ARM Partners with TSMC to Produce SoCs on 7nm FinFET

Subject: Processors | March 15, 2016 - 12:52 PM |
Tagged: TSMC, SoC, servers, process technology, low power, FinFET, datacenter, cpu, arm, 7nm, 7 nm FinFET

ARM and TSMC have announced their collaboration on 7 nm FinFET process technology for future SoCs. A multi-year agreement between the companies, products produces on this 7 nm FinFET process are intended to expand ARM’s reach “beyond mobile and into next-generation networks and data centers”.

tsmc-headquarters.jpg

TSMC Headquarters (Image credit: AndroidHeadlines)

So when can we expect to see 7nm SoCs on the market? The report from The Inquirer offers this quote from TSMC:

“A TSMC spokesperson told the INQUIRER in a statement: ‘Our 7nm technology development progress is on schedule. TSMC's 7nm technology development leverages our 10nm development very effectively. At the same time, 7nm offers a substantial density improvement, performance improvement and power reduction from 10nm’.”

Full press release after the break.

Source: ARM

Tesla Motors Hires Peter Bannon of Apple

Subject: Graphics Cards, Processors | February 29, 2016 - 06:48 PM |
Tagged: tesla motors, tesla, SoC, Peter Bannon, Jim Keller

When we found out that Jim Keller has joined Tesla, we were a bit confused. He is highly skilled in processor design, and he moved to a company that does not design processors. Kind of weird, right? There are two possibilities that leap to mind: either he wanted to try something new in life, and Elon Musk hired him for his general management skills, or Tesla wants to get more involved in the production of their SoCs, possibly even designing their own.

tesla-2016-logo2.png

Now Peter Bannon, who was a colleague of Jim Keller at Apple, has been hired by Tesla Motors. Chances are, the both of them were not independently interested in an abrupt career change that led them to the same company. That seems highly unlikely, to say the least. So it appears that Tesla Motors wants experienced chip designers in house. What for? We don't know. This is a lot of talent to just look over the shoulders of NVIDIA and other SoC partners, to make sure they have an upper hand in negotiation. Jim Keller is at Tesla as their “Vice-President of Autopilot Hardware Engineering.” We don't know what Peter Bannon's title will be.

And then, if Tesla Motors does get into creating their own hardware, we wonder what they will do with it. The company has a history of open development and releasing patents (etc.) into the public. That said, SoC design is a highly encumbered field, depending on what they're specifically doing, which we have no idea about.

Source: Eletrek

MWC 2016: MediaTek Announces Helio P20 True Octa-Core SoC

Subject: Processors, Mobile | February 22, 2016 - 11:11 AM |
Tagged: TSMC, SoC, octa-core, MWC 2016, MWC, mediatek, Mali-T880, LPDDR4X, Cortex-A53, big.little, arm

MediaTek might not be well-known in the United States, but the company has been working to expand from China, where it had a 40% market share as of June 2015, into the global market. While 2015 saw the introduction of the 8-core Helio P10 and the 10-core helio X20 SoCs, the company continues to expand their lineup, today announcing the Helio P20 SoC.

Helio_P20.jpg

There are a number of differences between the recent SoCs from MediaTek, beginning with the CPU core configuration. This new Helio P20 is a “True Octa-Core” design, but rather than a big.LITTLE configuration it’s using 8 identically-clocked ARM Cortex-A53 cores at 2.3 GHz. The previous Helio P10 used a similar CPU configuration, though clocks were limited to 2.0 GHz with that SoC. Conversely, the 10-core Helio X20 uses a tri-cluster configuration, with 2x ARM Cortex-A72 cores running at 2.5 GHz, along with a typical big.LITTLE arrangement (4x Cortex-A53 cores at 2.0 Ghz and 4x Cortex-A53 cores at 1.4 GHz).

