Double the price; not so much performance though ... Skylake-X versus ThreadRipper

Subject: Processors | September 25, 2017 - 03:19 PM |
Tagged: skylake-x, Skylake, Intel, Core i9, 7980xe, 7960x

You cannot really talk about the new Skylake-X parts from Intel without bringing up AMD's Threadripper as that is the i9-7980XE and i9-7960X's direct competition.   From a financial standpoint, AMD is the winner, with a price tag either $700 or $1000 less than Intel's new flagship processors.  As Ryan pointed out in his review, for those whom expense is not a consideration it makes sense to chose Intel's new parts as they are slightly faster and the Xtreme Edition does offer two more cores.  For those who look at performance per dollar the obvious processor of choice is ThreadRipper; for as Ars sums up in their review AMD offers more PCIe lanes, better heat management and performance that is extremely close to Intel's best.

DSC02984.jpg

"Ultimately, the i9-7960X raises the same question as the i9-7900X: Are you willing to pay for the best performing silicon on the market? Or is Threadripper, which offers most of the performance at a fraction of the price, good enough?"

Here are some more Processor articles from around the web:

Processors

Source: Ars Technica
Author:
Subject: Processors
Manufacturer: Intel

Specifications and Architecture

It has been an interesting 2017 for Intel. Though still the dominant market share leader in consumer processors of all shapes and sizes, from DIY PCs to notebooks to servers, it has come under attack with pressure from AMD unlike any it has felt in nearly a decade. It started with the release of AMD Ryzen 7 and a family of processors aimed at the mainstream user and enthusiast markets. That followed by the EPYC processor release moving in on Intel’s turf of the enterprise markets. And most recently, Ryzen Threadripper took a swing (and hit) at the HEDT (high-end desktop) market that Intel had created and held its own since the days of the Nehalem-based Core i7-920 CPU.

pic1.jpg

Between the time Threadripper was announced and when it shipped, Intel made an interesting move. It decided to launch and announce its updated family of HEDT processors dubbed Skylake-X. Only available in a 10-core model at first, the Core i9-7900X was the fastest tested processor in our labs, at the time. But it was rather quickly overtaken by the likes of the Threadripper 1950X that ran with 16-cores and 32-threads of processing. Intel had already revealed that its HEDT lineup would go to 18-core options, though availability and exact clock speeds remained in hiding until recently.

  i9-7980XE i9-7960X i9-7940X i9-7920X i9-7900X  i7-7820X i7-7800X TR 1950X TR 1920X TR 1900X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24 8/16
Base Clock 2.6 GHz 2.8 GHz 3.1 GHz 2.9 GHz 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz 3.8 GHz
Turbo Boost 2.0 4.2 GHz 4.2 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 4.4 GHz 4.4 GHz 4.4 GHz 4.4 GHz 4.5 GHz 4.5 GHz N/A N/A N/A N/A
Cache 24.75MB 22MB 19.25MB 16.5MB 13.75MB 11MB 8.25MB 40MB 38MB ?
Memory Support DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2666 Quad Channel
PCIe Lanes 44 44 44 44 44 28 28 64 64 64
TDP 165 watts 165 watts 165 watts 140 watts 140 watts 140 watts 140 watts 180 watts 180 watts 180 watts?
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799 $549

Today we are now looking at both the Intel Core i9-7980XE and the Core i9-7960X, 18-core and 16-core processors, respectively. The goal from Intel is clear with the release: retake the crown as the highest performing consumer processor on the market. It will do that, but it does so at $700-1000 over the price of the Threadripper 1950X.

Continue reading our review of the Intel Core i9-7980XE and Core i9-7960X!

A look at Surfacegates past and present

Subject: General Tech | August 14, 2017 - 01:32 PM |
Tagged: surface, microsoft, Skylake

Paul Thurrott has posted a reasoned look at the recent negative rating Consumer Reports have handed the Microsoft Surface and Intel's reaction to it.  There were problems with the release of Skylake powered Surface products and Microsoft initially laid the blame fully on Intel; which proved awkward when they conversed with Lenovo about the problems Skylake caused as Lenovo had not had a similar experience.  Instead the reliability issues stemmed from Microsoft's drivers and when you break down the issues, most had to do with frozen screens and unresponsive touch interfaces. 

