% performance advantage over the Fury.

1503714025cblcaoq1xx_1_1.png

"Do you have an AMD Radeon R9 Fury based video card and want to know if AMD Radeon RX Vega 56 at a lesser price is a performance upgrade? Do you want to know if architecturally AMD Radeon RX Vega 56 is faster than AMD Radeon R9 Fury? This follow-up performance review should answer those questions."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Source: [H]ard|OCP

Considering a move to a high powered Vega-tarian lifestyle?

Subject: Graphics Cards | August 14, 2017 - 03:49 PM |
Tagged: vega 64 liquid, vega 64, vega 56, rx vega, radoen, amd

The reviews of AMD's two and a half new cards are in and they have a lot to say about AMD's current focus for GPU development.  They have not gone green with this new architecture; but be honest with yourself about how much think about the environment when absorbed in a gaming session on a 4k monitor.  The Vega 64 and 56 do require far more energy than Pascal cards and do produce more noise, however keep in mind that third party air cooling or a better radiator may help mitigate the issue. 

The real question is the price, while there will be some challenges with the two Vega 64 cards the Vega 56 is certainly a competitor to the GTX 1070.  If the mining craze dies down to the point where the prices of these two cards approach MSRP AMD offers a compelling choice for those who also want a new monitor.  Freesync displays sell at a significantly lower price than comparable G-Sync displays, even before you start to look at the new bundle program AMD has introduced. 

Since we know you have already been through Ryan's review, perhaps you would be interested in what our framerating friends over at The Tech Report thought.  If not, there are plenty of other reviews below.

floorplan.png

"AMD's long-awaited Radeon RX Vega 64 and RX Vega 56 graphics cards are finally ready to make their way into gamers' hands. We go hands-on to see how they perform."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Author:
Manufacturer: AMD

A confusing market

I feel like I have been writing about AMD non-stop in 2017. Starting with the release of Ryzen 7 and following through last week’s review of the HEDT Threadripper processor, AMD has gone from a nearly-dormant state in 2015-2016 to a wildly active and successful organization with more than a dozen new product launches under its belt. Today we will reveal the company's first consumer products based on the new Vega GPU architecture, thrusting the Radeon brand back into the fight at the $400+ price segments.

At this point, with architecture teases, product unboxings, professional card reviews, and pricing and availability reveals, we almost know everything we need to know about the new Radeon RX Vega 64 and RX Vega 56 products. Almost. Today we can show you the performance.

I want to be honest with our readers: AMD gave me so little time with these cards that I am going to gloss over some of the more interesting technological and architectural changes that Vega brings to market. I will come back to them at a later time, but I feel it is most important for us to talk about the performance and power characteristics of these cards as consumers finally get the chance to spend their hard-earned money on them.

01.jpg

If you already know about the specifications and pricing peculiarities of Vega 64 and Vega 56 and instead want direct access to performance results, I encourage you to skip ahead. If you want a refresher those details, check out the summary below.

Interesting statistics from the creation of this review in a VERY short window:

  • 175 graphs 
  • 8 cards, 8 games, 2 resolutions, 3 runs = 384 test runs
  • >9.6 TB of raw captured video (average ~25 GB/min)

Radeon RX Vega 64 and Vega 56 Specifications

Much of the below is sourced from our Vega 64/56 announcement story last month.

Though the leaks have been frequent and getting closer to reality, as it turns out AMD was in fact holding back quite a bit of information about the positioning of RX Vega for today. Radeon will launch the Vega 64 and Vega 56 today, with three different versions of the Vega 64 on the docket. Vega 64 uses the full Vega 10 chip with 64 CUs and 4096 stream processors. Vega 56 will come with 56 CUs enabled (get it?) and 3584 stream processors.

Pictures of the various product designs have already made it out to the field including the Limited Edition with the brushed anodized aluminum shroud, the liquid cooled card with a similar industrial design, and the more standard black shroud version that looks very similar to the previous reference cards from AMD.

  RX Vega 64 Liquid RX Vega 64 Air RX Vega 56 Vega Frontier Edition GTX 1080 Ti GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega 10 Vega 10 Vega 10 Vega 10 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3584 4096 3584 2560 3072 2048 4096
Base Clock 1406 MHz 1247 MHz 1156 MHz 1382 MHz 1480 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1677 MHz 1546 MHz 1471 MHz 1600 MHz 1582 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units 256 256 224 256 224 160 192 128 256
ROP Units 64 64 64 64 88 64 96 64 64
Memory 8GB 8GB 8GB 16GB 11GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 1600 MHz 1890 MHz 11000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 352-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 484 GB/s 484 GB/s 410 GB/s 484 GB/s 484 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 345 watts 295 watts 210 watts 300 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.7 TFLOPS 12.6 TFLOPS 10.5 TFLOPS 13.1 TFLOPS 10.6 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count 12.5B 12.5B 12.5B 12.5B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 14nm 14nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $699 $499 $399 $999 $699 $599 $999 $499 $649

If you are a frequent reader of PC Perspective, you have already seen our reviews of the Vega Frontier Edition air cooled and liquid cards, so some of this is going to look very familiar. Looking at the Vega 64 first, we need to define the biggest change to the performance ratings of RX and FE versions of the Vega architecture. When we listed the “boost clock” of the Vega FE cards, and really any Radeon cards previous to RX Vega, we were referring the maximum clock speed of the card in its out of box state. This was counter to the method that NVIDIA used for its “boost clock” rating that pointed towards a “typical” clock speed that the card would run at in a gaming workload. Essentially, the NVIDIA method was giving consumers a more realistic look at how fast the card would be running while AMD was marketing the theoretical peak with perfect thermals, perfect workloads. This, to be clear, never happened.

