Report: Wolfenstein 2 Optimized for AMD Vega with FP16 Shader Support

Subject: Graphics Cards | August 1, 2017 - 12:05 PM |
Tagged: Wolfenstein 2, vulkan, Vega, id Tech 6, id software, half-precision, game engine, FP16, amd

According to a report from Golem.de (German language), with the upcoming Wolfenstein 2: The New Colossus game AMD Vega owners will have the advantage of FP16 shader support from a new version of the id Tech 6 engine. The game supports both DX12 and the Vulkan API, but the use of half-precision calculations - the scope of which has not been specified - will potentially offer higher frame-rates for AMD Vega users.

vega-26.jpg

AMD provided some technical details about Wolfenstein 2 during their Threadripper/Vega tech day, and this new game includes “special optimizations” in the id Tech 6 game engine for AMD Vega hardware:

“For what exactly id Software (is using) FP16 instead of FP32, AMD did not say. These could post-processing effects, such as bloom. The performance should increase in the double-digit percentage range, (though) id Software did not want to comment on it.” (Translated from German.)

Source: Golem.de

Ryzen and Radeon Roundup

Subject: Processors | July 31, 2017 - 03:18 PM |
Tagged: vega 64, vega 56, vega 10, Vega, radeon, amd, X399, Threadripper, ryzen, 1950x, 1920x, 1900x

Just in case you wanted to relive this weekends event, or you feel that somehow Ryan missed a detail when he was describing Threadripper or Vega, here is a roundup of other coverage of the event.  The Tech Report contrast the Vega 64 and Vega 56 with a few older NVIDIA cards as well as more modern ones, giving you a sense of the recent evolution of the GPU.  They also delve a bit into the pricing and marketing strategies which AMD has chosen, which you can check out here.

packs.png

"AMD's Radeon RX Vega graphics cards are finally here in the form of the RX Vega 64 and RX Vega 56. Join us as we see what AMD's new high-end graphics cards have in store for gamers."

Here are some more Processor articles from around the web:

Processors

Author:
Manufacturer: AMD

RX Vega is here

Though we are still a couple of weeks from availability and benchmarks, today we finally have the details on the Radeon RX Vega product line. That includes specifications, details on the clock speed changes, pricing, some interesting bundle programs, and how AMD plans to attack NVIDIA through performance experience metrics.

There is a lot going on today and I continue to have less to tell you about more products, so I’m going to defer a story on the architectural revelations that AMD made to media this week and instead focus on what I think more of our readers will want to know. Let’s jump in.

Radeon RX Vega Specifications

Though the leaks have been frequent and getting closer to reality, as it turns out AMD was in fact holding back quite a bit of information about the positioning of RX Vega for today. Radeon will launch the Vega 64 and Vega 56 today, with three different versions of the Vega 64 on the docket. Vega 64 uses the full Vega 10 chip with 64 CUs and 4096 stream processors. Vega 56 will come with 56 CUs enabled (get it?) and 3584 stream processors.

Pictures of the various product designs have already made it out to the field including the Limited Edition with the brushed anodized aluminum shroud, the liquid cooled card with a similar industrial design, and the more standard black shroud version that looks very similar to the previous reference cards from AMD.

  RX Vega 64 Liquid RX Vega 64 Air RX Vega 56 Vega Frontier Edition GTX 1080 Ti GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega 10 Vega 10 Vega 10 Vega 10 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3584 4096 3584 2560 3072 2048 4096
Base Clock 1406 MHz 1247 MHz 1156 MHz 1382 MHz 1480 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1677 MHz 1546 MHz 1471 MHz 1600 MHz 1582 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units 256 256 256 256 224 160 192 128 256
ROP Units 64 64 ? 64 88 64 96 64 64
Memory 8GB 8GB 8GB 16GB 11GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 1600 MHz 1890 MHz 11000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 2048-bit HBM2 352-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 484 GB/s 484 GB/s 484 GB/s 484 GB/s 484 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 345 watts 295 watts 210 watts 300 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.7 TFLOPS 12.6 TFLOPS 10.5 TFLOPS 13.1 TFLOPS 10.6 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count 12.5B 12.5B 12.5B 12.5B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 14nm 14nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $699 $499 $399 $999 $699 $599 $999 $499 $649

