Subject: Storage
Manufacturer: Toshiba

Toshiba RC100 240GB/480GB SSD Review

Introduction:

Budget SSDs are a tough trick to pull off. You have components, a PCB, and ultimately assembly - all things which costs money. Savings can be had when major components (flash) are sourced from within the same company, but there are several companies already playing that game. Another way to go is to reduce PCB size, but then you can only fit so much media on the same board as the controller and other necessary parts. Samsung attempted something like this with its PM971, but that part was never retail, meaning the cost savings were only passed to the OEMs implementing that part into their systems. It would be nice if a manufacturer would put a part like this into the hands of regular customers looking to upgrade their system on a budget, and Toshiba is aiming to do just that with their new RC100 line:

DSC04992.JPG

Not only did Toshiba stack the flash and controller within the same package, they also put that package on an M.2 2242 PCB. No need for additional length here really, and they could have possibly gotten away with M.2 2230, but that might have required some components on the back side of the PCB. Single-sided PCBs are cheaper to produce vs. a PCB that is 12mm longer, so the design decision makes sense here.

Specifications:

specs.png

Bear in mind these are budget parts and small ones at that. The specs are decent, but these are not meant to be fire-breathing SSDs. The PCIe 3.0 x2 interface will be limiting things a bit, and these are geared more towards power efficiency with a typical active power draw of only 3.2 Watts. While we were not sampled the 120GB part, it does appear to maintain decent specified performance despite the lower capacity, which is a testament to the performance of Toshiba's 64-layer 3D BiCS TLC flash.

Packaging:

DSC04989.JPG

Not much to talk about here. Simple, no frills, SSD packaging. Just enough to ensure the product arrives undamaged. Mission accomplished.

Read on for our full review of the Toshiba RC100 240GB and 480GB SSDs!

Marvell Updates NVMe SSD Controllers - 8-Channel 88SS1100 and 4-Channel 88SS1084

Subject: Storage | June 7, 2018 - 06:08 AM |
Tagged: toggle NAND, ssd, PCIe 3.0 x4, ONFI, NVMe, Marvell, controller, 88SS1100, 88SS1084

We've seen faster and faster SSDs over the past decade, and while the current common interface is PCIe 3.0 x4, SSD controllers still have a hard time saturating the available bandwidth. This is due to other factors like power consumption constraints of the M.2 form factor as well as the controllers not being sufficiently optimized to handle IO requests at a consistently low latency. This means there is plenty of room for improvement, and with that, we have two new NVme SSD controllers out of Marvell:

block diagram.png

Above is the block diagram for the 88SS1100, an 8-Channel controller that promises higher performance over Marvell's previous parts. There is also a nearly identical 88SS1084, which drops to four physical channels but retains the same eight CE (chip enable) lines, meaning it can still talk to eight separate banks of flash, which should keep performance reasonable despite the halving of the physical channels available. Reducing channels to the flash helps save power and reduces the cost of the controller.

Marvell claims the new controller can reach 3.6GB/s throughput and 700,000 IOPS. Granted it would need to be mated to solid performing flash in order to reach those levels, that shouldn't be an issue as the new controllers increase compatibility with modern flash communication protocols (ONFi 4.0, Toggle 3.0, etc). Marvell's NANDEdge tech (their name for their NAND side interface) enters its fourth generation, promising compatibility with 96-layer and TLC / QLC flash.

specs.png

Specs for the 8-Channel 88SS1100. 88SS1084 is identical except the BGA package drops in size to 12mm x 13.5mm and only requires 418 balls.

Rounding out the specs are the staples expected in modern SSD controllers, like OTP / Secure Drive / AES hardware crypto support, and NVMe 1.3 compliance for the host end of the interface.

While the two new parts are 'available or purchase now', it will take a few months before we see them appear in purchasable products. We'll be keeping an eye out for appearances in future SSD launches!

Marvell's full press release appears after the break.

Source: Marvell

Computex 2018: Intel Announces 380GB Optane 905P in M.2 22110 Form Factor

Subject: Storage | June 6, 2018 - 03:55 AM |
Tagged: ssd, Optane Memory, Optane, M.2 22110, M.2, Intel, 905P, 3D XPoint

At Computex 2018, Intel announced a new Optane 905P SSD:

905P Rear.PNG

...the Optane 905P 380GB, now in an M.2 form factor!