Another change affecting MediaTek’s new SoC and he industry at large is the move to smaller process nodes. The Helio P10 was built on 28 nm HPM, and this new P20 moves to 16 nm FinFET. Just as with the Helio P10 and Helio X20 (a 20 nm part) this SoC is produced at TSMC using their 16FF+ (FinFET Plus) technology. This should provide up to “40% higher speed and 60% power saving” compared to the company’s previous 20 nm process found in the Helio X20, though of course real-world results will have to wait until handsets are available to test.

The Helio P20 also takes advantage of LPDDR4X, and is “the world’s first SoC to support low power double data rate random access memory” according to MediaTek. The company says this new memory provides “70 percent more bandwidth than the LPDDR3 and 50 percent power savings by lowering supply voltage to 0.6v”. Graphics are powered by ARM’s high-end Mali T880 GPU, clocked at an impressive 900 MHz. And all-important modem connectivity includes CAT6 LTE with 2x carrier aggregation for speeds of up to 300 Mbps down, 50 Mbps up. The Helio P20 also supports up to 4k/30 video decode with H.264/265 support, and the 12-bit dual camera ISP supports up to 24 MP sensors.

Specs from MediaTek:

  • Process: 16nm
  • Apps CPU: 8x Cortex-A53, up to 2.3GHz
  • Memory: Up to 2 x LPDDR4X 1600MHz (up to 6GB) + 1x LPDDR3 933Mhz (up to 4GB) + eMMC 5.1
  • Camera: Up to 24MP at 24FPS w/ZSD, 12bit Dual ISP, 3A HW engine, Bayer & Mono sensor support
  • Video Decode: Up to 4Kx2K 30fps H.264/265
  • Video Encode: Up to 4Kx2K 30fps H.264
  • Graphics: Mali T-880 MP2 900MHz
  • Display: FHD 1920x1080 60fps. 2x DSI for dual display
  • Modem: LTE FDD TDD R.11 Cat.6 with 2x20 CA. C2K SRLTE. L+W DSDS support
  • Connectivity: WiFiac/abgn (with MT6630). GPS/Glonass/Beidou/BT/FM.
  • Audio: 110db SNR & -95db THD

It’s interesting to see SoC makers experiment with less complex CPU designs after a generation of multi-cluster (big.LITTLE) SoCs, as even the current flagship Qualcomm SoC, the Snapdragon 820, has reverted to a straight quad-core design. The P20 is expected to be in shipping devices by the second half of 2016, and we will see how this configuration performs once some devices using this new P20 SoC are in the wild.

Full press release after the break:

Source: MediaTek

Is the Pi Zero powerful enough for your project?

Subject: General Tech | December 7, 2015 - 01:12 PM |
Tagged: SoC, raspberry pi zero

It can't play Crysis but if you want to know if the new Raspberry Pi Zero has what it takes to power your latest projects then look no further than this article at Phoronix in which they benchmark the new low cost SoC.  The $5 Zero is powered by a 1GHz single-core ARM processor with 512MB of RAM and a Broadcom BCM2708, outputs include mini HDMI and USB OTG ports, and a 40-pin header which you are going to be populating if you want networking.  As you would expect the Zero does sit at the bottom of the benchmark tables, however at this price point you are shopping for "just good enough", not top of the pack performance.  Check it out here.

rasp2_1.jpg

"For those curious about the performance of the $5 Raspberry Pi Zero, here are some benchmarks I've just finished up for this low-end, low-power ARM development board compared to other ARM, MIPS, and x86 hardware."

Here is some more Tech News from around the web:

Tech Talk

 

Source: Phoronix

Rumors Surrounding the LG NUCLUN 2 SoC

Subject: Processors, Mobile | December 1, 2015 - 07:30 AM |
Tagged: TSMC, SoC, LG, Intel, arm

So this story came out of nowhere. Whether the rumors are true or false, I am stuck on how everyone seems to be talking about it with a casual deadpan. I spent a couple hours Googling whether I missed some big announcement that made Intel potentially fabricating ARM chips a mundane non-story. Pretty much all that I found was Intel allowing Altera to make FPGAs with embedded ARM processors in a supporting role, which is old news.

simpsons-2015-skinner-out-of-touch.jpg

Image Credit: Internet Memes...