Microsoft have since rectified this issue and the new Surface products do not have the same issues as the previous models.   There is an interesting bit of speculation in the article about the fallout of this issue, it could be that this was the driving force behind Microsoft's sudden push to have Windows 10 run on ARM processors.  For more on that as well as some interesting background on how companies measure the success of their products you should head over to read the full article.  At the very least you can bask in the glory of the quote from an internal memo at the beginning of the article, describing your purchase as an "ownership journey with our products".

RE1htac.jpg

"Thurrott.com has seen an internal Microsoft memo that indicates that the software giant is readying a broader campaign to undercut this past week’s news from Consumer Reports. It also provides greater insight into why Microsoft believes the Consumer Reports recommendations are incorrect."

Here is some more Tech News from around the web:

Tech Talk

 

Source: Thurrott

Microcode Bug Affects Intel Skylake and Kaby Lake CPUs

Subject: Processors | June 26, 2017 - 08:53 AM |
Tagged: xeon, Skylake, processor, pentium, microcode, kaby lake, Intel, errata, cpu, Core, 7th generation, 6th generation

A microcode bug affecting Intel Skylake and Kaby Lake processors with Hyper-Threading has been discovered by Debian developers (who describe it as "broken hyper-threading"), a month after this issue was detailed by Intel in errata updates back in May. The bug can cause the system to behave 'unpredictably' in certain situations.

Intel CPUs.jpg

"Under complex micro-architectural conditions, short loops of less than 64 instructions that use AH, BH, CH or DH registers as well as their corresponding wider register (eg RAX, EAX or AX for AH) may cause unpredictable system behaviour. This can only happen when both logical processors on the same physical processor are active."

Until motherboard vendors begin to address the bug with BIOS updates the only way to prevent the possibility of this microcode error is to disable HyperThreading. From the report at The Register (source):

"The Debian advisory says affected users need to disable hyper-threading 'immediately' in their BIOS or UEFI settings, because the processors can 'dangerously misbehave when hyper-threading is enabled.' Symptoms can include 'application and system misbehaviour, data corruption, and data loss'."

The affected models are 6th and 7th-gen Intel processors with HyperThreading, which include Core CPUs as well as some Pentiums, and Xeon v5 and v6 processors.

Source: The Register

Computex 2017: ASRock Launching H110 Pro BTC+ Motherboard With 13 PCI-E Slots

Subject: General Tech | June 2, 2017 - 04:02 PM |
Tagged: asrock, H110, Skylake, bitcoin, cryptocurrency, mining, storj, computex, computex 2017

ASRock showed off an upcoming motherboard at Computex that features 13 PCI-Express slots and is aimed squarely at crypto currency miners. The new H110 Pro BTC+ is an ATX board based on Intel’s H110 chipset and LGA 1151 socket (Skylake CPUs). The board is dominated by 12 PCI-E x1 slots and a single PCI-E x16 slot (I suppose for mounting a SAS card and Burst mining or running Storj heh), but it also has slots for two DDR4 DIMMs, a single M.2 port, and four SATA ports. The board also supports Intel Gigabit Ethernet, ELNA audio, USB 3.0 and DVI and HDMI video outputs for the Intel iGPU.

ASRock H110 Pro BTC.jpg

The upcoming board is powered by a 24 pin ATX, 8 pin EPS, and two Molex connectors for the PCI-E slots. The H110 Pro BTC+ appears to have a decent power phase setup for an H110 motherboard as well. ASRock showed off the motherboard running eight GPUs on Windows at Computex, though with Linux it is possible go beyond that and run all 13 GPUs. The H110 chipset does mean that miners would need to spend money on a newer CPU and DDR4 memory, but they would save money by buying fewer motherboards and/or port multipliers.

