Intel Releases Q2 2018 Results

Subject: Editorial | July 29, 2018 - 07:49 PM |
Tagged: TSMC, Skylake, ryzen, Results, Q2, Intel, amd, 7nm, 2018, 10nm

The day after AMD announced their quarterly results, Intel followed up with a very impressive quarter of their own. Intel has reported another record quarter with $17B in revenue and $5B net. The business is extremely healthy and they continue to provide a lot of value and returns to shareholders. Typically Q2 is the second slowest quarter of the year, but Intel was able to improve their revenues by $900M over Q1. In certain quarters a 5% increase may not be all that large, but it is a significant jump from Q1 to Q2.

Intel-Swimming-in-Money.jpg

Intel reported that nearly all areas of the company have grown. Client Computing Group showed a 6% increase year over year, which is good news for the industry in general as many have (often) predicted that the PC market is in decline. This is also in the face of renewed competition from AMD and their Zen architecture based products. AMD also has grown steadily over the past year in terms of shipping products, so that further reinforces the impression that the PC market continues to grow steadily.

The data-centric business is steadily closing the gap between it and the PC centric group. CCG posted $8.7B in revenues while the data groups combined came in at around $8.1B. The Data Center Group was $5.5B of that result. It is up a very impressive 27% yoy. Intel has what seems to be a juggernaut in the data center with their Xeon products, and that growth is quite likely to continue growing as the need for data processing in our information rich world seemingly knows no bounds.

Intel raised their outlook for the year by nearly $2B to an impressive $69B in revenues. This is easily 10x that of their primary competitor. 2018 has certainly been a very profitable year for Intel and it looks to continue that trend throughout the last two quarters. Intel continues to improve upon their 14nm processes and it has allowed them to achieve a 61.4% margin. Compare this to AMD’s 37% margin and we can understand why 2018 is looking so good. Intel has lost a little bit on margin as compared to last year, but the amount of products being shipped is simply stunning as compared to its rival.

results.PNG

There were some expecting AMD to be taking up more of Intel’s marketshare, but that has not been the case. If anything, while AMD’s bottom line has improved, Intel appears to have actually taken more share in an expanding market. Unlike 2003 when AMD had the superior product with the Athlon 64 over Intel’s Pentium 4, the current Ryzen CPUs are “merely” competitive. While the performance and efficiency jump for AMD’s architecture is impressive considering the previous “Bulldozer” based generation, they now offer comparable performance with a price/core count advantage over Intel. This has not been enough to convince people and organizations to change en masse to AMD’s offerings. In 2003 a 2 GHz Athlon 64 was outperforming a 3.2 GHz Pentium 4. AMD was able to continue outperforming Intel even though they were at a serious process disadvantage.

While Q3 and Q4 look to continue Intel’s string of record quarters, things do not look as rosy when we get into 2019. Intel has had an endless stream of problems getting their advanced 10nm process up and running. It was originally expected to replace Intel’s 14nm process around two years after that particular process had been introduced. Then it turned into three years. Now we are five years into Intel using a 14nm variant for their latest generation of products. Intel used to have a 18 to 24 month lead over the competition when it comes to process technology, but now that advantage has all but evaporated. In theory Intel’s 10nm process is superior to what TSMC is offering with its 7nm in terms of die size, power, and transistor performance. However, those advantages do not amount to anything if it is unworkable. Intel has been very tight lipped with analysts and shareholders about the exact issues it is facing with the direction they set on with 10nm. It seems the combination of materials, tolerances, and self-aligned quad patterning is problematic enough that Intel cannot get consistent results with yields and bins.

growth.PNG

In the conference call Intel said that 10nm parts will be available on shelves by the holiday season of 2019. This means that Intel expects to hit high volume manufacturing near the end of 1H 2019. Intel further stated that data center parts will be shipping shortly after desktop and mobile, so most expect the first products to hit in Q1 2020. The problem that Intel will is that TSMC will be starting volume manufacturing of their 7nm parts shortly, if not already. AMD has 7nm EPYC sampling to partners and has spoken of a 1H introduction of those parts in volume. AMD will be introducing the Zen 2 architecture in that time on both server and desktop, and they are hinting at a significant IPC uplift with these parts.

