Author:
Subject: Editorial
Manufacturer: PCPerspective

The Experiment...

Introduction

OK, call me crazy (you wouldn’t be the first) but this is something I’ve wanted to try for years, and I bet I’m not the only one. Each time a new power supply comes across the lab bench with ever increasing output capacities, I find myself thinking, “I could weld with this beast.” Well the AX1600i pushed me over the edge and I decided to give it a go; what could possibly go wrong?

2-Side-view.jpg

133.3 Amps on the +12V outputs!

The Corsair AX1600i Digital power supply can deliver up to 133 Amps on the combined +12V rails, more than enough amperage for welding. There are dozens of PC power supplies on the market today that can deliver 100 Amps or more on the +12V output, but the AX1600i has another feature that might help make this project a success, the ability to manually set current limits on the +12V outputs. Thanks to the fact that the AX1600i is a digital power supply that allows manually setting the current limits on the +12V outputs via the Corsair Link data acquisition and control software, I might be able to add the ability to select a desired amperage to weld with. Yes!

Just because the AX1600i “can” deliver 133A doesn’t mean I want that much current available for welding. I typically only use that much power when I’m welding heavy steel pieces using ¼” rod. For this experiment I would like to be able to start out at a lot lower amperage, and I’m hoping the Corsair Link software will provide that ability.

3-Setup.jpg

Stick Welding with a PC Power Supply!

My first thought was to try to adapt a TIG (Tungsten Inert Gas) welder for use with the AX1600i. I figured using a TIG torch (Tungsten electrode shrouded with Argon gas instead of a flux coated rod) might give better control especially at the lower voltage and currents where I plan to start testing. TIG welders are commonly used to weld small stainless steel parts and sheet metal. But then I remembered the TIG welder power supply has a high voltage pulse built-in to initiate the plasma arc. Without that extra kick-start, it might be difficult to strike an arc without damaging the fine pointed tip of the Tungsten electrode. So I decided to just go with a conventional stick welding setup. The fact that PC power supplies put out DC voltage will be an advantage over the more common AC buzz-box arc welders for better stability and producing higher quality welds.

Modifications

Obviously, trying to convert a PC power supply into an arc welding power supply will require a few modifications. Here is a quick list of the main challenges I think we will have to overcome.

•    Higher capacity fan for better cooling
•    Terminate all the PSU’s +12V cables into welding leads
•    Disable the Short Circuit protection feature
•    Implement selecting the desired current output
•    Strike and maintain a stable arc with only 12 volts

Please continue reading our write up about Arc Welding with a PC Power Supply!!!