Exact specifications along with pricing and availability are still unknown, but expect the mining crowd to jump on this so if you are interested in it be sure to set up email alerts for when it will become available so that you can get in before the miners make it go out of stock everywhere like the RX 580s! (heh)

Source: ASRock
Author:
Manufacturer: Intel

An abundance of new processors

During its press conference at Computex 2017, Intel has officially announced the upcoming release of an entire new family of HEDT (high-end desktop) processors along with a new chipset and platform to power it. Though it has only been a year since Intel launched the Core i7-6950X, a Broadwell-E processor with 10-cores and 20-threads, it feels like it has been much longer than that. At the time Intel was accused of “sitting” on the market – offering only slight performance upgrades and raising prices on the segment with a flagship CPU cost of $1700. With can only be described as scathing press circuit, coupled with a revived and aggressive competitor in AMD and its Ryzen product line, Intel and its executive teams have decided it’s time to take enthusiasts and high end prosumer markets serious, once again.

slides-3.jpg

Though the company doesn’t want to admit to anything publicly, it seems obvious that Intel feels threatened by the release of the Ryzen 7 product line. The Ryzen 7 1800X was launched at $499 and offered 8 cores and 16 threads of processing, competing well in most tests against the likes of the Intel Core i7-6900X that sold for over $1000. Adding to the pressure was the announcement at AMD’s Financial Analyst Day that a new brand of processors called Threadripper would be coming this summer, offering up to 16 cores and 32 threads of processing for that same high-end consumer market. Even without pricing, clocks or availability timeframes, it was clear that AMD was going to come after this HEDT market with a brand shift of its EPYC server processors, just like Intel does with Xeon.

The New Processors

Normally I would jump into the new platform, technologies and features added to the processors, or something like that before giving you the goods on the CPU specifications, but that’s not the mood we are in. Instead, let’s start with the table of nine (9!!) new products and work backwards.

  Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Core i7-7740X Core i5-7640X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Kaby Lake-X Kaby Lake-X
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 4/8 4/4
Base Clock ? ? ? ? 3.3 GHz 3.6 GHz 3.5 GHz 4.3 GHz 4.0 GHz
Turbo Boost 2.0 ? ? ? ? 4.3 GHz 4.3 GHz 4.0 GHz 4.5 GHz 4.2 GHz
Turbo Boost Max 3.0 ? ? ? ? 4.5 GHz 4.5 GHz N/A N/A N/A
Cache 16.5MB (?) 16.5MB (?) 16.5MB (?) 16.5MB (?) 13.75MB 11MB 8.25MB 8MB 6MB
Memory Support ? ? ? ? DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Dual Channel
DDR4-2666 Dual Channel
PCIe Lanes ? ? ? ? 44 28 28 16 16
TDP 165 watts (?) 165 watts (?) 165 watts (?) 165 watts (?) 140 watts 140 watts 140 watts 112 watts 112 watts
Socket 2066 2066 2066 2066 2066 2066 2066 2066 2066
Price $1999 $1699 $1399 $1199 $999 $599 $389 $339 $242

There is a lot to take in here. The most interesting points are that Intel plans to one-up AMD Threadripper by offering an 18-core processor but it also wants to change the perception of the X299-class platform by offering lower price, lower core count CPUs like the quad-core, non-HyperThreaded Core i5-7640X. We also see the first ever branding of Core i9.

Intel only provided detailed specifications up to the Core i9-7900X, a 10-core / 20-thread processor with a base clock of 3.3 GHz and a Turbo peak of 4.5 GHz using the new Turbo Boost Max Technology 3.0. It sports 13.75MB of cache thanks to an updated cache configuration, includes 44 lanes of PCIe 3.0, an increase of 4 lanes over Broadwell-E, quad-channel DDR4 memory up to 2666 MHz and a 140 watt TDP. The new LGA2066 socket will be utilized. Pricing for this CPU is set at $999, which is interesting for a couple of reasons. First, it is $700 less than the starting MSRP of the 10c/20t Core i7-6950X from one year ago; obviously a big plus. However, there is quite a ways UP the stack, with the 18c/36t Core i9-7980XE coming in at a cool $1999.

intel1.jpg

The next CPU down the stack is compelling as well. The Core i7-7820X is the new 8-core / 16-thread HEDT option from Intel, with similar clock speeds to the 10-core above it, save the higher base clock. It has 11MB of L3 cache, 28-lanes of PCI Express (4 higher than Broadwell-E) but has a $599 price tag. Compared to the 8-core 6900K, that is ~$400 lower, while the new Skylake-X part iteration includes a 700 MHz clock speed advantage. That’s huge, and is a direct attack on the AMD Ryzen 7 1800X that sells for $499 today and cut Intel off at the knees this March. In fact, the base clock of the Core i7-7820X is only 100 MHz lower than the maximum Turbo Boost clock of the Core i7-6900K!