If Intel is able to hit its 10nm goal in late 2019, AMD will have around a nine month window where they theoretically could have a superior product than Intel. AMD will surely come ahead from a density standpoint. If we combine this with the potential IPC improvement and a small uplift in transistor performance, then Zen 2 products should be able to outclass anything Intel comes out with. If AMD is really on the ball, then their EPYC processors could have a year to themselves without a comparable product from Intel.

This type of competition does not mean that Intel will simply shrivel up and die, but it is causing investors to rethink holding onto the stock after the pretty impressive run up over the past several years. Intel still has more fab space available to it than AMD could dream of at this point. There will be a lot of competition for 7nm wafer starts that will be shared by AMD, NVIDIA, Qualcomm, and Apple (not to mention dozens of other fab-less semi firms). AMD could very well sell as many chips as it can make, but it simply cannot address the needs of all of the markets that it is competing in. If GLOBALFOUNDRIES 7nm process is similar to TSMC’s, then we will see AMD be able to supply far greater amounts of product to the market, but GF is at least six months behind TSMC when it comes to ramping up their next generation process line. I would not expect GF based CPUs to hit anytime before Q2 2019, if not towards the end of that quarter.

outlook.PNG

Does this mean that Intel expects nothing except doom and gloom throughout 2019 and possibly into 2020? I do not think so. Intel will retain its market dominance, but it looks to be experiencing a situation that is a combination of a competitor hitting its stride as well as some bad luck/poor planning with manufacturing. This should open the door for AMD to make significant advances in marketshare and allow the company to make some serious money by improving their ASPs as well as shipping more parts.

2018 will undoubtedly be a record year for Intel. It is 2019 that is giving pause to investors and shareholders. If Intel can clean up its 10nm process in a timely manner they will close the door on any advances from AMD. If the company continues to experience issues with 10nm and never in fact gets it out the door, then it will be a long couple of years til Intel gets out their 7nm process. The rumor is that engineers have been pulled off of 7nm to fix 10nm. If this is the case, then I hesitate to even think when we will be seeing that upcoming node coming to fruition.

Source: Intel

AMD Announces Q1 2018 Results

Subject: Processors | April 25, 2018 - 09:45 PM |
Tagged: Zen+, Vega, TSMC, ryzen, Results, Q1 2018, Polaris, GLOBALFOUNDRIES, financials, amd, 7nm, 12nm

Today AMD announced their latest financial results for Q1 2018. We expected it to be a good quarter with their guidance earlier this year, but I doubt many thought it would be as strong as it turned out to be. AMD posted revenue of $1.65 billion with a net income of $81 million. This is up from the expected $1.57 billion that analysts expected from what is typically a slow quarter. This is up 40% from Q1 2017 and its $1.18 billion and up 23% from Q4 2017.

amd_logo_2.png

There are multiple reasons behind this revenue growth. The compute and graphics segment lead the way with $1.12B of revenue. The entire year of 2017 AMD had released parts seemingly nonstop since March and the introduction of Ryzen. Q1 continued this trend with the release of the first Ryzen APUs with Vega Graphics introducing the 2000 series. AMD also ramped up production of the newly released Zen+ Ryzen chips and started shipping those out to retailers and partners alike. Initial mobile Ryzen parts were also introduced and shipped with SKUs being also shipped to partners who have yet to announce and release products based on these chips. Finally the strength of the Radeon graphics chips in both gaming and blockchain applications allowed them a tremendous amount of sellthrough throughout 2017 and into 2018. AMD estimates that 10% of the quarter was due to blockchain demand.

Enterprise, Embedded, and Semi-Custom had a revenue of $532 million, which is lower than most analysts expected. Semi-Custom in particular has seen a decline over the past few quarters with the release and saturation of the market of the latest console platforms utilizing AMD designed chips. It appears as though much of the contract is front loaded in terms of revenue with royalties tapering off over time as sales decrease. AMD did have some significant wins, namely providing Intel with Vega based GPUs to be integrated with Intel’s Kaby Lake-G based units. These declines were offset by the shipment of EPYC based processors that are slowly ramping and being shipped to partners to be integrated into server platforms later this year. We have seen a handful of wins from companies like Dell EMC, but AMD is still slowly re-entering the market that they were forced to abandon with their previous, outdated Opteron products. AMD expects to reach mid-single digit marketshare during 2019, but for now they are just getting off the ground with this platform.

gaap_results.PNG

The company is not standing still or resting on their laurels after the successful and heralded launch of the latest Ryzen 2000 series chips based on the Zen+ architecture. It is aggressively ramping their mobile chips featuring the Zen/Vega combination and have some 25 product wins being released throughout late spring and summer. Overall partners have some 60 products either shipping or will ship later this year featuring Ryzen based CPUs.

