Podcast #469 - Marseille mCable, Core i9, Coffee Lake, Vega mGPU, and more!

Subject: General Tech | September 28, 2017 - 12:06 PM |
Tagged: Z370, video, Vega, skylake-x, shield, podcast, mGPU, mCable, marseille, Intel, gigabyte, Core i9-7980XE, Core i9-7960X, Core i9, coffee lake

PC Perspective Podcast #469 - 09/28/17

Join us for discussion on AMD Raven Ridge rumors,  Intel and Global Foundries new fabrication technology!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jermey Hellstrom, Josh Walrath, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg

Program length: 1:27:57

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:16:00 Ryan: Silicon Zeroes game
    2. 1:22:10 Jeremy: Going out of style discount - GIGABYTE GA-Z270-GAMING K3
    3. 1:24:10  Allyn: DIY Oleophobic Coating
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Source:

AMD enables RX Vega mGPU support

Subject: Graphics Cards | September 22, 2017 - 04:36 PM |
Tagged: Radeon Software 17.9.2, crossfire, Vega

The newest Radeon Software ReLive 17.9.2 is especially worth grabbing if you have or plan to have more than one Vega based card in your system as it marks the return of Crossfire support.  You can pair up Vega64 or Vega56 cards but do make sure they are a matched set.  We haven't had time to test the performance results yet but you can be sure we will be working on that in the near future.  Below are the results which AMD suggests you can expect in several different games, as well as a look at the other notes associated with this new driver.

image001.jpg

Radeon™ Software Crimson ReLive Edition is AMD's advanced graphics software for enabling high-performance gaming and engaging VR experiences. Create, capture, and share your remarkable moments. Effortlessly boost performance and efficiency. Experience Radeon Software with industry-leading user satisfaction, rigorously-tested stability, comprehensive certification, and more.

Radeon Software Crimson ReLive Edition 17.9.2 Highlights
Support For

  • Radeon RX Vega Series Up to 2x Multi GPU support
  • Project CARS 2™ Multi GPU profile support added

Fixed Issues
Hearts of Iron IV™ may experience a system hang when the campaign scenario is launched.

Radeon Software may display an erroneous "1603 Error" after installing Radeon Software. This error will not affect your Radeon Software installation.

Source: AMD

GLOBALFOUNDRIES Technical Conference Releases

Subject: General Tech | September 20, 2017 - 09:44 PM |
Tagged: GLOBALFOUNDRIES, FinFET, FD-SOI, 12nm, 14nm, 14nm+, 22FDX, 28FDX, 12FDX, amd, Vega, ryzen

The day after Intel had its Technology and Manufacturing expo in China, GLOBALFOUNDRIES kicks off their own version of the event and has made a significant number of announcements concerning upcoming and next generation process technologies. GF (GLOBALFOUNDRIES) had been the manufacturing arm of AMD until it was spun off as its own entity in 2009. Since then GF has been open to providing fabless semiconductor firms a viable alternative to TSMC and other foundries. Their current 14nm process is licensed from Samsung, as GF had some significant issues getting their own version of that technology into production. GF looks to be moving past their process hiccups in getting to FinFET technologies as well as offering other more unique process nodes that will serve upcoming mobile technologies very well.
 
GloFoundries_logo.jpg
 
The big announcement today was the existence of the 12LP process. This is a "12 nm" process that looks to be based off of their previous 14nm work. It is a highly optimized variant that offers around 15% better density and 10% better performance than current 14/16nm processes from competing firms. Some time back GF announced that it would be skipping the 10nm node and going directly to 7nm, but it seems that market forces have pushed them to further optimize 14nm and offer another step.  Regular process improvement cadences are important to fabless partners as they lay out their roadmaps for future products.
 
12FP is also on track to be Automotive Grade 2 Certified by Q4 2017, which opens it up to a variety of automotive applications. Self-driving cars are the hot topic these days and it appears as though GF will be working with multiple manufacturers including Tesla. The process also has an RF component that can be utilized for those designs.
 
There had been some questions before this about what GF would do between 14nm and their expected 7nm offering. AMD had previously shown a roadmap with the first generation Zen being offered on 14nm and a rather nebulous sounding 14nm+ process. We now know that 12LP is going to be the process that AMD leverages for Zen and Vega refreshes next year. GF is opening up risk production in 1H 2018 for early adopters. This typically means that tuning is still going on with the process, and wafer agreements tend to not hinge on "per good die". Essentially, just as the wording suggest, the monetary risks of production fall more on the partner rather than the foundry. I would expect the Zen/Vega refreshes to start rolling out mid-Summer 2018 if all goes well with 12LP.
 