Continue reading about the Intel Core i9 series announcement!

Flipped your lid and want to reattach it?

Subject: Processors | February 23, 2017 - 11:07 AM |
Tagged: Intel, Skylake, kaby lake, delidding, relidding

[H]ard|OCP have been spending a lot of time removing the integrated heatspreader on recent Intel chips to see what effect it has on temperatures under load.  Along the way we picked up tips on 3D printing a delidder and thankfully there was not much death along the way.  One of their findings from this testing was that it can be beneficial to reattach the lid after changing out the thermal interface material and they have published a guide on how to do so.   You will need a variety of tools, from Permatex Red RTV to razor blades, by way of isopropyl alcohol and syringes; as well as a steady hand.  You may have many of the items on hand already and none are exceptionally expensive.

1487134654mHmb7IfVSy_1_10_l.jpg

"So we have covered a lot about taking your shiny new Intel CPUs apart lately, affectionately known as "delidding." What we have found in our journey is that "relidding" the processor might be an important part of the process as well. But what if you do not have a fancy tool that will help you put Humpty back together again?"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

AMD Details Zen at ISSCC

Subject: Processors | February 8, 2017 - 09:38 PM |
Tagged: Zen, Skylake, Samsung, ryzen, kaby lake, ISSCC, Intel, GLOBALFOUNDRIES, amd, AM4, 14 nm FinFET

Yesterday EE Times posted some interesting information that they had gleaned at ISSCC.  AMD released a paper describing the design process and advances they were able to achieve with the Zen architecture manufactured on Samsung’s/GF’s 14nm FinFETT process.  AMD went over some of the basic measurements at the transistor scale and how it compares to what Intel currently has on their latest 14nm process.

icon.jpg

The first thing that jumps out is that AMD claimes that their 4 core/8 thread x86 core is about 10% smaller than what Intel has with one of their latest CPUs.  We assume it is either Kaby Lake or Skylake.  AMD did not exactly go over exactly what they were counting when looking at the cores because there are some significant differences between the two architectures.  We are not sure if that 44mm sq. figure includes the L3 cache or the L2 caches.  My guess is that it probably includes L2 cache but not L3.  I could be easily wrong here.

Going down the table we see that AMD and Samsung/GF are able to get their SRAM sizes down smaller than what Intel is able to do.  AMD has double the amount of L2 cache per core, but it is only about 60% larger than Intel’s 256 KB L2.  AMD also has a much smaller L3 cache as well than Intel.  Both are 8 MB units but AMD comes in at 16 mm sq. while Intel is at 19.1 mm sq.  There will be differences in how AMD and Intel set up these caches, and until we see L3 performance comparisons we cannot assume too much.

Zen-comparison.png

(Image courtesy of ISSCC)

In some of the basic measurements of the different processes we see that Intel has advantages throughout.  This is not surprising as Intel has been well known to push process technology beyond what others are able to do.  In theory their products will have denser logic throughout, including the SRAM cells.  When looking at this information we wonder how AMD has been able to make their cores and caches smaller.  Part of that is due to the likely setup of cache control and access.

One of the most likely culprits of this smaller size is that the less advanced FPU/SSE/AVX units that AMD has in Zen.  They support AVX-256, but it has to be done in double the cycles.  They can do single cycle AVX-128, but Intel’s throughput is much higher than what AMD can achieve.  AVX is not the end-all, be-all but it is gaining in importance in high performance computing and editing applications.  David Kanter in his article covering the architecture explicitly said that AMD made this decision to lower the die size and power constraints for this product.