If you are a frequent reader of PC Perspective, you have already seen our reviews of the Vega Frontier Edition air cooled and liquid cards, so some of this is going to look very familiar. Looking at the Vega 64 first, we need to define the biggest change to the performance ratings of RX and FE versions of the Vega architecture. When we listed the “boost clock” of the Vega FE cards, and really any Radeon cards previous to RX Vega, we were referring the maximum clock speed of the card in its out of box state. This was counter to the method that NVIDIA used for its “boost clock” rating that pointed towards a “typical” clock speed that the card would run at in a gaming workload. Essentially, the NVIDIA method was giving consumers a more realistic look at how fast the card would be running while AMD was marketing the theoretical peak with perfect thermals, perfect workloads. This, to be clear, never happened.

vega-44.jpg

With the RX Vega cards and their specifications, the “boost clock” is now a typical clock rate. AMD has told me that this is what they estimate the average clock speed of the card will be during a typical gaming workload with a typical thermal and system design. This is great news! It means that gamers will have a more realistic indication of performance, both theoretical and expected, and the listings on the retailers and partner sites will be accurate. It also means that just looking at the spec table above will give you an impression that the performance gap between Vega FE and RX Vega is smaller than it will be in testing. (This is, of course, if AMD’s claims are true; I haven’t tested it myself yet.)

Continue reading our preview of the Radeon RX Vega 64 and Vega 56!

Looks Like Vega Nano is GO!

Subject: Graphics Cards | July 30, 2017 - 10:07 PM |
Tagged: Vega, Siggraph, Nano

This doesn't look like it was really meant to happen, but it is in the wild now!  Twitter user Drew has posted a picture of Chris Hook holding up a Vega Nano card outside the show.  It draws its design from the previous Vega products that we have seen with the shroud and the red cube in the top right corner.  No specifications were included with this post, but we can see that the card is significantly shorter than the RX Vega FE that Ryan had reviewed.

vega_hook.jpg

TDPs should be in the sub-200 watt range for such a design.  The original Nano was a 150 watt TDP part that performed quite well at the time.  Pricing is again not included, but we will be able to guess once the rest of the Vega lineup is announced later.

Source: Twitter

AMD Reports Q2 2017 Results

Subject: Editorial | July 25, 2017 - 10:48 PM |
Tagged: Vega, Threadripper, ryzen, RX, Results, quarterly earnings, Q2 2017, EPYC, amd

The big question that has been going through the minds of many is how much marketshare did AMD take back and how would that affect the bottom line?  We know the second half of that question, but it is still up in the air how much AMD has taken from Intel.  We know that they have, primarily due to the amount of money that AMD has made.  Now we just need to find out how much.

AMD-Logo.jpg

Q2 revenue surpassed the expectations of both the Street and what AMD had predicted.  It was not a mind-blowing quarter, but it was a solid one for what has been a slowly sinking AMD.  The Q2 quarter is of course very important for AMD as it is the first full quarter of revenue from Ryzen parts as well as the introduction of the refreshed RX 500 series of GPUs.

The Ryzen R7 and R5 parts have been well received by press and consumers alike.  While it is not a completely overwhelming product in every aspect as compared to Intel’s product stack, it does introduce an incredibly strong dollar/thread value proposition.  Consumers can purchase an 8 core/16 thread part with competitive clock speeds and performance for around $300 US.  That same price point from Intel will give a user better single threaded and gaming performance, but comes short at 4 cores/8 threads.

The latest RX series of GPUs are slightly faster refreshes of the previous RX 400 series of cards and exist in the same price range of those previous cards.  These have been popular with AMD enthusiasts as they deliver solid performance for the price.  They are also quite popular with the coin miners due to the outstanding hash rate that they offer at their respective price points as compared to NVIDIA GPUs.

AMD ended up reporting GAAP revenue of $1.22B with a net income of -$16M.  Non-GAAP net income came in at a positive $19M.  This is a significant boost from Q1 figures which included a revenue of $984M and a net income of -$73M.  The tail end of Q1 did include some Ryzen sales, but not nearly enough to offset the losses that they accumulated.  These beat out the Street numbers by quite a bit, hence the uptick in AMD’s share price after hours.

