Micron Launches 5100 Series Enterprise SSDs - 3D TLC up to 8TB!

Subject: Storage | December 5, 2016 - 02:48 PM |
Tagged: tlc, ssd, sata, micron

Today Micron initiated the first of a multi-tier launch of a new SATA Enterprise SSD lineup built around their IMFT 32-layer 3D NAND Flash. It may seem odd for a full enterprise line to use IMFT 3D TLC, as that flash has not been known for the high random IOPS demands of the datacenter, but Micron looks to be making it work, and work well.

consistency.png

Above is a performance consistency plot of their MAX model. While this does have the highest OP of all of the models, the consistency is surpassing even NVMe models (using a bus *much* faster than SATA). Sure the results are only using 1-second averages and not our Latency Percentile, but we will be able to pick out any single-IO inconsistencies once we get samples in for detailed review.

iops.png

Saturated IOPS performance also looks good 'on paper'.

The advantage to operating their flash in TLC mode is that the per die capacity moves from 32GB to 48GB, ultimately driving down the cost/GB of these products and making them an easier sell to enterprise customers. It also enables high capacities - the max capacity of the model with the least overprovisioning (ECO) will reach 8TB in a 2.5" SATA form factor when the last leg of this launch is completed later next year.

The three lines are all using the same controller and base firmware, but with differences in how the dies are laid out with respect to expected performance and endurance.

Below are all of the products being launched. All products use a Marvell 88SS1074 controller at SATA 6Gbit:

  • 5100 ECO
    • 2.5" 7mm: 480, 960, 1920, 3840, 7680 GB
    • M.2 2280: 480, 960, 1920 GB
    • Sequential read/write: 540 / 380-520 MB/s
    • Random read/write: 93k / 9k-31k IOPS
    • Endurance: <=1 DWPD
    • Cost / GB: $0.45 - $0.55
  • 5100 PRO
    • 2.5" 7mm: 240, 480, 960, 1920, 3840 GB
    • M.2 2280: 240, 480, 960, 1920 GB
    • Sequential read/write: 540 / 380-520 MB/s
    • Random read/write: 78 (240GB)-93k / 26k-43k IOPS
    • Endurance: 1-3 DWPD
    • Cost / GB: $0.55 - $0.65
  • 5100 MAX
    • 2.5" 7mm: 240, 480, 960, 1920 GB
    • M.2 2280: (none)
    • Sequential read/write: 540 / 310-520 MB/s
    • Random read/write: 93k / 48k-74k IOPS
    • Endurance: 5 DWPD
    • Cost / GB: $0.65 - $0.75

All models come with Micron 'Flex Capacity', which enables custom *increases* in OverProvisioning. Flex Security enables FIPS 140-2 validated 256-bit AES encryption.

The specs are very good when you consider their performance consistency claims, meaning a 74k IOPS random write rating applies to random writes across the *entire span* of the SSD *at steady state*. Consumer SSD firmware typically chokes with this type of workload, even ones equipped with MLC flash.

We will have more on the 5100 Series from Micron as these products are rolled out and sampled to us for performance review.

Press blast after the break.

Source: Micron

Toshiba Announces OCZ TL100 2.5" SATA SSDs - 240GB at $0.28/GB!

Subject: Storage | September 27, 2016 - 05:51 PM |
Tagged: toshiba, tlc, TL100, ssd, sata, ocz, 2.5

Toshiba launched the OCZ TL100 series today:

unnamed.jpg

These are TLC SSDs aimed at the budget sector. They are using the ever more common SLC cached TLC hybrid configuration, and come in at bargain basement pricing. Here are the specs:

  • Capacity: 120 / 240 GB
  • Sequential read / write: 550 / 530 MB/s
  • Random read / write: 85k / 80k IOPS
  • Warranty: 3 years with advance replacement
  • Endurance (120/240GB): 30 / 60 TBW (27 / 54 GB/day)
  • Price:
    • 120GB: $45 ($0.38/GB)
    • 240GB: $68 ($0.28/GB)

Yes, that's $0.28/GB and a 240GB SSD at less than $70 bucks. The endurance is on the low side, but if these perform even half way decently, they will be a great low-cost way to go for most budget PC builds. We'll be testing these shortly on a new suite of tests with workloads that have been specifically optimized to more closely resemble real usage. These tests allow hybrid SSDs to use their SLC cache as opposed to flooding the drives with IO and forcing TLC writes. Don't be surprised if these perform surprisingly well for their cost. No guarantees as we haven't tested them yet, but we will soon!

Press blast after the break.