905P Front.jpg

This looks to be a miniaturization of the 7-channel controller previously only available on the desktop add-in cards (note there are 7 packages). There is a catch though, as fitting 7 packages plus a relatively large controller means this is not M.2 2280, but M.2 22110. The M.2 22110 (110mm long) form factor may limit where you can install this product, as mobile platforms and some desktop motherboards only support up to an M.2 2280 (80mm) length. Power consumption may also be a concern for mobile applications, as this looks to be the full blown 7-channel controller present on the desktop AIC variants of the 905P and 900P.

We have no performance numbers just yet, but based on the above we should see figures in-line with the desktop Optane parts (and higher than the previous 'Optane Memory'/800P M.2 parts, which used a controller with fewer channels). Things may be slightly slower since this part would be limited to a ~7W power envelope - that is the maximum you can get out of an M.2 port without damaging the motherboard or overheating the smaller surface area of an M.2 form factor.

An interesting point to bring up is that while 3D XPoint does not need to be overprovisioned like NAND flash does, there is a need to have some spare area as well as space for the translation layer (used for wear leveling - still a requirement for 3D XPoint as it must be managed to some degree). In the past, we've noted that smaller capacities of a given line will see slightly less of a proportion of available space when comparing the raw media present to the available capacity. Let's see how this (theoretically) works out for the new 905P:

I'm making an educated guess that the new 380GB part contains 4 die stacks within its packages. We've never seen 8 die stacks come out of Intel, and there is little reason to believe any would be used in this product based on the available capacity. Note that higher capacities run at ~17% excess media, but as the capacity reduces, the percentage excess increases. The 280GB 900P increases to 20% by that capacity, but the new 905P M.2 comes in at 18%. Not much of a loss there, meaning the cost/GB *should* come in-line with the pricing of the 480GB 900P, which should put the 905P 380GB right at a $450-$500 price point.

The new 905P M.2 22110 is due out later this year.

Source: Intel

Intel Launches Optane DC Persistent Memory (DIMMs), Talks 20TB QLC SSDs

Subject: Storage | May 30, 2018 - 07:28 PM |
Tagged: ssd, QLC, Optane DC, Optane, Intel, DIMM, 3D XPoint, 20TB

Lots of good stuff coming out of Intel's press event earlier today. First up is Optane, now (finally and officially) in a DIMM form factor!:

Intel-Optane-Persistent-memory-1-.jpg

We have seen and tested Optane in several forms, but all so far have been bottlenecked by the interface and controller architectures. The only real way to fully realize the performance gains of 3D XPoint (how it works here) is to move away from the slower interfaces that are holding it back. A DIMM form factor is just the next logical step here.

filling-the-gaps-between-memory-and-storage-after.png

Intel shows the new 'Optane DC Persistent Memory' as yet another tier up the storage/memory stack. The new parts will be available in 128GB, 256GB, and 512GB capacities. We don't have confirmation on the raw capacity, but based on Intel's typical max stack height of 4 dies per package, 3D XPoint's raw die capacity of 16GB, and a suspected 10 packages per DIMM, that should come to 640GB raw capacity. Combined with a 60 DWPD rating (up from 30DWPD for P4800X), this shows Intel is loosening up their design margins considerably. This makes sense as 3D XPoint was a radically new and unproven media when first launched, and it has now built up a decent track record in the field.

gap-3.png

Bridging The Gap chart - part of a sequence from our first P4800X review.

Recall that even with Intel's Optane DC SSD parts like the P4800X, there remained a ~100x latency gap between the DRAM and the storage. The move to DIMMs should help Intel push closer to the '1000x faster than NAND' claims made way back when 3D XPoint was launched. Even if DIMMs were able to extract all possible physical latency gains from XPoint, there will still be limitations imposed by today's software architectures, which still hold many legacy throwbacks from the times of HDDs. Intel generally tries to help this along by providing various caching solutions that allow Optane to directly augment the OS's memory. These new DIMMs, when coupled with supporting enterprise platforms capable of logically segmenting RAM and NV DIMM slots, should be able to be accessed either directly or as a memory expansion tier.

Circling back to raw performance, we'll have to let software evolve a bit further to see even better gains out of XPoint platforms. That's likely the reason Intel did not discuss any latency figures for the new products today. My guess is that latencies should push down into the 1-3us range, splitting the difference between current generation DRAM (~80-100ns) and PCIe-based Optane parts (~10us). While the DIMM form factor is certainly faster, there is still a management layer at play here, meaning some form of controller or a software layer to handle wear leveling. No raw XPoint sitting on the memory bus just yet.