The server/semi-custom group did well, but is still down some 5% as compared to last year.  This is primarily due to seasonal weaknesses with the consoles.  Microsoft will be ramping up production of their Xbox One X and AMD will start to receive royalties from that production later this year.  AMD has seen its marketshare in the data and server market tumble from years past to where it is at 1% and below.  AMD expects to change this trend with EPYC and has recorded the initial revenue from EPYC datacenter processor shipments.

We cannot emphasize enough how much the CPU/GPU group has grown over the past year.  Revenue from that group has increased by 51% since last year.  We do need to temper that with the reality that at that time AMD had not released the new RX series of GPUs nor did they have Ryzen.  Instead, it was all R5/R7 3x0 and Fury products as well as the FX CPUs based on Piledriver and Excavator cores.  It would honestly be hard for things to get worse than that point of time  Still, a 51% improvement with Ryzen and the RX 5x0 series of chips is greater than anyone really expected.  We must also consider that Q2 is still one of the slowest quarters in a year.

AMD expects next quarter to grow well beyond expectations.  The company is estimating that revenue will grow by 23%, plus or minus 3%.  If this holds true, AMD will be looking at a $1.5B quarter.  Something that has not been seen for some time (especially post foundry split).  The product stack that they will continue to introduce is quite impressive.  AMD will continue with the Ryzen R7 and R5 parts, but will also introduce the first R3 parts for the budget market.  RX Vega will be introduced next week at Siggraph.  Threadripper will be released to the wild as well as the x399 chipset.  EPYC is already shipping and they expect that product to grow steadily.  Ryzen Pro and then the mobile APUs will follow up later in the 2nd half of the year.  Semi-custom will get a boost when Microsoft starts shipping Xbox One X consoles.

threadripper.jpg

What a change a year makes.  Lisa Su and the gang have seemingly turned the boat around with a lot of smart moves, a lot of smart people, and a lot of effort.  They are not exactly at Easy Street yet, but they are moving in the right direction.  Ryzen has been a success with press and consumers and sets them on a level plane with Intel in overall performance and power.  The RX series continues to be popular and selling well (especially with miners).  AMD still has not caught up with demand for those parts, but I get the impression that they are being fairly conservative there by not flooding the market with RX chips in case coin mining bottoms out again.  The demand there is at least making miners and retailers happy, though could be causing some hard feelings among AMD enthusiasts who just want a gaming card at a reasonable price.

AMD continues to move forward and has recorded an impressive quarter.  Next quarter, if it falls in line with expectations, should help return AMD to profitability with some real momentum moving forward in selling product to multiple markets where it has not been a power for quite some time.  The company has been able to tread water for the past few years, but has planned far enough ahead to actually release competitive products at good prices to regain marketshare and achieve profitability again.  2017 has been a good year for AMD, and it looks to continue to Q3 and Q4.

Source: AMD

Podcast #459 - Threadripper Pricing, Liquid Cooled VEGA, Intel Rumors, and more!

Subject: General Tech | July 20, 2017 - 11:53 AM |
Tagged: zenbook, z270, wireless charging, water cooling, VR, video, Vega, TSMC, thermaltake, SILVIA, podcast, Pacific, Oculus, Kabby Lake-R, corsair, Contac, asus, amd

PC Perspective Podcast #459 - 07/20/17

Join us for Threadripper Pricing, Liquid Cooled VEGA, Intel Rumors, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg, Jim Tanous

Program length: 1:46:03

 
Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:36:30 Jeremy: Deal on a Ryzen 7 1700
    2. 1:41:04 Allyn: Still using WMC? You need EPG123!
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Source:
Author:
Manufacturer: AMD

Specifications and Design

Just a couple of short weeks ago we looked at the Radeon Vega Frontier Edition 16GB graphics card in its air-cooled variety. The results were interesting – gaming performance proved to fall somewhere between the GTX 1070 and the GTX 1080 from NVIDIA’s current generation of GeForce products. That is under many of the estimates from players in the market, including media, fans, and enthusiasts.  But before we get to the RX Vega product family that is targeted at gamers, AMD has another data point for us to look at with a water-cooled version of Vega Frontier Edition. At a $1500 MSRP, which we shelled out ourselves, we are very interested to see how it changes the face of performance for the Vega GPU and architecture.

