Samsung is showing off some very pretty displays

Subject: General Tech | February 17, 2016 - 12:53 PM |
Tagged: Samsung, transparent display, ML32E, TO55F

TechARP just posted a video of two reflective displays from Samsung, the 55" ML55E mirror display which has 55% reflectance and 90% transmittance and displays at 1920x1080 and a 32" model, the ML32E.  These will be used in store displays for now, but soon you may be upgrading your bathroom mirror so you can catch the news while you shave, or your Netflix stream while you take a quick break.

They also showed off the 55" O55F transparent OLED display, again 1080x1920 which is 45% transparent and they claim is able to provide 100% Adobe RGB colour space with 98% DCI color support.  As with the reflective displays you will first see these as store displays but it shouldn't be too long before we will be able to get our hands on them.  You can also see the Samsung PR here, unfortunately it does not specify what material was used in the transparent display but one hopes it is sturdy enough not to have to be protected from scratches and bumps.

Samsung-Electronics-Showcase-Latest-Monitor-and-Digital-Signage-Innovations-at-the-Southeast-Asia-Forum-2016_615,363.jpg

"At the recently-held Samsung Forum 2016, we came across these really cool transparent and mirror displays that Samsung will be bringing to the market shortly. Take a look!"

Here is some more Tech News from around the web:

Tech Talk

Source: TechARP
Subject: Storage
Manufacturer: Samsung

Introduction, Specifications and Packaging

Introduction

The steady increase in flash memory capacity per die is necessary for bringing SSD costs down, but SSDs need a minimum number of dies present to maintain good performance. Back when Samsung announced their 48-layer VNAND, their Senior VP of Marketing assured me that the performance drop that comes along with the low die count present in lower capacity models would be dealt with properly. At the time, Unsoo Kim mentioned the possibility of Samsung producing 128Gbit 48-layer VNAND, but it now appears that they have opted to put everything into 256Gbit on 3D side. Fortunately they still have a planar (2D) NAND production line going, and they will be using that same flash in a newer line of low capacity models. When their 850 Series transitions over to 48-layer (enabling 2TB capacities), Samsung will drop the 120GB capacity of that line and replace it with a new OEM / system builder destined 750 EVO:

160210-175142.jpg

The SSD 750 EVO Series is essentially a throwback to the 840 EVO, but without all of the growing pains experienced by that line. Samsung assured me that the same corrections that ultimately fixed the long-term read-based slow down issues with the 840 EVO also apply to the 750 EVO, and despite the model number being smaller, these should actually perform a bit better than their predecessor. Since it would be silly to just launch a single 120GB capacity to make up for the soon to be dropped 850 EVO 120GB, we also get a 250GB model, which should make for an interesting price point.

Specifications

specs.png

Baseline specs are very similar to the older 840 EVO series, with some minor differences (to be shown below). There are some unlisted specs that are carried over from the original series. For those we need to reference the slides from the 840 EVO launch:

DSC04638.JPG

Read on for the full review of these two new models!

Samsung's HBM2 will be ready before you are

Subject: Memory | February 15, 2016 - 05:59 PM |
Tagged: Samsung, HBM2, Data Memory Systems

Samsung is ready to roll out the next generation of High Bandwidth Memory, aka HBM2, for your desktop and not just your next generation of GPU.  They have already begun production on 4GB HBM2 DRAM and promise 8GB DIMMs by the end of this year.  The modules will provide double the bandwidth of HBM1, up 256GB/s of bandwidth which is very impressive compared to the up to 70GB/s DDR4-3200 theoretically offers.

Not only is this technology going to appear in the next genertation of NVIDIA and AMD GPUs but could also work its way into main system memory.  Of course these DIMMs are not going to work with any desktop or mobile processor currently on the market but we will hopefully see new processors with compatible memory controllers in the near future.  You can also expect this to come with a cost, not just in expensive DIMMs at launch but also a comparible increaset in CPU prices as they will cost more to manufacture initially. 