GF-FAB.jpg
 
RF is getting a lot of attention these days. In the past I had talked quite a bit about FD-SOI and the slow adoption of that technology. In the 5G world that we are heading to, RF is becoming far more important. Currently GF has their 28FDX and 22FDX processes which utilize FD-SOI (Fully Depleted Silicon On Insulator). 22FDX is a dual purpose node that can handle both low-leakage ASICs as well as RF enabled products (think cell-phone modems). GF has also announced a new RF centric process node called 8SW SOI. This is a 300mm wafer based technology at Fab 10 located in East Fishkill, NY. This was once an IBM fab, but was eventually "given" to GF for a variety of reasons. The East Fishkill campus is also a center for testing and advanced process development.
 
22FDX is not limited to ASIC and RF production. GF is announcing that it is offering eMRAM (embedded magnetoresistive non-volatile memory) support. GF claims that ic an retain data through a 260C solder reflow while retaining data for more than 10 years at 125C. These products were developed through a partnership with Everspin Technologies. 1Gb DDR MRAM chips have been sampled and 256Mb DDR MRAM chips are currently available through Everspin. This technology is not limited to standalone chips and can be integrated into SOC designs utilizing eFlash and SRAM interface options.
 
GLOBALFOUNDRIES has had a rocky start since it was spun off from AMD. Due to aggressive financing from multiple sources it has acquired other pure play foundries and garnered loyal partners like AMD who have kept revenue flowing. If GF can execute on these new technologies they will be on a far more even standing with TSMC and attract new customers. GF has the fab space to handle a lot of wafers, but these above mentioned processes could be some of their first truly breakthrough products that differentiates itself from the competition.

Raven Ridge rumours

Subject: General Tech | September 18, 2017 - 04:17 PM |
Tagged: amd, raven ridge, Bristol Ridge, Ryzen 5 2500U, Zen, Vega, 14nm

If the rumours are true, the new 14nm Raven Ridge based AMD Ryzen 5 2500U will offer an impressive jump in performance compared to AMD's current generation of APUs.  The Inquirer's source suggests the new APU will offer a 50% jump in single threaded performance and an impressive 90% advantage on multi-threaded performance.  The multithreaded performance improvement may be the headline but seeing a huge increase in single threaded applications, AMD's recent Achilles Heel, shows some interesting improvements to Zen.  This will also mark the arrival of their first APU with Vega onboard, so you can expect better graphics performance as well.  The benchmark numbers and links are here.

raven_ridge_3.jpg

"LEAKED BENCHMARKS for AMD's forthcoming Raven Ridge APUs suggest that upcoming devices, expected to be launched in time for Christmas, will outperform current Bristol Ridge APUs by up to 90 per cent on multicore applications."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

AMD Ryzen 5 2500U APU With Vega Graphics Spotted in Geekbench Benchmarks

Subject: General Tech | September 16, 2017 - 03:32 AM |
Tagged: Zen, Vega, ryzen 5, ryzen, raven ridge, APU, amd

Back in May AMD made Ryzen Mobile official indicating that the APUs previously known as "Raven Ridge" would be launching in the second half of 2017. As that launch window closes, more details are starting to trickle out including benchmarks scores. The latest appearance of Raven Ridge is in a Geekbench benchmark score results page where a "Ryzen 5 2500U" APU achieves a single core score of 3,561 and a multi-core score of 9,421. These are fairly impressive results on their own, but especially considering that Ryzen Mobile chips are reportedly using up to 50% less power versus last generation Bristol Ridge processors while handily beating them in performance offered.

AMD has previously claimed that its Ryzen Mobile (Raven Ridge) APUs will offer up to 50% more CPU performance and 40% more GPU performance compared to its 7th Generation APUs. The leaked Geekbench scores seem to back up those claims (for the most part) with the Ryzen 5 2500U scoring slightly above 36% better single core performance and 48% better multi-core performance compared to the AMD A12-9800 APU with the latter being due primarily to the addition of SMT to the processor design allowing for twice the number of CPU threads (eight total). The performance improvements are also due to the move from Excavator to a Zen-based design on a smaller more power efficient process node. What is most impressive about this mobile part is that it is that much faster than a 65W quad core (4 core / 4 thread) desktop Bristol Ridge APU clocked at 3.8 GHz base and 4.2 GHz boost while using approximately half the power!