There is some fear that AMD will see its GPU sales throughput be impacted by the recent drop of cryptocurrency value. Several years back with the Bitcoin crash we saw a tremendous amount of secondhand product being sold and GPU revenues for the company tanked. AMD is a bit more optimistic about the upcoming quarter as they expect the current cryptocurrency/blockchain market is much more robust and people will be holding onto these cards to mine other products/workloads rather than drop them on eBay. My thought here is that we will see a rise in cards available on the secondary/used market, but quite a bit might be offset by latent gaming demand that has been held back due the outrageous prices of GPUs over the past year. People that have been waiting for prices to get back to MSRP or below will then buy. This could be further enhanced if memory prices start to drop, providing more affordable DDR4 and flash for SSDs.

The company is also forging ahead with advanced process technology. They have recently received silicon back from TSMC’s 7nm process and it looks to be a Vega based product. The rumor surrounding this is that it will be more of a compute platform initially rather than gaming oriented. Later this year AMD expects to receive new EPYC silicon, but it looks as though this will be from GLOBALFOUNDRIES 7nm process. AMD wants to be flexible in terms of manufacturing, but they have a long history with GLOBALFOUNDRIES when it comes to CPU production. The two companies work closely together to make sure the process and CPU design match up as cleanly as possible to allow products such as Zen to reach market successfully. The GPU arm is obviously more flexible here as they have a history with multiple foundry partners throughout the past two decades.

nongaap_results.PNG

AMD has set an aggressive, but achievable, timetable of product releases that is initially focusing on the CPU side but would logically be transitioning to the GPU side. Zen+ is out on time and has met with acclaim from consumers and reviewers alike. The latest GPU products are comparable in performance to what NVIDIA has to offer, though they are less power efficient for that level of performance. The “pipecleaner” Vega on 7nm will pave the way towards Navi based products that look to be introduced next year. AMD could possibly refresh Vega on 12nm, but so far there has been no concrete information that such a product exists. They may very well continue to rely on current Polaris and Vega products throughout the rest of this year while focusing on Navi efforts to have a more competitive part come 2019.

Q2 2018 looks to be another successful quarter for AMD. The company’s outlook calls for revenue in the $1.725 billion range, plus or minus $50 million. AMD expects continued growth in all Ryzen product lines and greater throughput of EPYC based products as companies test and release products based on that platform. The GPU market could remain flat, but will most likely decline. That decline will be more than covered by the sell-through of the Ryzen line from top to bottom.

AMD improved their margin by an impressive 4%. Going from 32% to 36% showed the strength and higher ASPs of both CPU and GPU products. AMD expects another 1% increase over the next quarter. While these are good numbers for AMD, they do not match the 58%+ for NVIDIA and Intel when it comes to their margins. AMD certainly has a lot of room for improvement, and a richer product stack will allow them to achieve greater ASPs and see a rise in their overall margins. If EPYC becomes more successful, then we could see another significant improvement in margins for the company.

AMD is getting back to where they belong in terms of product placement, competitiveness, and financial performance. The company has seen a huge improvement year on year and hopes to continue that with a rich product stack that addresses multiple areas of computing. AI and machine learning is ramping up in the company in terms of software support as they feel their CPUs and GPUs are already good enough to handle the workloads. As more money comes in, they can afford to diversify and create a wider product base to compete in more markets. So far Lisa Su has been very, very successful in helping pull AMD from the ashes to the competitive situation that they currently find themselves in.