It will be very interesting to see how this effects the overall market; will we see a split similar to what is currently seen in mainstream GPUs, a lower cost DDR version and a standard GDDR version?  The new market could see DDRx and HMBx models of CPUs and motherboards and could do the same for the GPU market, with the end of DDR on graphics cards.  If so will it spell the end of DDR5 development?  Interesting times to be living in, we should be hearing more from Samsung in the near future.

Samsung.png

You can read the full PR below.

What Micron's Upcoming 3D NAND Means for SSD Capacity, Performance, and Cost

Subject: Storage | February 14, 2016 - 02:51 PM |
Tagged: vnand, ssd, Samsung, nand, micron, Intel, imft, 768Gb, 512GB, 3d nand, 384Gb, 32 Layer, 256GB

You may have seen a wave of Micron 3D NAND news posts these past few days, and while many are repeating the 11-month old news with talks of 10TB/3.5TB on a 2.5"/M.2 form factor SSDs, I'm here to dive into the bigger implications of what the upcoming (and future) generation of Intel / Micron flash will mean for SSD performance and pricing.

progression-3-.png

Remember that with the way these capacity increases are going, the only way to get a high performance and high capacity SSD on-the-cheap in the future will be to actually get those higher capacity models. With such a large per-die capacity, smaller SSDs (like 128GB / 256GB) will suffer significantly slower write speeds. Taking this upcoming Micron flash as an example, a 128GB SSD will contain only four flash memory dies, and as I wrote about back in 2014, such an SSD would likely see HDD-level sequential write speeds of 160MB/sec. Other SSD manufacturers already recognize this issue and are taking steps to correct it. At Storage Visions 2016, Samsung briefed me on the upcoming SSD 750 Series that will use planar 16nm NAND to produce 120GB and 250GB capacities. The smaller die capacities of these models will enable respectable write performance and will also enable them to discontinue their 120GB 850 EVO as they transition that line to higher capacity 48-layer VNAND. Getting back to this Micron announcement, we have some new info that bears analysis, and that pertains to the now announced page and block size:

  • 256Gb MLC: 16KB Page / 16MB Block / 1024 Pages per Block

  • 384Gb TLC: 16KB Page / 24MB Block / 1536 Pages per Block

To understand what these numbers mean, using the MLC line above, imagine a 16MB CD-RW (Block) that can write 1024 individual 16KB 'sessions' (Page). Each 16KB can be added individually over time, and just like how files on a CD-RW could be modified by writing a new copy in the remaining space, flash can do so by writing a new Page and ignoring the out of date copy. Where the rub comes in is when that CD-RW (Block) is completely full. The process at this point is very similar actually, in that the Block must be completely emptied before the erase command (which wipes the entire Block) is issued. The data has to go somewhere, which typically means writing to empty blocks elsewhere on the SSD (and in worst case scenarios, those too may need clearing before that is possible), and this moving and erasing takes time for the die to accomplish. Just like how wiping a CD-RW took a much longer than writing a single file to it, erasing a Block takes typically 3-4x as much time as it does to program a page.

With that explained, of significance here are the growing page and block sizes in this higher capacity flash. Modern OS file systems have a minimum bulk access size of 4KB, and Windows versions since Vista align their partitions by rounding up to the next 2MB increment from the start of the disk. These changes are what enabled HDDs to transition to Advanced Format, which made data storage more efficient by bringing the increment up from the 512 Byte sector up to 4KB. While most storage devices still use 512B addressing, it is assumed that 4KB should be the minimum random access seen most of the time. Wrapping this all together, the Page size (minimum read or write) is 16KB for this new flash, and that is 4x the accepted 4KB minimum OS transfer size. This means that power users heavy on their page file, or running VMs, or any other random-write-heavy operations being performed over time will have a more amplified effect of wear of this flash. That additional shuffling of data that must take place for each 4KB write translates to lower host random write speeds when compared to lower capacity flash that has smaller Page sizes closer to that 4KB figure.

schiltron-IMFT-edit.jpg

A rendition of 3D IMFT Floating Gate flash, with inset pulling back some of the tunnel oxide layer to show the location of the floating gate. Pic courtesy Schiltron.