Geekbench Ryzen 5 2500U Vega APU.png

The Geekbench benchmark is only one data point, but is still a positive sign. One thing it does not reveal is clockspeed as while it lists 2.0 GHz that number is likely only the base and not the maximum boost frequency. Further, details on the Vega-based GPU are still unknown although the Infinity Fabric should help tremendously in reducing the bottleneck and keeping the on die GPU fed with data while gaming especially when paired with fast dual channel memory or HBM (I just hope that Ryzen Mobile is not held back like previous generation mobile APUs were with laptop manufacturers pairing them with single channel memory setups). We also do not know officially the number of stream processors that will be included in any of the Vega GPUs used in Ryzen Mobile with past rumors going up to 1024 SPs (mobile parts will likely be capped at 512 or 768 at the extreme). AMD claims that Ryzen Mobile will offer up to 40% more GPU performance, which to me suggests that we will possibly see higher GPU core counts but for the most part performance improvements are going to come from architecture improvements.

I am really interested to see how Raven Ridge plays out and hope that it is one step closer to finally realizing that HSA future AMD has been promsing me for years!

Also read: AMD Teases Ryzen Mobile APUs with Zen CPU Cores and On-Die Vega Graphics

Source: Guru3D

Free Champions Pack for Quake Champions for free with AMD GPUs and CPUs

Subject: Graphics Cards | September 12, 2017 - 03:12 PM |
Tagged: Vega, ryzen 7, ryzen 5, ryzen, RX 580, RX 570, RX 560, ruby, repetition, quake champions, amd

Remember Ruby, that animated heroine ATI used in tech demos many years back?  She has returned recently and is now playable in Quake Champions for those who claim their free key.  In addition to appearing in the game, she is also the centre of attention in this announcement from AMD.

QCRuby-SocialBanners-1200x630_V1A.png

If you purchase a new Ryzen 5 or 7 APU, or a RX 560, 570 or 580 you can now claim the Champions pack for Quake Champions for free.  The Champions pack will retail for $40 and add access to all current and future characters to your game, including a custom Ruby skin for Nyx.  If you purchased one of these products after August 22nd you are eligible to claim your key over at AMDRewards.  The contest will run until October 29th or until the keys run out.

 

Source: AMD

Samsung Announces 11nm LPP and 7nm LPP Processes

Subject: General Tech | September 11, 2017 - 05:27 PM |
Tagged: Vega, TSMC, Samsung, ryzen, Intel, euv, 8nm, 7nm, 14nm, 11nm, 10nm

Process technology is extremely complex today, and getting more and more complex by the minute.  The billions of dollars invested in each process node essentially insures that it will have to be used for years to come to get back that investment.  It not only needs to get back that investment, but provide more funds to start R&D on the next series of nodes that will come down the line.  It has only been a couple of years since the introduction of multiple 14nm processes from Intel and Samsung, as well as the 16nm node from TMSC.  We are already moving towards an introduction of 10nm parts from these manufacturers in bulk starting next year.  So have these manufacturers gotten their money worth out of their current processes?
 
Samsung-Foundry-Forum2017_main_1.jpg
 
Kinam Kim, President of Samsung Electronics’ Semiconductor Business, discloses the latest process advances from his division.
 
Part of that answer somes in the form of Samsung's latest product.  Samsung is announcing the availability of a new 11nm FinFET process that looks to be a pretty extensive optimization of the company's 14nm FF.  The new process promises 15% better performance and 10% chip area reduction at the same power consumption as the older 14nm FF.  The idea here is to further improve upon their 14nm process all the while retaining the economics of it.  This process exists separately from the latest 10nm LPP which can be considered a full jump from the previous 14nm.  11nm LPP will be primarily aimed at midrange and high end products, but will not reach the full scaling and performance of the 10nm LPP product.
 
This "little steps" philosophy has been around for ages, as AMD utilized it for most of their existence when they owned their own Fabs.  Other companies have done the same by including small improvements over the lifetime of the process so that the final product is signficantly better in terms of yield, transistor switching speed, and thermal dissipation.  Samsung looks to be doing this with their 11nm process by providing all those little steps of improvement from 14nm.
 