Also out of the event came talks about QLC NAND flash. Recently announced by Intel / Micron, along with 96-layer 3D NAND development, QLC helps squeeze higher capacities out of given NAND flash dies. Endurance does take a hit, but so long as the higher density media is coupled to appropriate client/enterprise workloads, there should be no issue with premature media wear-out or data retention. Micron has already launched an enterprise QLC part, and while Intel been hush-hush on actual product launches, they did talk about both client and enterprise QLC parts (with the latter pushing into 20TB in a 2.5" form factor).

Press blast for Optane DC Persistent Memory appears after the break (a nicer layout is available by clicking the source link).

Subject: Storage
Manufacturer: ADATA

Introduction, Specifications and Packaging

Introduction:

ADATA has a habit of occasionally coming out of the woodwork and dropping a great performing SSD on the market at a highly competitive price. A few of their recent SATA SSD launches were promising, but some were very difficult to find in online stores. This has improved more recently, and current ADATA products now enjoy relatively wide availability. We were way overdue for an ADATA review, and the XPG SX8200 is a great way for us to get back into covering this company's offerings:

180523-114049_2.jpg

For those unaware, XPG is a computing-related sub-brand of ADATA, and if you have a hard time finding details for these drives online, it is because you must look at their dedicated xpg.com domain. Parent brand ADATA has since branched into LED lighting and other industrial applications, such as solid-state drive motor controllers and the like. Some PC products bear the ADATA name, such as USB drives and external hard drives.

Ok, enough rambling about other stuff. Let's take a look at this XPG SX8200!

Specifications:

specs.png

Specs are mostly par for the course here, with a few notable exceptions. The SX8200 opts for a lower available capacity than you would typically see with a TLC SSD. That means a slight bump in OP, which helps nudge endurance higher due to that sacrifice. Another interesting point is that they have simply based their specs of 'up to 3200 MB/s read / 1700 MB/s write' from direct measurements of common benchmarking software. While the tests they used are 'short-run' benchmarks that will remain within the SLC cache of these SSDs, I do applaud ADATA for their openness here.

Packaging:

180523-114049.jpg

Straightforward packaging with a small bonus inside - in the form of a thermal adhesive-backed aluminum heat spreader. This is included as an option since some folks may have motherboards with integrated heat spreading M.2 socket covers or laptops with extremely tight clearances, and the added thickness may not play nicely in those situations.

Read on for our full review of the ADATA XPG SX8200 M.2 NVMe SSD!

Intel, Micron Jointly Announce QLC NAND FLASH, 96-Layer 3D Development

Subject: Storage | May 21, 2018 - 04:31 PM |
Tagged: ssd, QLC, NVMe, nand, Intel, Floating Gate, flash, die, 1Tbit

In tandem with Micron's launch of their new enterprise QLC SSDs, there is a broader technology announcement coming out of Intel today. This release covers the fact that Intel and Micron have jointly developed shippable 64-Layer 3D QLC NAND.

IMFT_Micron 3D NAND.png

IMFT's 3D NAND announcement came back in early 2015, and Intel/Micron Flash Technologies have been pushing their floating gate technology further and further. Not only do we have the QLC announcement today, but with it came talks of progress on 96-layer development as well. Combining QLC with 96-Layer would yield a single die capacity of 1.5 Tbit (192GB), up from the 1 Tbit (128GB) capacity of the 64-Layer QLC die that is now in production.

progression-3-.png

This new flash won't be meant for power users, but should be completely usable in a general use client SSD, provided there is a bit of SLC (or 3D XPoint???) cache on the front end. QLC does store 33% more data per the same die space, which should eventually translate to a lower $/GB once development costs have been recouped. Here's hoping for lower cost SSDs in the future!

Press blast after the break!

Micron Launches 5210 ION - First QLC NAND Enterprise SATA SSD

Subject: Storage | May 21, 2018 - 04:30 PM |
Tagged: ssd, sata, QLC, nand, micron, enterprise

For those that study how flash memory stores bits, Quad Level Cell technology is a tricky thing to pull off in production. You are taking a single NAND Flash cell and change its stored electron count in such a way that you can later discriminate between SIXTEEN different states.

SLC MLC TLC QLC.png

...we're talking a countable number (dozens to hundreds) of electrons making the difference between a stored 0101 or 0110 in a given cell. Pulling that off in production-capable parts is no small feat, and doing so for enterprise usage first is definitely a bold move. Enter Micron:

5210_SATA_ION_2.5_bottom_transparent_labled_1000x667.png

The 5210 ION line is a SATA product meant for enterprise usages where the workload is primarily reading. This comes in handy for things like real-time data analytics and content delivery systems, where data is infrequently written but needs to be readable at latencies faster than what HDD's can provide.