 

Source: AMD

Samsung Announces 11nm LPP and 7nm LPP Processes

Subject: General Tech | September 11, 2017 - 05:27 PM |
Tagged: Vega, TSMC, Samsung, ryzen, Intel, euv, 8nm, 7nm, 14nm, 11nm, 10nm

Process technology is extremely complex today, and getting more and more complex by the minute.  The billions of dollars invested in each process node essentially insures that it will have to be used for years to come to get back that investment.  It not only needs to get back that investment, but provide more funds to start R&D on the next series of nodes that will come down the line.  It has only been a couple of years since the introduction of multiple 14nm processes from Intel and Samsung, as well as the 16nm node from TMSC.  We are already moving towards an introduction of 10nm parts from these manufacturers in bulk starting next year.  So have these manufacturers gotten their money worth out of their current processes?
 
Samsung-Foundry-Forum2017_main_1.jpg
 
Kinam Kim, President of Samsung Electronics’ Semiconductor Business, discloses the latest process advances from his division.
 
Part of that answer somes in the form of Samsung's latest product.  Samsung is announcing the availability of a new 11nm FinFET process that looks to be a pretty extensive optimization of the company's 14nm FF.  The new process promises 15% better performance and 10% chip area reduction at the same power consumption as the older 14nm FF.  The idea here is to further improve upon their 14nm process all the while retaining the economics of it.  This process exists separately from the latest 10nm LPP which can be considered a full jump from the previous 14nm.  11nm LPP will be primarily aimed at midrange and high end products, but will not reach the full scaling and performance of the 10nm LPP product.
 
This "little steps" philosophy has been around for ages, as AMD utilized it for most of their existence when they owned their own Fabs.  Other companies have done the same by including small improvements over the lifetime of the process so that the final product is signficantly better in terms of yield, transistor switching speed, and thermal dissipation.  Samsung looks to be doing this with their 11nm process by providing all those little steps of improvement from 14nm.
 
The second part of the announcement is that Samsung has announced their 7nm process using EUV.  Samsung had previously announced their 8nm process, but it still relies upon multi-patterning immersion litho.  Samsung has been testing their 250 watt EUV source with fairly good results.  The company is quoted as to processing over 200,000 wafers since 2014 and has achieved an 80% yeild on 256 Mb SRAM.  This is somewhat impressive, but still not ready for primetime.  SRAM features highly consistent structures and is typically one of the first complex chips tested on a new process.
 
Samsung is offering orders now of its 11nm line and it will be very interesting to see who jumps on board.  I would not expect AMD to transfer their designs to 11nm, as a tremendous amount of reworking and validating are required. Instead we will see AMD going for the 10nm node with their Zen 2 based products while continuing to produce Ryzen, Vega, and Polaris at 14nm. Those that will be taking advantage of 11nm will probably be groups pushing out smaller products, especially for the midrange and high end cell phone SOCs.
 
10nm LPP is expected in early 2018, 8nm LPP in 2019, and finally Samsung hopes for 7nm to be available in 2020.
Source: Samsung

Podcast #459 - Threadripper Pricing, Liquid Cooled VEGA, Intel Rumors, and more!

Subject: General Tech | July 20, 2017 - 11:53 AM |
Tagged: zenbook, z270, wireless charging, water cooling, VR, video, Vega, TSMC, thermaltake, SILVIA, podcast, Pacific, Oculus, Kabby Lake-R, corsair, Contac, asus, amd

PC Perspective Podcast #459 - 07/20/17

Join us for Threadripper Pricing, Liquid Cooled VEGA, Intel Rumors, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg, Jim Tanous

Program length: 1:46:03

 
Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:36:30 Jeremy: Deal on a Ryzen 7 1700
    2. 1:41:04 Allyn: Still using WMC? You need EPG123!
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Source:

You've got to go deep before you can be extreme, TSMC is moving to 7nm

Subject: General Tech | July 19, 2017 - 12:41 PM |
Tagged: TSMC, 7nm, duv, N7, euv

TSMC is preparing for the move to a 7nm process by expanding suppliers and tooling up for Deep UV equipment.  Unlike Samsung, who will be using Extreme UV tools for their initial launch of 7nm product in 2018 TSMC have chosen to delay the move to EUV until the technology matures.  They will instead use DUV for its launch of their 7nm products, dubbed 7N, in 2018.  The difference between the two types of UV is the wavelength, DUV can be produced at 248 and 193 nm while EUV is an impressive 13.5nm, which is why the industry (and ourselves) depend on this process maturing and being adopted by manufacturers.  The EUV equipment that is being tested is still relatively new but should produce a better chip in theory, though perhaps not as many usable ones per wafer when first rolled out.  You can pop by DigiTimes for a list of the suppliers TSMC is adopting as well as a bit more detail.

tsmc_logo.jpg

"Taiwan Semiconductor Manufacturing Company (TSMC) is expanding the number of suppliers of equipment for its 7nm process in a bid to maintain an ecosystem pricing balance, according to industry sources."