The rumor is that Intel and TSMC were both vying to produce LG's Nuclon 2 SoC. This part is said to house two quad-core ARM modules in a typical big.LITTLE formation. Samples were allegedly produced, with Intel's part (2.4 GHx) being able to clock around 300 MHz faster than TSMC's offering (2.1 GHz). Clock rate is highly dependent upon the “silicon lottery,” so this is an area that production maturity can help with. Intel's sample would also be manufactured at 14nm (versus 16nm from TSMC although these numbers mean less than they used to). LG was also, again allegedly, interesting in Intel's LTE modem. According to the rumors, LG went with TSMC because they felt Intel couldn't keep up with demand.

Now that the rumor has been reported... let's step back a bit.

I talked with Josh a couple of days ago about this post. He's quite skeptical (as I am) about the whole situation. First and foremost, it takes quite a bit of effort to port a design to a different manufacturing process. LG could do it, but it is questionable, especially for a second chip ever sort of thing. Moreover, I still believe that Intel doesn't want to manufacture chips that directly compete with them. x86 in phones is still not a viable business, but Intel hasn't given up and you would think that's a prerequisite.

So this whole thing doesn't seem right.

Source: Android

Samsung Announces Exynos 8 Octa 8890 Application Processor

Subject: Processors, Mobile | November 12, 2015 - 09:30 AM |
Tagged: SoC, smartphone, Samsung Galaxy, Samsung, mobile, Exynos 8890, Exynos 8 Octa, Exynos 7420, Application Processor

Coming just a day after Qualcomm officially launched their Snapdragon 820 SoC, Samsung is today unveiling their latest flagship mobile part, the Exynos 8 Octa 8890.

8890.png

The Exynos 8 Octa 8890 is built on Samsung’s 14 nm FinFET process like the previous Exynos 7 Octa 7420, and again is based on the a big.LITTLE configuration; though the big processing cores are a custom design this time around. The Exynos 7420 was comprised of four ARM Cortex A57 cores and four small Cortex A53 cores, and while the small cores in the 8890 are again ARM Cortex A53, the big cores feature Samsung’s “first custom designed CPU based on 64-bit ARMv8 architecture”.

“With Samsung’s own SCI (Samsung Coherent Interconnect) technology, which provides cache-coherency between big and small cores, the Exynos 8 Octa fully utilizes benefits of big.LITTLE structure for efficient usage of the eight cores. Additionally, Exynos 8 Octa is built on highly praised 14nm FinFET process. These all efforts for Exynos 8 Octa provide 30% more superb performance and 10% more power efficiency.”

biglittle.png

Another big advancement for the Exynos 8 Octa is the integrated modem, which provides Category 12/13 LTE with download speeds (with carrier aggregation) of up to 600 Mbps, and uploads up to 150 Mbps. This might sound familiar, as it mirrors the LTE Release 12 specs of the new modem in the Snapdragon 820.

Video processing is handled by the Mali-T880 GPU, moving up from the Mali-T760 found in the Exynos 7 Octa. The T880 is “the highest performance and the most energy-efficient mobile GPU in the Mali family”, with up to 1.8x the performance of the T760 while being 40% more energy-efficient. 

Samsung will be taking this new SoC into mass production later this year, and the chip is expected to be featured in the company’s upcoming flagship Galaxy phone.

Full PR after the break.

Source: Samsung

Report: Unreleased AMD Bristol Ridge SoC Listed Online

Subject: Processors | November 5, 2015 - 09:30 PM |
Tagged: SoC, report, processor, mobile apu, leak, FX-9830PP, cpu, Bristol Ridge, APU, amd

A new report points to an entry from the USB implementors forum, which shows an unreleased AMD Bristol Ridge SoC.

Screenshot_20151105-174547~2.png

(AMD via VideoCardz.com)

Bristol Ridge itself is not news, as the report at Computer Base observes (translation):

"A leaked roadmap had previously noted that Bristol Ridge is in the coming year soldered on motherboards for notebooks and desktop computers in special BGA package FP4."