Ryzen will undoubtedly be a pretty large chip overall once both modules and 16 MB of L3 cache are put together.  My guess would be in the 220 mm sq. range, but again that is only a guess once all is said and done (northbridge, southbridge, PCI-E controllers, etc.).  What is perhaps most interesting of it all is that AMD has a part that on the surface is very close to the Broadwell-E based Intel i7 chips.  The i7-6900K runs at 3.2 to 3.7 GHz, features 8 cores and 16 threads, and around 20 MB of L2/L3 cache.  AMD’s top end looks to run at 3.6 GHz, features the same number of cores and threads, and has 20 MB of L2/L3 cache.  The Intel part is rated at 140 watts TDP while the AMD part will have a max of 95 watts TDP.

If Ryzen is truly competitive in this top end space (with a price to undercut Intel, yet not destroy their own margins) then AMD is going to be in a good position for the rest of this year.  We will find out exactly what is coming our way next month, but all indications point to Ryzen being competitive in overall performance while being able to undercut Intel in TDPs for comparable cores/threads.  We are counting down the days...

Source: AMD
Subject: Motherboards
Manufacturer: ASUS

Introduction and Technical Specifications

Introduction

02-all-components.jpg

Courtesy of ASUS

The Maximus VIII Impact is one of the Intel Z170 chipset offerings in the ROG (Republic of Gamer) board line. The board features the standard black and red ROG aesthetics in an mini-ITX form factor to accommodate space constrained system builds. ASUS chose to integrate black-chrome heat sinks into the board's build, giving it a sleek and modern appearance. The board's integrated Intel Z170 chipset integrates support for the latest Intel LGA1151 Skylake processor line as well as Dual Channel DDR4 memory. With an MSRP of $250, the Maximus VIII Impact comes a price premium for a high-quality and feature packed product.

03-board-profile.jpg

Courtesy of ASUS

04-board-flyapart.jpg

Courtesy of ASUS

ASUS integrated the following features into the Maximus VIII Impact board: four SATA 3 ports; one U.2 32Gbps port; an Intel I219-V Gigabit NIC; 2x2 802.11ac WiFI adapter; one PCI-Express x16 slot; on-board power, reset, Clear CMOS, and USB BIOS Flashback buttons; 2-digit Q-Code LED diagnostic display; ROG SupremeFX Impact III 8-Channel audio subsystem; integrated DisplayPort and HDMI video ports; and USB 2.0, 3.0, and 3.1 Type-A and Type-C port support.

05-power-flyaprt.jpg

Courtesy of ASUS

The Maximus VIII Impact features an eight phase digital power system, providing more than enough power to the CPU for any task you throw its way. The power delivery system itself consists of International Rectifier PowIRStage MOSFETs, MicroFine alloy chokes, and 10k-rated Japanese-sourced black-metallic capacitors.

Continue reading our preview of the ASUS Maximus VIII Gene motherboard!

Fishing for performance improvements? A shallow dive into Intel's desktop Kaby Lake

Subject: General Tech | December 6, 2016 - 12:35 PM |
Tagged: Skylake, kaby lake, Intel, 7th generation core

Ryan recently offered a sneak peek at Kaby Lake, which powered two HP Spectre laptops recently sent to PC Perspective for review.  [H]ard|OCP managed to acquire a desktop version of the i7-7700K along with a mysterious unreleased motherboard which supports both Skylake and Kaby Lake architectures.  When testing the two chips in Passmark there was no meaningful performance difference, a pattern repeated in 3D Mark and Sandra.  The performance per clock is not the whole story with this chip, there are new features and possible overclocking improvements but at the moment it does not look like there is a compelling reason to upgrade if you are already on Skylake.  The same is not true if you are using a previous generation.

peca-8.jpg

"If you are wondering what Intel's new Core i7-7700K Kaby Lake processor's performance will look like when it is launched next month at CES, we have a quick preview for you here today. Just some quick and dirty synthetic benchmark numbers to whet your appetite at 4.5GHz with comparison to the i7-6700K at matched clocks."

Here is some more Tech News from around the web:

Tech Talk

Source: [H]ard|OCP