Fortunately for Micron, their choice to carry Floating Gate technology into their 3D flash has netted them some impressive endurance benefits over competing Charge Trap Flash. One such benefit is a claimed 30,000 P/E (Program / Erase) cycle endurance rating. Planar NAND had dropped to the 3,000 range at its lowest shrinks, mainly because there was such a small channel which could only store so few electrons, amplifying the (negative) effects of electron leakage. Even back in the 50nm days, MLC ran at ~10,000 cycle endurance, so 30,000 is no small feat here. The key is that by using that same Floating Gate tech so good at controlling leakage for planar NAND on a new 3D channel that can store way more electrons enables excellent endurance that may actually exceed Samsung's Charge Trap Flash equipped 3D VNAND. This should effectively negate the endurance hit on the larger Page sizes discussed above, but the potential small random write performance hit still stands, with a possible remedy being to crank up the Over-Provisioning of SSDs (AKA throwing flash at the problem). Higher OP means less active pages per block and a reduction in the data shuffling forced by smaller writes.

25nm+penny.jpg

A 25nm flash memory die. Note the support logic (CMOS) along the upper left edge.

One final thing helping out Micron here is that their Floating Gate design also enables a shift of 75% of the CMOS circuitry to a layer *underneath* the flash storage array. This logic is typically part of what you see 'off to the side' of a flash memory die. Layering CMOS logic in such a way is likely thanks to Intel's partnership and CPU development knowledge. Moving this support circuitry to the bottom layer of the die makes for less area per die dedicated to non-storage, more dies per wafer, and ultimately lower cost per chip/GB.

progression slide.png

Samsung's Charge Trap Flash, shown in both planar and 3D VNAND forms.

One final thing before we go. If we know anything about how the Intel / Micron duo function, it is that once they get that freight train rolling, it leads to relatively rapid advances. In this case, the changeover to 3D has taken them a while to perfect, but once production gains steam, we can expect to see some *big* advances. Since Samsung launched their 3D VNAND their gains have been mostly iterative in nature (24, 32, and most recently 48). I'm not yet at liberty to say how the second generation of IMFT 3D NAND will achieve it, but I can say that it appears the next iteration after this 32-layer 256Gb (MLC) /384Gb (TLC) per die will *double* to 512Gb/768Gb (you are free to do the math on what that means for layer count). Remember back in the day where Intel launched new SSDs at a fraction of the cost/GB of the previous generation? That might just be happening again within the next year or two.

Podcast #385 - Rise of the Tomb Raider Performance, 3x NVMe M.2 RAID-0, AMD Q1 Offerings

Subject: General Tech | February 4, 2016 - 11:53 AM |
Tagged: video, Trion 150, tesla, steam os, Samsung, rise of the tomb raider, podcast, ocz, NVMe, Jim Keller, amd, 950 PRO

PC Perspective Podcast #385 - 02/04/2016

Join us this week as we discuss Rise of the Tomb Raider performance, a triple RAID-0 NVMe array and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Subject: Storage
Manufacturer: Gigabyte

Introduction

NVMe was a great thing to happen to SSDs. The per-IO reduction in latency and CPU overhead was more than welcome, as PCIe SSDs were previously using the antiquated AHCI protocol, which was a carryover from the SATA HDD days. With NVMe came additional required support in Operating Systems and UEFI BIOS implementations. We did some crazy experiments with arrays of these new devices, but we were initially limited by the lack of native hardware-level RAID support to tie multiple PCIe devices together. The launch of the Z170 chipset saw a remedy to this, by including the ability to tie as many as three PCIe SSDs behind a chipset-configured array. The recent C600 server chipset also saw the addition of RSTe capability, expanding this functionality to enterprise devices like the Intel SSD P3608, which was actually a pair of SSDs on a single PCB.