The second part of the announcement is that Samsung has announced their 7nm process using EUV.  Samsung had previously announced their 8nm process, but it still relies upon multi-patterning immersion litho.  Samsung has been testing their 250 watt EUV source with fairly good results.  The company is quoted as to processing over 200,000 wafers since 2014 and has achieved an 80% yeild on 256 Mb SRAM.  This is somewhat impressive, but still not ready for primetime.  SRAM features highly consistent structures and is typically one of the first complex chips tested on a new process.
 
Samsung is offering orders now of its 11nm line and it will be very interesting to see who jumps on board.  I would not expect AMD to transfer their designs to 11nm, as a tremendous amount of reworking and validating are required. Instead we will see AMD going for the 10nm node with their Zen 2 based products while continuing to produce Ryzen, Vega, and Polaris at 14nm. Those that will be taking advantage of 11nm will probably be groups pushing out smaller products, especially for the midrange and high end cell phone SOCs.
 
10nm LPP is expected in early 2018, 8nm LPP in 2019, and finally Samsung hopes for 7nm to be available in 2020.
Source: Samsung

New GPU Launch, New Attempt to Unlock Stuff

Subject: Graphics Cards | August 30, 2017 - 09:27 PM |
Tagged: amd, Vega, vega 56, vega 64

Because so many different video cards are made from a handful of chip designs, there is a group of people who like to see whether a lower-end SKU can be unlocked to behave like a higher-end one. In this case, kdtree on the ChipHell forums has apparently flashed the new AMD RX Vega 56 with the vBIOS from an AMD RX Vega 64. Personally, I would find that a little sketchy, given the difference in stream processor count, but they’re the one with the graphics card.

amd-2017-vegabiosflash-chiphell-kdtree.jpg

Image Credit: kdtree from ChipHell forums

Turns out, it did something, but it did not magically create an RX Vega 64. The extra 512 shaders are probably disabled at the hardware level, such as with a laser. Your first reaction is probably “well, of course it is...” but, if you remember Polaris, users have software-modified 4GB cards into 8GB cards... so there is some precedence for “maybe AMD put more on the card than they said on the box”.

Oh right, so what did it do? It apparently gave the card a significant overclock. It’s hard to tell under the watermark, but the modified Vega 56 was just a percent or so away from the Vega 64 on 3DMark. I’m guessing a conventional overclock might do the same, but who knows.

AMD's HBCC for you and me

Subject: General Tech | August 21, 2017 - 01:45 PM |
Tagged: Vega, amd, raja koduri, HBCC

Techgage has posted a look at what AMD's new HBCC feature in Vega is and how it will help you run games faster.  HBCC allows your GPU to treat VRAM as a last-level cache, so that a request for data not currently located in VRAM can be pulled into Vega's HBC for immediate access while simultaneously flushing out data which is no longer needed.  In addition to describing how the feature functions they also did quite a bit of testing to determine the real world effect of enabling HBCC in games and benchmarks.  Drop by for a look.

AMD-HBCC-Memory-Allocation.png

"AMD’s Vega GPU architecture brings many notable features to the table, but the one to find its way into Radeon chief Raja Koduri’s heart is HBCC – or “high-bandwidth cache controller”. In this article, we’re going to take a look at what HBCC is, why it offers no benefit right this moment, and talk about what it could offer in the future."

Here are some more Graphics Card articles from around the web:

Graphics Cards

 

Source: Techgage

Report: Wolfenstein 2 Optimized for AMD Vega with FP16 Shader Support

Subject: Graphics Cards | August 1, 2017 - 12:05 PM |
Tagged: Wolfenstein 2, vulkan, Vega, id Tech 6, id software, half-precision, game engine, FP16, amd

According to a report from Golem.de (German language), with the upcoming Wolfenstein 2: The New Colossus game AMD Vega owners will have the advantage of FP16 shader support from a new version of the id Tech 6 engine. The game supports both DX12 and the Vulkan API, but the use of half-precision calculations - the scope of which has not been specified - will potentially offer higher frame-rates for AMD Vega users.

vega-26.jpg

AMD provided some technical details about Wolfenstein 2 during their Threadripper/Vega tech day, and this new game includes “special optimizations” in the id Tech 6 game engine for AMD Vega hardware:

“For what exactly id Software (is using) FP16 instead of FP32, AMD did not say. These could post-processing effects, such as bloom. The performance should increase in the double-digit percentage range, (though) id Software did not want to comment on it.” (Translated from German.)

Source: Golem.de