Subject: Mobile
Manufacturer: Qualcomm

Introduction

Introduction

In conjunction with Ericsson, Netgear, and Telstra, Qualcomm officially unveiled the first Gigabit LTE ready network. Sydney, Australia is the first city to have this new cellular spec deployed through Telstra. Gigabit LTE, dubbed 4GX by Telstra, offers up to 1Gbps download speeds and 150 Mbps upload speeds with a supported device. Gigabit LTE implementation took partnership between all four companies to become a reality with Ericsson providing the backend hardware and software infrastructure and upgrades, Qualcomm designing its next-gen Snapdragon 835 SoC and Snapdragon X16 modem for Gigabit LTE support, Netgear developing the Nighthawk M1 Mobile router which leverages the Snapdragon 835, and Telstra bringing it all together on its Australian-based cellular network. Qualcomm, Ericsson, and Telstra all see the 4GX implementation as a solid step forward in the path to 5G with 4GX acting as the foundation layer for next-gen 5G networks and providing a fallback, much the same as 3G acted as a fallback for the current 4G LTE cellular networks.

Gigabit LTE Explained

02-telstra-gigabit-lte-explained.jpg

Courtesy of Telstra

What exactly is meant by Gigabit LTE (or 4GX as Telstra has dubbed the new cellular technology)? Gigabit LTE increases both the download and upload speeds of current generation 4G LTE to 1Gbps download and 150 Mbps upload speeds by leveraging several technologies for optimizing the signal transmission between the consumer device and the cellular network itself. Qualcomm designed the Snapdragon X16 modem to operate on dual 60MHz signals with 4x4 MIMO support or dual 80MHz signals without 4x4 MIMO. Further, they increased the modem's QAM support to 256 (8-bit) instead of the current 64 QAM support (6-bit), enabling 33% more data per stream - an increase of 75 Mbps to 100 Mbps per stream. The X16 modem leverages a total of 10 communication streams for delivery of up to 1 Gbps performance and also offers access to previously inaccessible frequency bands using LAA (License Assisted Access) to leverage increased power and speed needs for Gigabit LTE support.

Continue reading our coverage of the Gigabit LTE technology!