Continue reading our review of the Radeon RX Vega 64, Vega 64 Liquid, and Vega 56!!

Ryzen and Radeon Roundup

Subject: Processors | July 31, 2017 - 03:18 PM |
Tagged: vega 64, vega 56, vega 10, Vega, radeon, amd, X399, Threadripper, ryzen, 1950x, 1920x, 1900x

Just in case you wanted to relive this weekends event, or you feel that somehow Ryan missed a detail when he was describing Threadripper or Vega, here is a roundup of other coverage of the event.  The Tech Report contrast the Vega 64 and Vega 56 with a few older NVIDIA cards as well as more modern ones, giving you a sense of the recent evolution of the GPU.  They also delve a bit into the pricing and marketing strategies which AMD has chosen, which you can check out here.

packs.png

"AMD's Radeon RX Vega graphics cards are finally here in the form of the RX Vega 64 and RX Vega 56. Join us as we see what AMD's new high-end graphics cards have in store for gamers."

Here are some more Processor articles from around the web:

Processors

Author:
Manufacturer: AMD

RX Vega is here

Though we are still a couple of weeks from availability and benchmarks, today we finally have the details on the Radeon RX Vega product line. That includes specifications, details on the clock speed changes, pricing, some interesting bundle programs, and how AMD plans to attack NVIDIA through performance experience metrics.

There is a lot going on today and I continue to have less to tell you about more products, so I’m going to defer a story on the architectural revelations that AMD made to media this week and instead focus on what I think more of our readers will want to know. Let’s jump in.

Radeon RX Vega Specifications

Though the leaks have been frequent and getting closer to reality, as it turns out AMD was in fact holding back quite a bit of information about the positioning of RX Vega for today. Radeon will launch the Vega 64 and Vega 56 today, with three different versions of the Vega 64 on the docket. Vega 64 uses the full Vega 10 chip with 64 CUs and 4096 stream processors. Vega 56 will come with 56 CUs enabled (get it?) and 3584 stream processors.

Pictures of the various product designs have already made it out to the field including the Limited Edition with the brushed anodized aluminum shroud, the liquid cooled card with a similar industrial design, and the more standard black shroud version that looks very similar to the previous reference cards from AMD.

  RX Vega 64 Liquid RX Vega 64 Air RX Vega 56 Vega Frontier Edition GTX 1080 Ti GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega 10 Vega 10 Vega 10 Vega 10 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3584 4096 3584 2560 3072 2048 4096
Base Clock 1406 MHz 1247 MHz 1156 MHz 1382 MHz 1480 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1677 MHz 1546 MHz 1471 MHz 1600 MHz 1582 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units 256 256 256 256 224 160 192 128 256
ROP Units 64 64 ? 64 88 64 96 64 64
Memory 8GB 8GB 8GB 16GB 11GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 1600 MHz 1890 MHz 11000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 352-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 484 GB/s 484 GB/s 484 GB/s 484 GB/s 484 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 345 watts 295 watts 210 watts 300 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.7 TFLOPS 12.6 TFLOPS 10.5 TFLOPS 13.1 TFLOPS 10.6 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count 12.5B 12.5B 12.5B 12.5B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 14nm 14nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $699 $499 $399 $999 $699 $599 $999 $499 $649

If you are a frequent reader of PC Perspective, you have already seen our reviews of the Vega Frontier Edition air cooled and liquid cards, so some of this is going to look very familiar. Looking at the Vega 64 first, we need to define the biggest change to the performance ratings of RX and FE versions of the Vega architecture. When we listed the “boost clock” of the Vega FE cards, and really any Radeon cards previous to RX Vega, we were referring the maximum clock speed of the card in its out of box state. This was counter to the method that NVIDIA used for its “boost clock” rating that pointed towards a “typical” clock speed that the card would run at in a gaming workload. Essentially, the NVIDIA method was giving consumers a more realistic look at how fast the card would be running while AMD was marketing the theoretical peak with perfect thermals, perfect workloads. This, to be clear, never happened.

vega-44.jpg

With the RX Vega cards and their specifications, the “boost clock” is now a typical clock rate. AMD has told me that this is what they estimate the average clock speed of the card will be during a typical gaming workload with a typical thermal and system design. This is great news! It means that gamers will have a more realistic indication of performance, both theoretical and expected, and the listings on the retailers and partner sites will be accurate. It also means that just looking at the spec table above will give you an impression that the performance gap between Vega FE and RX Vega is smaller than it will be in testing. (This is, of course, if AMD’s claims are true; I haven’t tested it myself yet.)

Continue reading our preview of the Radeon RX Vega 64 and Vega 56!