Here is some more Tech News from around the web:

Tech Talk

 

Source: DigiTimes

NVIDIA Announces Q4 2017 Results

Subject: Editorial | February 9, 2017 - 06:59 PM |
Tagged: TSMC, Samsung, Results, quadro, Q4, nvidia, Intel, geforce, Drive PX2, amd, 2017, 2016

It is most definitely quarterly reports time for our favorite tech firms.  NVIDIA’s is unique with their fiscal vs. calendar year as compared to how AMD and Intel report.  This has to do when NVIDIA had their first public offering and set the fiscal quarters ahead quite a few months from the actual calendar.  So when NVIDIA announces Q4 2017, it is actually reflecting the Q4 period in 2016.  Clear as mud?

Semantics aside, NVIDIA had a record quarter.  Gross revenue was an impressive $2.173 billion US.  This is up slightly more than $700 million from the previous Q4.  NVIDIA has shown amazing growth during this time attributed to several factors.  Net income (GAAP) is at $655 million.  This again is a tremendous amount of profit for a company that came in just over $2 billion in revenue.  We can compare this to AMD’s results two weeks ago that hit $1.11 billion in revenue and a loss of $51 million for the quarter.  Consider that AMD provides CPUs, chipsets, and GPUs to the market and is the #2 x86 manufacturer in the world.

NVLogo_2D_H.jpg

The yearly results were just as impressive.  FY 2017 featured record revenue and net income.  Revenue was $6.91 billion as compare to FY 2016 at $5 billion.  Net income for the year was $1.666 billion with comparison to $614 million for FY 2016.  The growth for the entire year is astounding, and certainly the company had not seen an expansion like this since the early 2000s.

The core strength of the company continues to be gaming.  Gaming GPUs and products provided $1.348 billion in revenue by themselves.  Since the manufacturing industry was unable to provide a usable 20 nm planar product for large, complex ASICs companies such as NVIDIA and AMD were forced to innovate in design to create new products with greater feature sets and performance, all the while still using the same 28 nm process as previous products.  Typically process shrinks accounted for the majority of improvements (more transistors packed into a smaller area with corresponding switching speed increases).  Many users kept cards that were several years old due to there not being a huge impetus to upgrade.  With the arrival of the 14 nm and 16 nm processes from Samsung and TSMC respectively, users suddenly had a very significant reason to upgrade.  NVIDIA was able to address the entire market from high to low with their latest GTX 10x0 series of products.  AMD on the other hand only had new products that hit the midrange and budget markets.

NV-Q4-2014.jpg

The next biggest area for NVIDIA is that of the datacenter.  This has seen tremendous growth as compared to the other markets (except of course gaming) that NVIDIA covers.  It has gone from around $97 million in Q4 2016 up to $296 million this last quarter.  Tripling revenue in any one area is rare.  Gaming “only” about doubled during this same time period.  Deep learning and AI are two areas that required this type of compute power and NVIDIA was able to deliver a comprehensive software stack, as well as strategic partnerships that provided turnkey solutions for end users.

After datacenter we still have the visualization market based on the Quadro products.  This area has not seen the dramatic growth as other aspects of the company, but it remains a solid foundation and a good money maker for the firm.  The Quadro products continue to be improved upon and software support grows.

One area that promises to really explode in the next three to four years is the automotive sector.  The Drive PX2 system is being integrated into a variety of cars and NVIDIA is focused on providing a solid and feature packed solution for manufacturers.  Auto-pilot and “co-pilot” modes will become more and more important in upcoming models and should reach wide availability by 2020, if not a little sooner.  NVIDIA is working with some of the biggest names in the industry from both automakers and parts suppliers.  BMW should release a fully automated driving system later this year with their i8 series.  Audi also has higher end cars in the works that will utilize NVIDIA hardware and fully automated operation.  If NVIDIA continues to expand here, eventually it could become as significant a source of income as gaming is today.