Let’s start with a look at the specifications of this version of the Vega Frontier Edition, which will be…familiar.

  Vega Frontier Edition (Liquid) Vega Frontier Edition Titan Xp GTX 1080 Ti Titan X (Pascal) GTX 1080 TITAN X GTX 980 R9 Fury X
GPU Vega Vega GP102 GP102 GP102 GP104 GM200 GM204 Fiji XT
GPU Cores 4096 4096 3840 3584 3584 2560 3072 2048 4096
Base Clock 1382 MHz 1382 MHz 1480 MHz 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz
Boost Clock 1600 MHz 1600 MHz 1582 MHz 1582 MHz 1480 MHz 1733 MHz 1089 MHz 1216 MHz -
Texture Units ? ? 224 224 224 160 192 128 256
ROP Units 64 64 96 88 96 64 96 64 64
Memory 16GB 16GB 12GB 11GB 12GB 8GB 12GB 4GB 4GB
Memory Clock 1890 MHz 1890 MHz 11400 MHz 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 2048-bit HBM2 384-bit G5X 352-bit 384-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM)
Memory Bandwidth 483 GB/s 483 GB/s 547.7 GB/s 484 GB/s 480 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s
TDP 300 watts
~350 watts
300 watts 250 watts 250 watts 250 watts 180 watts 250 watts 165 watts 275 watts
Peak Compute 13.1 TFLOPS 13.1 TFLOPS 12.0 TFLOPS 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS
Transistor Count ? ? 12.0B 12.0B 12.0B 7.2B 8.0B 5.2B 8.9B
Process Tech 14nm 14nm 16nm 16nm 16nm 16nm 28nm 28nm 28nm
MSRP (current) $1499 $999 $1200 $699 $1,200 $599 $999 $499 $649

The base specs remain unchanged and AMD lists the same memory frequency and even GPU clock rates across both models. In practice though, the liquid cooled version runs at higher sustained clocks and can overclock a bit easier as well (more details later). What does change with the liquid cooled version is a usable BIOS switch on top of the card that allows you to move between two distinct power draw states: 300 watts and 350 watts.

IMG_4728.JPG

First, it’s worth noting this is a change from the “375 watt” TDP that this card was listed at during the launch and announcement. AMD was touting a 300-watt and 375-watt version of Frontier Edition, but it appears the company backed off a bit on that, erring on the side of caution to avoid breaking any of the specifcations of PCI Express (board slot or auxiliary connectors). Even more concerning is that AMD chose to have the default state of the switch on the Vega FE Liquid card at 300 watts rather than the more aggressive 350 watts. AMD claims this to avoid any problems with lower quality power supplies that may struggle to hit slightly over 150 watts of power draw (and resulting current) from the 8-pin power connections. I would argue that any system that is going to install a $1500 graphics card can and should be prepared to provide the necessary power, but for the professional market, AMD leans towards caution. (It’s worth pointing out the RX 480 power issues that may have prompted this internal decision making were more problematic because they impacted the power delivery through the motherboard, while the 6- and 8-pin connectors are generally much safer to exceed the ratings.)

Even without clock speed changes, the move to water cooling should result in better and more consistent performance by removing the overheating concerns that surrounded our first Radeon Vega Frontier Edition review. But let’s dive into the card itself and see how the design process created a unique liquid cooled solution.

Continue reading our review of the Radeon Vega Frontier Edition Liquid-Cooled card!!

Author:
Manufacturer: AMD

Two Vegas...ha ha ha

When the preorders for the Radeon Vega Frontier Edition went up last week, I made the decision to place orders in a few different locations to make sure we got it in as early as possible. Well, as it turned out, we actually had the cards show up very quickly…from two different locations.

dualvega.jpg

So, what is a person to do if TWO of the newest, most coveted GPUs show up on their doorstep? After you do the first, full review of the single GPU iteration, you plug those both into your system and do some multi-GPU CrossFire testing!