ION ECO PRO.png

These are 2.5" 7mm SSDs that will be available from 1.92TB to 7.68TB (yes, 2TB is the *smallest* available capacity for these!). The idea is to enable an easy upgrade path for larger data systems that already employ SATA or SAS (SAS systems are typically cross-compatible with SATA). For backplanes that are designed for slimmer 7mm drives, this can make for some extreme densities.

These are currently being sampled to some big data companies and should see more general availability in a few months time. Press blast from Micron appears after the break.

Source: Micron

Don't envy early NVMe adopters, turns out they are Windows 10's enemy

Subject: General Tech | May 11, 2018 - 02:07 PM |
Tagged: SM2260, ssd, pcie, NVMe, M.2 2280, M.2, Intel, 600p

Intel's 600p was on our review bench almost two years ago and offered a relatively inexpensive entry into NVMe drives.  It turns out that the Silicon Motion controller Intel used may have been a bit too proprietary as the Win10 April Update is not compatible with it.  According to The Register this is a known incompatibility caused by a fix to resolve previous issues with Samsung made NVMe SSDs.  They are working on a solution, with no release date announced as of yet.

DSC03054.jpg

"The issue is an unspecified "known incompatibility" between the operating system and the SSDs, which were launched in 2016. Both the 600p and Pro 6000p SSDs share the same SM2260 chipset and feature a PCIe NVMe 3.0 x4 interface."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register
Subject: Storage
Manufacturer: Intel

Introduction, Specifications and Packaging

Introduction:

Over the past couple of days, we saw some rumors and e-tailer appearances of the Intel SSD 905P. Essentially an incremental upgrade to the 900P, with a few notable differences. Specs see a slight bump across the board, as do capacities, but the most striking difference is Intel’s apparent choice to move forward with the blue-LED enabled design seen in a press deck slide that began circulating last year:

intel-optane-ssd-900p.jpg

That upper right design seemed pretty cool at the time, and I never thought we would see it materialize, but less than 24 hours ago this arrived at the office:

180502-163726.jpg

Note: The color is user adjustable - we just don't have the software for it yet.

*edit* colors are configurable via command line, using the most recent SSD toolbox app. The possible colors are limited (literally red/green/blue/off - that's it), but I've confirmed that the setting does persist after reboot / power cycling / changing systems. This is a welcome change over other RGB-enabled components that require software to always be installed to control (or even turn off) lighting. Here's a look at the other two colors:

180502-163529.jpg

180502-163629.jpg

*end edit*

Well now that it’s here, let’s see what it can do!

Read on for our full review of the Intel SSD 905P 960GB!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction:

We have been overdue for a Samsung NVMe SSD refresh, and with the launch of their 860 PRO and EVO back in January, folks have been itching for the 970's to come out. The 950 and 960 (PRO) lines were separated by about a year, but we are going on 18 months since the most recent 960 EVO launch. Samsung could afford to wait a bit longer since the 960 line already offered outstanding performance that remained unmatched at the top of our performance charts for a very long time. Recently, drives like the WD Black have started catching up, so it is naturally time for Samsung to keep the competition on their toes:

180423-175345.jpg

Today we will look at most of the Samsung 970 PRO and EVO lineup. We have a bit of a capacity spread for the EVO, and a single PRO. Samples are hard to come by so far since Samsung opted to launch both lines at the same time, but we tried to get the more common capacities represented. EVO 2TB and PRO 1TB data will have to come at a later date.

Specifications:

specs-PRO.png

specs-EVO.png

Specs come in at just slightly higher than the 960 lines, with some welcome additions like OPAL and encrypted drive (IEEE1667) support, the latter being suggested but never making it into the 960 products. Another welcome addition is that the 970 EVO now carries a 5-year warranty (up from 3).

specs-EVO-2.png

The 970 EVO includes 'Intelligent TurboWrite', which was introduced with the 960 line. This setup maintains a static SLC area and an additional 'Intelligent' cache that exists if sufficient free space is available in the TLC area.

Packaging:

Packaging is in line with the previous 960 series parts. Nice packaging. If it ain't broke, don't fix it.

180423-175542.jpg

Read on for our full review of the Samsung 970 PRO and EVO!