Most Z170 motherboards have come with one or two M.2 slots, meaning that enthusiasts wanting to employ the 3x PCIe RAID made possible by this new chipset would have to get creative with the use of interposer / adapter boards (or use a combination of PCI and U.2 connected Intel SSD 750s). With the Samsung 950 Pro available, as well as the slew of other M.2 SSDs we saw at CES 2016, it’s safe to say that U.2 is going to push back into the enterprise sector, leaving M.2 as the choice for consumer motherboards moving forward. It was therefore only a matter of time before a triple-M.2 motherboard was launched, and that just recently happened - Behold the Gigabyte Z170X-SOC Force!

160128-170345.jpg

This new motherboard sits at the high end of Gigabyte’s lineup, with a water-capable VRM cooler and other premium features. We will be passing this board onto Morry for a full review, but this piece will be focusing on one section in particular:

160128-170427.jpg

I have to hand it to Gigabyte for this functional and elegant design choice. The space between the required four full length PCIe slots makes it look like it was chosen to fit M.2 SSDs in-between them. I should also note that it would be possible to use three U.2 adapters linked to three U.2 Intel SSD 750s, but native M.2 devices makes for a significantly more compact and consumer friendly package.

160122-181745.jpg

With the test system set up, let’s get right into it, shall we?

Read on for our look at triple M.2 in action!

Samsung Mass Produces HBM2 Memory

Subject: Graphics Cards, Memory | January 19, 2016 - 11:01 PM |
Tagged: Samsung, HBM2, hbm

Samsung has just announced that they have begun mass production of 4GB HBM2 memory modules. When used on GPUs, four packages can provide 16GB of Video RAM with very high performance. They do this with a very wide data bus, which trade off frequency for transferring huge chunks. Samsung's offering is rated at 256 GB/s per package, which is twice what the Fury X could do with HBM1.

samsung-2016-4GB-HBM2-DRAM-structure_main.jpg

They also expect to mass produce 8GB HBM2 packages within this calendar year. I'm guessing that this means we'll see 32GB GPUs in the late-2016 or early-2017 time frame unless "within this year" means very, very soon (versus Q3/Q4). They will likely be for workstation or professional cards, but, in NVIDIA's case, those are usually based on architectures that are marketed to high-end gaming enthusiasts through some Titan offering. There's a lot of ways this could go, but a 32GB Titan seems like a bit much; I wouldn't expect that this affects the enthusiast gamer segment. It might mean that professionals looking to upgrade from the Kepler-based Tesla K-series might be waiting a little longer, maybe even GTC 2017. Alternatively, they might get new cards, just with a 16GB maximum until a refresh next year. There's not enough information to know one way or the other, but it's something to think about when more of it starts rolling in.

Samsung's HBM2 are compatible with ECC, although I believe that was also true for at least some HBM1 modules from SK Hynix.

Source: Samsung

CES 2016: Samsung Announces 850 EVO-based Portable SSD T3 - Updated

Subject: Storage, Shows and Expos | January 6, 2016 - 12:15 AM |
Tagged: T3, ssd, Samsung, portable, msata, CES 2016, CES, 850 EVO

We got our first look at the Samsung T1 SSD at CES 2015. The concept was simple - Make a very compact external portable encrypted drive, and make it fast. Based on a 3D VNAND equipped mSATA 850 EVO and using an ASMedia USB to SATA bridge, the T1 had no issue saturating the SATA side of the link and was capable of well over 400 MB/s over a USB 3.0 link.

This year Samsung is teasing the next iteration on this product:

T3_007_Dynamaic_Silver_resize.png

Dubbed the T3 (T2 doesn't translate well in some other languages), the T3 has some notable changes / updates / upgrades over the T1 of last year:

  • Type-C connector on the device end of the cable (we assume the included cable will link to Standard A for compatibility). The T1 used micro-B.
  • Metal case / housing. T1 was all plastic.
  • Capacities up to 2TB. T1 was limited to 1TB.