Source: OCZ
Subject: Storage
Manufacturer: Seagate

Introduction and Specifications

Introduction

Barracuda is a name we have not heard in a good while from Seagate. Last seen on their 3TB desktop drive, it appears they thought it was time for a comeback. The company is revamping their product lines, along with launching a full round of 10TB Helium-filled offerings that cover just about anything you might need:

seagate HDD line.png

Starting from the center, IronWolf is their NAS drive, optimized for arrays as large as 8 disks. To the right is their surveillance drive offering, the SkyHawk. These are essentially NAS units with custom firmware optimized for multiple stream recording. Not mentioned above is the FireCuda, which is a rebrand of their Desktop SSHD. Those are not He-filled (yet) as their max capacity is not high enough to warrant it. We will be looking at those first two models in future pieces, but the subject of today’s review is the BarraCuda line. The base 3.5” BarraCuda line only goes to 4TB, but the BarraCuda Pro expands upon those capacities, including 6TB, 8TB, and 10TB models. The subject of today’s review is the 10TB BarraCuda Pro.

160802-160721.jpg

Read on for our review of the 10TB BarraCuda Pro!

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications, and Packaging

Introduction:

Everyone expects SSD makers to keep pushing out higher and higher capacity SSDs, but the thing holding them back is sufficient market demand for that capacity. With that, it appears Samsung has decided it was high time for a 4TB model of their 850 EVO. Today we will be looking at this huge capacity point, and paying close attention to any performance dips that sometimes result in pushing a given SSD controller / architecture to extreme capacities.

DSC01499.jpg

This new 4TB model benefits from the higher density of Samsung’s 48-layer V-NAND. We performed a side-by-side comparison of 32 and 48 layer products back in March, and found the newer flash to reduce Latency Percentile profiles closer to MLC-equipped Pro model than the 32-layer (TLC) EVO:

read-4.png

Latency Percentile showing reduced latency of Samsung’s new 48-layer V-NAND

We’ll be looking into all of this in today’s review, along with trying our hand at some new mixed paced workload testing, so let’s get to it!

Read on for our full review of the Samsung 850 EVO 4TB SATA SSD!

Subject: Storage
Manufacturer: ICY DOCK

Introduction, Specifications, and Packaging

Introduction

ICY DOCK has made themselves into a sort of Swiss Army knife of dockable and hot-swappable storage solutions. From multi-bay desktop external devices to internal hot-swap enclosures, these guys have just about every conceivable way to convert storage form factors covered. We’ve looked at some of their other offerings in the past, but this week we will focus on a pair of their ToughArmor series products.

160426-152000.jpg

As you can no doubt see here, these two enclosures aim to cram as many 2.5” x 7mm form factor devices into the smallest space possible. They also offer hot swap capability and feature front panel power + activity LEDs. As the name would imply, these are built to be extremely durable, with ICY DOCK proudly running them over with a truck in some of their product photos.

Read on for our full review of the ICY DOCK ToughArmor MB998SP-B and MB993SK-B!

Behold, the spectrum of storage

Subject: General Tech | April 5, 2016 - 12:47 PM |
Tagged: NVMe, SAS, sata, PCIe SSD, low latency

The Register have put together a nice graphic and table displaying current storage technologies and how they relate to each other.  They constructed the graph to demonstrate the major boundaries in storage, between cache/memory, local storage and external storage and how these are going to move thanks to new technology.  NVMe-over-fabric will enable companies to utilize external storage at latencies lower than internal storage that still uses SATA or SAS, with only pure PCIe local storage outpacing its potential.  X-Point, assuming it lives up to the hype, will blur the line between local storage and memory/cache storage, offering latency previously only seen in system memory or on-die cache.

They also provide a table to give you some rough ideas how this translates between storage media, normalizing it a theoretical task which would take L1 cache 1 second to access, this can make it somewhat easier to comprehend for some than nanoseconds.

memory_storage_latency_spectrum.jpg

"Two technology changes are starting to be applied and both could have massive latency reduction effects at the two main storage boundary points: between memory and storage on the one hand, and between internal and external, networked storage on the other."

Here is some more Tech News from around the web:

Tech Talk

 

Source: The Register

A new Trion appears, is it still a good choice for an entry level SSD?

Subject: Storage | February 18, 2016 - 03:14 PM |
Tagged: Trion 150, toshiba, tlc, ssd, slc, sata, ocz, A15nm

As you may remember from Al's post, the OCZ Trion 150 is essentially the same as the previous Trion 100, except for the use of 15nm TLC flash from Toshiba and a lower initial price.  Hardware Canucks got their paws on two of the drives from this series to benchmark, the 480GB and 960GB models.  The 480GB model retains the 256MB DDR3 cache, the 960 doubles that to 512MB but there is one thing missing from this new series; instead of relying on capacitors to prevent lost data from a power failure they rely on OCZ's firmware based Power Failure Management Plus.  Read Hardware Canucks full review to see if the new Trion can match the price to performance of the original.

board1_sm.jpg

"With the budget-focused SSD market exploding, OCZ is launching the Trion 150, a refresh of their original Trion 100 series which should offer better performance and an even lower price."

Here are some more Storage reviews from around the web:

Storage

 

Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction

The steady increase in flash memory capacity per die is necessary for bringing SSD costs down, but SSDs need a minimum number of dies present to maintain good performance. Back when Samsung announced their 48-layer VNAND, their Senior VP of Marketing assured me that the performance drop that comes along with the low die count present in lower capacity models would be dealt with properly. At the time, Unsoo Kim mentioned the possibility of Samsung producing 128Gbit 48-layer VNAND, but it now appears that they have opted to put everything into 256Gbit on 3D side. Fortunately they still have a planar (2D) NAND production line going, and they will be using that same flash in a newer line of low capacity models. When their 850 Series transitions over to 48-layer (enabling 2TB capacities), Samsung will drop the 120GB capacity of that line and replace it with a new OEM / system builder destined 750 EVO:

160210-175142.jpg

The SSD 750 EVO Series is essentially a throwback to the 840 EVO, but without all of the growing pains experienced by that line. Samsung assured me that the same corrections that ultimately fixed the long-term read-based slow down issues with the 840 EVO also apply to the 750 EVO, and despite the model number being smaller, these should actually perform a bit better than their predecessor. Since it would be silly to just launch a single 120GB capacity to make up for the soon to be dropped 850 EVO 120GB, we also get a 250GB model, which should make for an interesting price point.

Specifications

specs.png

Baseline specs are very similar to the older 840 EVO series, with some minor differences (to be shown below). There are some unlisted specs that are carried over from the original series. For those we need to reference the slides from the 840 EVO launch:

DSC04638.JPG

Read on for the full review of these two new models!

OCZ Launches Trion 150, Successor to Trion 100 SATA SSD, Now Using 15nm Flash

Subject: Storage | February 3, 2016 - 03:31 PM |
Tagged: Trion 150, toshiba, tlc, ssd, slc, sata, ocz, A15nm

*Note* This piece originally stated 'A15nm', however this was an error in the Trion 150 spec sheet at OCZ. It has been corrected in this article (as well as at the OCZ web site).

2015 was a bit of a rough year for OCZ, as their integration with parent company Toshiba ran into a few performance bumps in the road. First was the Vector 180 launch, which saw some particularly troublesome stalls during writes and TRIM operations. The Trion 100 launch went a bit smoother, but we did note some inconsistencies in caching performance of those TLC/SLC caching SSDs.

OCZ hopes to turn things around by kicking off 2016 with some updates to their product lines. First up is the just announced Trion 150:

trion150_lrg_sp.png

Looking at the spec sheets of the Trion 100 and 150, it may be difficult to spot any differences. I’ll save you the trouble and say that only *one digit* changes, but it is an important one. The Trion 150 will use Toshiba 15nm TLC flash (the Trion 100 used A19nm). What is interesting about this is that the Trion 150 carries the same endurance rating as its predecessor. A flash memory die shrink typically comes with a corresponding reduction in endurance, so it is good to see Toshiba squeeze this likely last die shrink to their planar flash for all of the endurance they can. Further backing up that endurance claim, the Trion 150 will carry OCZ’s ShieldPlus warranty, which offers shipping-paid advance-RMA (without receipt) of this product line for three years!

OCZ has Trion 150 samples on the way to us, and we will get a full performance review of them up as soon as we can! Full press blast follows after the break.

Source: OCZ

Fixstars Launches 13TB 2.5" SATA SSD Geared Towards Media Streaming

Subject: Storage | January 13, 2016 - 09:57 PM |
Tagged: ssd, sata, Fixstars, 13TB

Got a high bandwidth video camera that fills a piddly 4TB SSD in too short of a time? How about a 13TB SSD!

ssd-pinot2-15mm-for-press.png

Fixstars certainly gets cool points for launching such a high capacity SSD, but there are a few things to consider here. These are not meant to be written in a random fashion and are primarily geared towards media creation (8k RAW video). Filling at saturated SATA bandwidth, these will take about 7 hours to fill, and just as long to empty onto that crazy high end editing machine. But hey, if you can afford 13TB of flash (likely ~$13,000) just to record your video content, then your desktop should be even beefier.

The take home point here is that this is not a consumer device, and it would not work out well even for pro gamers with money to burn. The random write performance is likely poor enough that it could not handle a Steam download over a high end broadband link.

Full press blast after the break.

Source: Fixstars