There was one bit of bad news from the company.  Their OEM & IP division has seen several drops over the past several quarters.  NVIDIA announced that the IP licensing to Intel would be discontinued this quarter and would not be renewed.  We know that AMD has entered into an agreement with Intel to provide graphics IP to the company in future parts and to cover Intel in potential licensing litigation.  This was a fair amount of money per quarter for NVIDIA, but their other divisions more than made up for the loss of this particular income.

NVIDIA certainly seems to be hitting on all cylinders and is growing into markets that previously were unavailable as of five to ten years ago.  They are spreading out their financial base so as to avoid boom and bust cycles of any one industry.  Next quarter NVIDIA expects revenue to be down seasonally into the $1.9 billion range.  Even though that number is down, it would still represent the 3rd highest quarterly revenue.

Source: NVIDIA

ARM Partners with Xilinx to Accelerate Path to 7nm

Subject: Processors | December 8, 2016 - 09:00 AM |
Tagged: Xilinx, TSMC, standard cells, layout, FinFET, EDA, custom cell, arm, 7nm

Today ARM is announcing their partnership with Xilinx to deliver design solutions for their products on TSMC’s upcoming 7nm process node.  ARM has previously partnered with Xilinx on other nodes including 28, 20, and 16nm.  Their partnership extends into design considerations to improve the time to market of complex parts and to rapidly synthesize new designs for cutting edge process nodes.

Xilinx is licensing out the latest ARM Artisan Physical IP platform for TSMC’s 7nm.  Artisan Physical IP is a set of tools to help rapidly roll out complex designs as compared to what previous generations of products faced.  ARM has specialized libraries and tools to help implement these designs on a variety of processes and receive good results even on the shortest possible design times.

icon_arm.jpg

Design relies on two basic methodologies.  There is custom cell and then standard cell designs.  Custom cell design allows for a tremendous amount of flexibility in layout and electrical characteristics, but it requires a lot of man-hours to complete even the simplest logic.  Custom cell designs typically draw less power and provide higher clockspeeds than standard cell design.  Standard cells are like Legos in that the cells can be quickly laid out to create complex logic.  Software called EDA (Electronic Design Automation) can quickly place and route these cells.  GPUs lean heavily on standard cells and EDA software to get highly complex products out to market quickly.

These two basic methods have netted good results over the years, but during that time we have seen implementations of standard cells become more custom in how they behave.  While not achieving full custom performance, we have seen semi-custom type endeavors achieve appreciable gains without requiring the man hours to achieve fully custom.

In this particular case ARM is achieving a solid performance in power and speed through automated design that improves upon standard cells, but without the downsides of a fully custom part.  This provides positive power and speed benefits without the extra power draw of a traditional standard cell.  ARM further improves upon this with the ARM Artisan Power Grid Architect (PGA) which simplifies the development of a complex power grid that services a large and complex chip.

We have seen these types of advancements in the GPU world that NVIDIA and AMD enjoy talking about.  A better power grid allows the ASIC to perform at lower power envelopes due to less impedence.  The GPU guys have also utilized High Density Libraries to pack in the transistors as tight as possible to utilize less space and increase spatial efficiency.  A smaller chip, which requires less power is always a positive development over a larger chip of the same capabilities that requires more power.  ARM looks to be doing their own version of these technologies and are applying them to TSMC’s upcoming 7nm FinFET process.

TSMC is not releasing this process to mass production until at least 2018.  In 1H 2017 we will see some initial test and early production runs for a handful of partners.  Full blown production of 7nm will be in 2018.  Early runs and production are increasingly being used for companies working with low power devices.  We can look back at 20/16/14 nm processes and see that they were initially used by designs that do not require a lot of power and will run at moderate clockspeeds.  We have seen a shift in who uses these new processes with the introduction of sub-28nm process nodes.  The complexity of the design, process steps, materials, and libraries have pushed the higher performance and power hungry parts to a secondary position as the foundries attempt to get these next generation nodes up to speed.  It isn’t until after some many months of these low power parts are pushed through that we see adjustments and improvements in these next generation nodes to handle the higher power and clockspeed needs of products like desktop CPUs and GPUs.