Full press blast / additional details / specs appear after the break. Look out for a review of this one just as soon as we can get our hands on one!

*Update* I got my hands on one at a Samsung press dinner. Here it is next to the older T1. The T3 is a tiny bit larger and thicker, but the difference is hardly noticeable as the T1 was very thin and light as it was. Here's a pic:

image.jpeg

Coverage of CES 2016 is brought to you by Logitech!

PC Perspective's CES 2016 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Source: Samsung

CES 2016: Fasetto Teases Link SSD Storage Platform

Subject: Storage, Shows and Expos | January 5, 2016 - 01:39 AM |
Tagged: CES, CES 2016, Fasetto, Link, wifi, NAS, ssd, Samsung, vnand, 802.11ac

Fasetto is a company previously known as one of those cross-platform file-sharing web apps, but I was shocked to see them with a space at CES Unveiled. Companies without physical products tend to fall flat at this type of venue, but as I walked past, boy was I mistaken!

160104-221226a.jpg

To give the size a bit of perspective here, that's a business card sitting in front of the 'Link', which only measures 1.9x1.9x0.9" and weighs just under 4 ounces. That's a belt clip to the right of it. Ok, now that we have the tiny size and low weight described, what has Fasetto packed into that space?

  • Aluminum + ABS construction
  • Waterproof to 45 feet (and it floats!)
  • Bluetooth 4.0 LE
  • 802.11AC dual band WiFi (reportedly 4x4)
  • 4GB RAM
  • Quad core ARM CPU
  • 9-axis compass/accelerometer/gyro
  • 1350 mAh Li battery
  • Wireless charging (Chi style)
  • Up to 2TB SSD

For a portable storage device, that is just an absolutely outstanding spec sheet! The Link is going to run an OS designed specifically for this device, and will have plugin support (simple add-on apps that can access the accelerometer and log movement, for example).

The BIG deal with this device is of course the ability to act as a portable wireless storage device. In that respect it can handle 20 simultaneous devices, stream to seven simultaneously, and can also do the expected functions like wireless internet pass-through. Claimed standby power is two weeks and active streaming is rated at up to 8 hours. Even more interesting is that I was told the internal storage will be Samsung 48-layer VNAND borrowed from their T3 (which explains why the Fasetto Link will not be available until late 2016). This is sure to be a hit with photographers, as WiFi compatible cameras should be able to stream photos to the Link as the photos are being taken, eliminating the need to offload cameras at the end of a shoot.

We will definitely be working with Fasetto to help shake out any bugs prior to the release of this little gem. I suspect it might just be the most groundbreaking storage product that we see come out of this CES.

Coverage of CES 2016 is brought to you by Logitech!

PC Perspective's CES 2016 coverage is sponsored by Logitech.

Follow all of our coverage of the show at http://pcper.com/ces!

Samsung adding AMD to their customers?

Subject: General Tech | December 22, 2015 - 02:07 PM |
Tagged: amd, Samsung, 14nm, rumour

The talk around the watercooler includes a rumour that AMD may use Samsung to produce at least some of their 14nm chips in the coming year.  If true this has been a huge year for Samsung who produce NVIDIA chips as well as recently picking up a contract with Apple to produce some of their A9 SoCs.  The rumour still includes GLOBALFOUNDRIES as a source for APUs and GPUs so this would make Samsung a second source for working silicon, which we can hope will alleviate some of AMD's difficulty in maintaining supplies of products.  This could also help fund Samsung's development of their 10nm FinFET node which the claim should be in production by the end of 2016.  As always, take the rumour for what it is but if you want to learn more about what is being said you can pop over to The Inquirer.

Samsung_10_nm_Graphic_Wide.jpg

"A report in South Korea's Electronic Times, which cited unknown sources, said that Samsung Electronics will start making new chips for AMD sometime next year."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer