Delidded Ryzen 7 1700 Confirms AMD Is Using Solder With IHS On Ryzen Processors

Subject: Processors | March 1, 2017 - 09:17 PM |
Tagged: solder, Ryzen 1700, ryzen, overclocking, IHS, delid, amd

Professional extreme overclocker Roman "der8auer" Hartung from Germany recently managed to successfully de-lid his AMD Ryzen 7 1700 processor and confirmed that AMD is, in fact, using solder as its thermal interface material of choice between the Ryzen die and IHS (integrated heat spreader). The confirmation that AMD is using solder is promising news for enthusiasts eager to overclock the new processors and see just how far they are able to push them on air and water cooling.

Delidded Ryzen 7 1700 Die.JPG

Image credit: Roman Hartung. Additional high resolution photos are available here.

In a video on his YouTube channel, der8auer ("The Farmer") shows the steps involved in delidding the Ryzen 7 1700 which involve using razor blades, a heating element to get the IHS heated to a temperature high enough to melt the indium (~170°C on the block with the indium melting around 157°C), and a whole lot of courage. After using the razor blades to cut the glue around the edges, he heated up the IHS enough to start melting the solder and after a cringe-worthy cracking sound he was able to lift the package away from the IHS with the die and on-package components intact!

He does note that the Ryzen using PGA rather than the LGA method Intel has moved to makes the CPU a bit harder to handle as the pins are on the CPU rather than the socket and are easily bent. Compared to the delidding process and possibility of cracking the die or ripping off some components and killing the $329 CPU though, bent pins are nothing and can usually be bent back heh. He reportedly went through two previous Ryzen CPUs before getting a successful de-lid on the third attempt after all.

It seems that AMD is using two small pads of Indium solder along with some gold plating on the inside of the IHS to facilitate heat transfer and allow the solder to mate with the IHS. Because AMD is using what seems to be high quality solder TIM, delidding and replacing the TIM does not seem to be necessary at all; however, Roman "der8auer" Hartung speculates that direct die cooling could work out very well for those enthusiasts brave enough to try it since the cooler does not need to put high amounts of pressure onto the CPU to hold it into place unlike an LGA socket. 

If you are interested in seeing the overclocking benefits of de-lidding and direct die cooling a Ryzen CPU, keep an eye on his YouTube channel for a video over the weekend detailing his testing using a Ryzen 7 1800X.

I am really looking forward to seeing how far enthusiasts are able to push Ryzen (especially on water), and maybe we can convince Morry to de-lid a Ryzen CPU!

Happy Overclocking!

Also read:

Source: der8auer

Intel Haswell-E De-Lidded: Solder Is Its Thermal Interface

Subject: General Tech, Processors | August 24, 2014 - 03:33 AM |
Tagged: Intel, Haswell-E, Ivy Bridge-E, haswell, solder, thermal paste

Sorry for being about a month late to this news. Apparently, someone got their hands on an Intel Core i7-5960X and they wanted to see its eight cores. Removing the lid, they found that it was soldered directly onto the die with an epoxy, rather than coated with a thermal paste. While Haswell-E will still need to contend with the limitations of 22nm, and how difficult it becomes to exceed various clockspeed ceilings, the better ability to dump heat is always welcome.

Intel-5960X-delidded.jpg

Image Credit: OCDrift

While Devil's Canyon (Core i7 4970K) used better thermal paste, the method used with Haswell-E will be event better. I should note that Ivy Bridge-E, released last year, also contained a form of solder under its lid and its overclocking results were still limited. This is not an easy path to ultimate gigahertz. Even so, it is nice that Intel, at least on their enthusiast line, is spending that little bit extra to not introduce artificial barriers.

Source: OCDrift

Battle the bane of bulging caps, bring back life to your monitor

Subject: General Tech | July 29, 2011 - 11:22 AM |
Tagged: lcd, solder, capacitor, DIY

Over at The Tech Report you will find a handy guide on restoring a monitor with busted caps to working condition, for not much money nor effort. A bit effort is all that you need to track down a dead capacitor on the circuit board, identified by the bulge which will be apparent at the top of the cap.  Once you've found it you just need to desolder it and swap in a new one and your once broken monitor will be working again.  Even better, this procedure can resurrect any peice of equipment you have which is suffering from failed capacitors.  If you've never used a soldering iron to fix something, this would be a great place to start.

TR_bulge620.jpg

"In his latest blog post, our own David Morgan shows how to bring a monitor back from the dead with a simple capacitor transplant."

Here is some more Tech News from around the web:

Tech Talk