Zynq-7015-module_large.jpg

ARM is certainly being much more aggressive in addressing next generation nodes and pushing their cutting edge products on them to allow for far more powerful mobile products that also exhibit improved battery life.  This step with 7nm and Xilinx will provide a lot of data to ARM and its partners downstream when the time comes to implement new designs.  Artisan will continue to evolve to allow partners to quickly and efficiently introduce new products on new nodes to the market at an accelerated rate as compared to years past.

Click to read the entire ARM post!

Source: ARM
Author:
Subject: Editorial
Manufacturer: NVIDIA

NVIDIA Today?

It always feels a little odd when covering NVIDIA’s quarterly earnings due to how they present their financial calendar.  No, we are not reporting from the future.  Yes, it can be confusing when comparing results and getting your dates mixed up.  Regardless of the date before the earnings, NVIDIA did exceptionally well in a quarter that is typically the second weakest after Q1.

NVIDIA reported revenue of $1.43 billion.  This is a jump from an already strong Q1 where they took in $1.30 billion.  Compare this to the $1.027 billion of its competitor AMD who also provides CPUs as well as GPUs.  NVIDIA sold a lot of GPUs as well as other products.  Their primary money makers were the consumer space GPUs and the professional and compute markets where they have a virtual stranglehold on at the moment.  The company’s GAAP net income is a very respectable $253 million.

results.png

The release of the latest Pascal based GPUs were the primary mover for the gains for this latest quarter.  AMD has had a hard time competing with NVIDIA for marketshare.  The older Maxwell based chips performed well against the entire line of AMD offerings and typically did so with better power and heat characteristics.  Even though the GTX 970 was somewhat limited in its memory configuration as compared to the AMD products (3.5 GB + .5 GB vs. a full 4 GB implementation) it was a top seller in its class.  The same could be said for the products up and down the stack.

Pascal was released at the end of May, but the company had been shipping chips to its partners as well as creating the “Founder’s Edition” models to its exacting specifications.  These were strong sellers throughout the end of May until the end of the quarter.  NVIDIA recently unveiled their latest Pascal based Quadro cards, but we do not know how much of an impact those have had on this quarter.  NVIDIA has also been shipping, in very limited quantities, the Tesla P100 based units to select customers and outfits.

Click to read more about NVIDIA's latest quarterly results!

Xbox One S is Compact, Power Efficient, and (Slightly) Faster

Subject: General Tech | August 8, 2016 - 11:06 PM |
Tagged: xbox one s, xbox one, TSMC, microsoft, console, 16nm

Microsoft recently unleashed a smaller version of its gaming console in the form of the Xbox One S. The new "S" variant packs an internal power supply, 4K Blu-ray optical drive, and a smaller (die shrunk) AMD SoC into a 40% smaller package. The new console is clad in all white with black accents and a circular vent on left half of the top. A USB port and pairing button has been added to the front and the power and eject buttons are now physical rather than capacitive (touch sensitive).

Rear I/O remains similar to the original console and includes a power input, two HDMI ports (one input, one output), two USB 3.0 ports, one Ethernet, one S/PDIF audio out, and one IR out port. There is no need for the power brick anymore though as the power supply is now internal. Along with being 40% smaller, it can now be mounted vertically using an included stand. While there is no longer a dedicated Kinect port, it is still possible to add a Kinect to your console using an adapter.

Microsoft Xbox One S Gaming Console 4K Media BluRay UHD.jpg

The internal specifications of the Xbox One S remain consistent with the original Xbox One console except that it will now be available in a 2TB model. The gaming console is powered by a nearly identical processor that is now 35% smaller thanks to being manufactured on a smaller 16nm FinFet process node at TSMC. While the chip is more power efficient, it still features the same eight Jaguar CPU cores clocked at 1.75 GHz and 12 CU graphics portion (768 stream processors). Microsoft and AMD now support HDR and 4K resolutions and upscaling with the new chip. The graphics portion is where the new Xbox One S gets a bit interesting because it appears that Microsoft has given the GPU a bit of an overclock to 914 MHz. Compared to the original Xbox One's 853 MHz, this is a 7.1% increase in clockspeed. The increased GPU clocks also results in increased bandwidth for the ESRAM (204 GB/s on the original Xbox One versus 219 GB/s on the Xbox One S).