There of course needs to be some discussion up front about this testing and our write up. If you read my first review of the Vega Frontier Edition you will clearly note my stance on the idea that “this is not a gaming card” and that “the drivers aren’t ready. Essentially, I said these potential excuses for performance were distraction and unwarranted based on the current state of Vega development and the proximity of the consumer iteration, Radeon RX.

IMG_4688.JPG

But for multi-GPU, it’s a different story. Both competitors in the GPU space will tell you that developing drivers for CrossFire and SLI is incredibly difficult. Much more than simply splitting the work across different processors, multi-GPU requires extra attention to specific games, game engines, and effects rendering that are not required in single GPU environments. Add to that the fact that the market size for CrossFire and SLI has been shrinking, from an already small state, and you can see why multi-GPU is going to get less attention from AMD here.

Even more, when CrossFire and SLI support gets a focus from the driver teams, it is often late in the process, nearly last in the list of technologies to address before launch.

With that in mind, we all should understand the results we are going to show you might be indicative of the CrossFire scaling when Radeon RX Vega launches, but it very well could not. I would look at the data we are presenting today as a “current state” of CrossFire for Vega.

Continue reading our look at a pair of Vega Frontier Edition cards in CrossFire!

Radeon Vega Frontier Edition GPU and PCB Exposed

Subject: Graphics Cards | June 30, 2017 - 02:17 PM |
Tagged: Vega, radeon, Frontier Edition, amd

Hopefully you have already read up on my review of the new Radeon Vega Frontier Edition graphics card; it is full of interesting information about the gaming and professional application performance. 

IMG_4620.JPG

But I thought it would be interesting to share the bare card and GPU in its own post, just to help people find it later on.

For measurements, here's what we were able to gleam with the calipers.

(Editor's Update: we have updated the die measurements after doing a remeasure. I think my first was a bit loose as I didn't want to impact the GPU directly.)

  • Die size: 25.90mm x 19.80mm (GPU only, not including memory stacks)
    • Area: 512.82mm2
  • Package size: 47.3mm x 47.3mm
    • Area: 2,237mm2

Enjoy the sexy!

DSC03538 copy.jpg

Click to Enlarge

DSC03539 copy.jpg

Click to Enlarge

DSC03536 copy.jpg

Click to Enlarge

DSC03540.JPG

Click to Enlarge

DSC03541.JPG

Click to Enlarge

DSC03544.JPG

Click to Enlarge

Interesting notes:

  • There is a LOT of empty PCB space on the Vega FE card. This is likely indicative of added area needed for a large heatsink and fan to cool 300-375 watt TDP without throttling.
  • Benefits of the smaller HBM-based package appears to be at a cost of SMT components on the GPU substrate and the PCB
  • The die size of Vega is large - bigger than GP102 even, despite running at a much lower performance level. It will be interesting to see how AMD answers the question of why the die has expanded as much as it did.

Feel free to leave us some comments if anything stands out!

Author:
Manufacturer: AMD

An interesting night of testing

Last night I did our first ever live benchmarking session using the just-arrived Radeon Vega Frontier Edition air-cooled graphics card. Purchased directly from a reseller, rather than being sampled by AMD, gave us the opportunity to testing for a new flagship product without an NDA in place to keep us silenced, so I thought it would be fun to the let the audience and community go along for the ride of a traditional benchmarking session. Though I didn’t get all of what I wanted done in that 4.5-hour window, it was great to see the interest and excitement for the product and the results that we were able to generate.

But to the point of the day – our review of the Radeon Vega Frontier Edition graphics card. Based on the latest flagship GPU architecture from AMD, the Radeon Vega FE card has a lot riding on its shoulders, despite not being aimed at gamers. It is the FIRST card to be released with Vega at its heart. It is the FIRST instance of HBM2 being utilized in a consumer graphics card. It is the FIRST in a new attempt from AMD to target the group of users between gamers and professional users (like NVIDIA has addressed with Titan previously). And, it is the FIRST to command as much attention and expectation for the future of a company, a product line, and a fan base.