1-1260.jpg

(USB.org via Computer Base)

But there is something different about this chip as the report point out the model name FX-9830P pictured in the USB.org screen grab is consistent with the naming scheme for notebook parts, with the highest current model being FX-8800P (Carrizo), a 35W 4-thread Excavator part with 512 stream processors from the R7 GPU core.

4-1080.1259051449.jpg

(BenchLife via Computer Base)

No details are available other than information from a leaked roadmap (above), which points to Bristol Ridge as an FP4 BGA part for mobile, with a desktop variant for socket FM3 that would replace Kaveri/Godavari (and possibly still an Excavator part). New cores are coming in 2016, and we'll have to wait and see for additional details (or until more information inevitably leaks out).

Update, 11/06/15: WCCFtech expounds on the leak:

“Bristol Ridge isn’t just limited to mobility platforms but will also be featured on AM4 desktop platform as Bristol Ridge will be the APU generation available on desktops in 2016 while Zen would be integrated on the performance focused FX processors.”

WCCFtech’s report also included a link to this SiSoftware database entry for an engineering sample of a dual-core Stoney Ridge processor, a low-power mobile part with a 2.7 GHz clock speed. Stoney Ridge will reportedly succeed Carrizo-L for low-power platforms.

The report also provided this chart to reference the new products:

amd_chart.png

(Credit: WCCFtech.com)

Report: Intel Xeon D SoC to Reach 16 Cores

Subject: Processors | October 23, 2015 - 02:21 PM |
Tagged: Xeon D, SoC, rumor, report, processor, Pentium D, Intel, cpu

Intel's Xeon D SoC lineup will soon expand to include 12-core and 16-core options, after the platform launched earlier this year with the option of 4 or 8 cores for the 14 nm chips.

5082_Xeon_D_Processor_Package_3QtrRight_preview.jpg

The report yesterday from CPU World offers new details on the refreshed lineup which includes both Xeon D and Pentium D SoCs:

"According to our sources, Intel have made some changes to the lineup, which is now comprised of 13 Xeon D and Pentium D SKUs. Even more interesting is that Intel managed to double the maximum number of cores, and consequentially combined cache size, of Xeon D design, and the nearing Xeon D launch may include a few 12-core and 16-core models with 18 MB and 24 MB cache."

The move is not unexpected as Intel initially hinted at an expanded offering by the end of the year (emphasis added):

"...the Intel Xeon processor D-1500 product family is the first offering of a line of processors that will address a broad range of low-power, high-density infrastructure needs. Currently available with 4 or 8 cores and 128 GB of addressable memory..."

xeon_soc.png

Current Xeon D Processors

The new flagship Xeon D model will be the D-1577, a 16-core processor with between 18 and 24 MB of L3 cache (exact specifications are not yet known). These SoCs feature integrated platform controller hub (PCH), I/O, and dual 10 Gigabit Ethernet, and the initial offerings had up to a 45W TDP. It would seem likely that a model with double the core count would either necessitate a higher TDP or simply target a lower clock speed. We should know more before too long.

For futher information on Xeon D, please check out our previous coverage: 

Source: CPU-World

Rumor: Apple to Use Custom AMD SoC for Next-Gen iMac

Subject: Processors | October 19, 2015 - 11:28 AM |
Tagged: Zen, SoC, processor, imac, APU, apple, amd

Rumor: Apple to Use AMD SoC for Next-Gen iMac News about AMD has been largely depressing of late, with the introduction of the R9 Fury/Fury X and Nano graphics cards a bright spot in the otherwise tumultuous year that was recently capped by a $65 million APU write down. But one area where AMD has managed to earn a big win has been the console market, where their APUs power the latest machines from Microsoft and Sony. The combination of CPU and a powerful GPU on a single chip is ideal for those small form-factor designs, and likewise it would be ideal for a slim all-in-one PC. But an iMac?