According to Microsoft, the increased GPU clockspeeds were necessary to be able to render non HDR versions of the game for Game DVR, Game Streaming, and taking screenshots in real time. A nice side benefit to this though is that the extra performance can result in improved game play in certain games. In Digital Foundry's testing, Richard Leadbetter found this to be especially true in games with unlocked frame rates or in games that are 30 FPS locked but where the original console could not hit 30 FPS consistently. The increased clocks can be felt in slightly smoother game play and less screen tearing. For example, they found that the Xbox One S got up to 11% higher frames in Project Cars (47 FPS versus 44) and between 6% to 8% in Hitman. Further, they found that the higher clocks help performance in playing Xbox 360 games on the Xbox One in backwards compatibility mode such as Alan Wake's American Nightmare.

The 2TB Xbox One S is available now for $400 while the 1TB ($350) and 500GB ($300) versions will be available on the 23rd. For comparison, the 500GB Xbox One (original) is currently $250. The Xbox One 1TB game console varies in price depending on game bundle.

What are your thoughts on the smaller console? While the ever so slight performance boost is a nice bonus, I definitely don't think that it is worth specifically upgrading for if you already have an Xbox One. If you have been holding off, now is the time to get a discounted original or smaller S version though! If you are hoping for more performance, definitely wait for Microsoft's Scorpio project or it's competitor the PlayStation 4 Neo (or even better a gaming PC right!? hehe).

I do know that Ryan has gotten his hands on the slimmer Xbox One S, so hopefully we will see some testing of our own as well as a teardown (hint, hint!).

Also read:

Source: Eurogamer
Author:
Subject: General Tech
Manufacturer: ARM

New Products for 2017

PC Perspective was invited to Austin, TX on May 11 and 12 to participate in ARM’s yearly tech day.  Also invited were a handful of editors and analysts that cover the PC and mobile markets.  Those folks were all pretty smart, so it is confusing as to why they invited me.  Perhaps word of my unique talent of screenshoting PDFs into near-unreadable JPGs preceded me?  Regardless of the reason, I was treated to two full days of in-depth discussion of the latest generation of CPU and GPU cores, 10nm test chips, and information on new licensing options.

A73_formfactors.png

Today ARM is announcing their next CPU core with the introduction of the Cortex-A73. They are also unwrapping the latest Mali-G71 graphics technology.  Other technologies such as the CCI-550 interconnect are also revealed.  It is a busy and important day for ARM, especially in light of Intel seemingly abandoning the sub-milliwatt mobile market.

A73_boost.png

Cortex-A73

ARM previously announced the Cortex-A72 in February, 2015.  Since that time it has been seen in most flagship mobile devices in late 2015 and throughout 2016.  The market continues to evolve, and as such the workloads and form factors have pushed ARM to continue to develop and improve their CPU technology.

A73_perf_comp_A72.png

The Sofia Antipolis, France design group is behind the new A73.  The previous several core architectures had been developed by the Cambridge group.  As such, the new design differs quite dramatically from the previous A72.  I was actually somewhat taken aback by the differences in the design philosophy of the two groups and the changes between the A72 and A73, but the generational jumps we have seen in the past make a bit more sense to me.

The marketplace is constantly changing when it comes to workloads and form factors.  More and more complex applications are being ported to mobile devices, including hot technologies like AR and VR.  Other technologies include 3D/360 degree video, greater than 20 MP cameras, and 4K/8K displays and their video playback formats.  Form factors on the other hand have continued to decrease in size, especially in overall height.  We have relatively large screens on most premium devices, but the designers have continued to make these phones thinner and thinner throughout the years.  This has put a lot of pressure on ARM and their partners to increase performance while keeping TDPs in check, and even reducing them so they more adequately fit in the TDP envelope of these extremely thin devices.

A73_power_comp_A72.png

Click here to continue reading about ARM's Tech Day 2016!