IMG_4621.JPG

Other than the architectural details that AMD gave us previously, we honestly haven’t been briefed on the performance expectations or the advancements in Vega that we should know about. The Vega FE products were released to the market with very little background, only well-spun turns of phrase emphasizing the value of the high performance and compatibility for creators. There has been no typical “tech day” for the media to learn fully about Vega and there were no samples from AMD to media or analysts (that I know of). Unperturbed by that, I purchased one (several actually, seeing which would show up first) and decided to do our testing.

On the following pages, you will see a collection of tests and benchmarks that range from 3DMark to The Witcher 3 to SPECviewperf to LuxMark, attempting to give as wide a viewpoint of the Vega FE product as I can in a rather short time window. The card is sexy (maybe the best looking I have yet seen), but will disappoint many on the gaming front. For professional users that are okay not having certified drivers, performance there is more likely to raise some impressed eyebrows.

Radeon Vega Frontier Edition Specifications

Through leaks and purposeful information dumps over the past couple of months, we already knew a lot about the Radeon Vega Frontier Edition card prior to the official sale date this week. But now with final specifications in hand, we can start to dissect what this card actually is.

  Vega Frontier Edition Titan Xp GTX 1080 Ti Titan X (Pascal) GTX 1080 TITAN X GTX 980 R9 Fury X R9 Fury
GPU Vega GP102 GP102 GP102 GP104 GM200 GM204 Fiji XT Fiji Pro
GPU Cores 4096 3840 3584 3584 2560 3072 2048 4096 3584
Base Clock 1382 MHz 1480 MHz 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1126 MHz 1050 MHz 1000 MHz
Boost Clock 1600 MHz 1582 MHz 1582 MHz 1480 MHz 1733 MHz 1089 MHz 1216 MHz - -
Texture Units ? 224 224 224 160 192 128 256 224
ROP Units 64 96 88 96 64 96 64 64 64
Memory 16GB 12GB 11GB 12GB 8GB 12GB 4GB 4GB 4GB
Memory Clock 1890 MHz 11400 MHz 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 1000 MHz 1000 MHz
Memory Interface 2048-bit HBM2 384-bit G5X 352-bit 384-bit G5X 256-bit G5X 384-bit 256-bit 4096-bit (HBM) 4096-bit (HBM)
Memory Bandwidth 483 GB/s 547.7 GB/s 484 GB/s 480 GB/s 320 GB/s 336 GB/s 224 GB/s 512 GB/s 512 GB/s
TDP 300 watts 250 watts 250 watts 250 watts 180 watts 250 watts 165 watts 275 watts 275 watts
Peak Compute 13.1 TFLOPS 12.0 TFLOPS 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS 7.20 TFLOPS
Transistor Count ? 12.0B 12.0B 12.0B 7.2B 8.0B 5.2B 8.9B 8.9B
Process Tech 14nm 16nm 16nm 16nm 16nm 28nm 28nm 28nm 28nm
MSRP (current) $999 $1200 $699 $1,200 $599 $999 $499 $649 $549

The Vega FE shares enough of a specification listing with the Fury X that it deserves special recognition. Both cards sport 4096 stream processors, 64 ROPs and 256 texture units. The Vega FE is running at much higher clock speeds (35-40% higher) and also upgrades to the next generation of high-bandwidth memory and quadruples capacity. Still, there will be plenty of comparisons between the two products, looking to measure IPC changes from the CUs (compute units) from Fiji to the NCUs built for Vega.

DSC03536 copy.jpg

The Radeon Vega GPU

The clock speeds also see another shift this time around with the adoption of “typical” clock speeds. This is something that NVIDIA has been using for a few generations with the introduction of GPU Boost, and tells the consumer how high they should expect clocks to go in a nominal workload. Normally I would say a gaming workload, but since this card is supposedly for professional users and the like, I assume this applies across the board. So even though the GPU is rated at a “peak” clock rate of 1600 MHz, the “typical” clock rate is 1382 MHz. (As an early aside, I did NOT see 1600 MHz in any of my testing time with our Vega FE but did settle in a ~1440 MHz clock most of the time.)

Continue reading our review of the AMD Radeon Vega Frontier Edition!