IMAC.jpg

Image credit: Apple

A report from WCCFtech today points to the upcoming Zen architecture from AMD as a likely power source for a potential custom SoC:

"A Semi-custom SOC x86 for the iMac would have to include a high performance x86 component, namely Zen, in addition to a graphics engine to drive the visual experience of the device. Such a design would be very similar to the current semi-custom Playstation 4 and XBOX ONE Accelerated Processing Units, combining x86 CPU cores with a highly capable integrated graphics solution."

Those who don't follow Apple probably don't know the company switched over almost exclusively to AMD graphics a short time ago, with NVIDIA solutions phased out of all discrete GPU models. Whether politically motivated or simply the result of AMD providing what Apple wanted from a hardware/driver standpoint I can't say, but it's still a big win for AMD considering Apple's position as one of the largest computer manufacturers - even though its market share is very low in the highly fragmented PC market overall. And while Apple has exclusively used Intel processors in its systems since transitioning away from IBM's PowerPC beginning in 2006, the idea of an AMD custom APU makes a lot of sense for the company, especially for their size and heat constrained iMac designs.

AMD-Semicustom-Approach.jpg

Image credit: WCCFtech

Whether or not you'd ever consider buying an iMac - or any other computer from Apple, for that matter - it's still important for the PC industry as a whole that AMD continues to find success and provide competition for Intel. Consumers can only benefit from the potential for improved performance and reduced cost if competition heats up between Intel and AMD, something we really haven't seen on the CPU front in a few years now. With CEO Lisa Su stating that AMD "had secured two new semi-custom design wins" In their recent earnings call it could very well be that we will see Zen in future iMacs, or in other PC all-in-one solutions for that matter.

Regardless, it will be exciting to see some good competition from AMD, even if we will have to wait quite a while for it. Zen isn't ready yet and we have no indication that any such product would be introduced until later next year. It will be interesting to see what Intel might do to compete given their resources. 2016 could be interesting.

Source: WCCFtech

Snapdragon 820 Features Qualcomm's New X12 Modem: Fastest LTE To Date

Subject: Mobile | September 30, 2015 - 02:33 PM |
Tagged: X12 Modem, SoC, snapdragon 820, qualcomm, phones, mu-mimo, mobile, LTE, cell phones

The upcoming Snapdragon 820 is shaping up to be a formidable SoC after the disappointing response to the previous flagship, the Snapdragon 810, which was in far fewer devices than expected for reasons still shrouded in mystery and speculation. One of the biggest aspects of the upcoming 820 is Qualcomm’s new X12 modem, which will provide the most advanced LTE connectivity seen to date when the SoC launches. The X12 features CAT 12 LTE downlink speeds for up to 600 Mbps, and CAT 13 on the uplink for up to 150 Mbps.

LTE connectivity isn’t the only new thing here, as we see from this slide there is also tri-band Wi-Fi supporting 2x2 MU-MIMO.

X12_MODEM.png

“This is the first publicly announced processor for use in mobile devices to support LTE Category 12 in the downlink and Category 13 in the uplink, providing up to 33 percent and 200 percent improvement over its predecessor’s download and upload speeds, respectively.”

The specifications for this new modem are densely packed:

  • Cat 12 (up to 600 Mbps) in the downlink
  • Cat 13 (up to 150 Mbps) in the uplink
  • Up to 4x4 MIMO on one downlink LTE carrier
  • 2x2 MU-MIMO (802.11ac)
  • Multi-gigabit 802.11ad
  • LTE-U and LTE+Wi-Fi Link Aggregation (LWA)
  • Next Gen HD Voice and Video calling over LTE and Wi-Fi
  • Call Continuity across Wi-Fi, LTE, 3G, and 2G
  • RF front end innovations
  • Advanced Closed Loop Antenna Tuner
  • Qualcomm RF360™ front end solution with CA
  • Wi-Fi/LTE antenna sharing

Rumored phones that could end up running the Snapdragon 820 with this X12 modem include the Samsung Galaxy S7 and around 30 other devices, though final word is of course pending on shipping hardware.

Source: Qualcomm