FMS 2017: Samsung Announces QLC V-NAND, 16TB NGSFF SSD, Z-SSD V2, Key Value

Subject: Storage, Shows and Expos | August 8, 2017 - 05:37 PM |
Tagged: z-ssd, vnand, V-NAND, Samsung, QLC, FMS 2017, 64-Layer, 3d, 32TB, 1Tbit

As is typically the case for Flash Memory Summit, the Samsung keynote was chock full of goodies:

170808-120053.jpg

Samsung kicked off by stating there are a good 5 years of revisions left in store for their V-NAND line, each with a corresponding increase in speed and capacity.

170808-120143.jpg

While V-NAND V4 was 64-layer TLC, V5 is a move to QLC, bringing per die capacity to 1Tbit (128 GB per die).

170808-121035.jpg

If you were to stack 32 of these new V5 dies per package, and do so in a large enough 2.5" housing, that brings the maximum capacity of such a device to a whopping 128TB!

170808-120245.jpg

Samsung also discussed a V2 of their Z-NAND, moving from SLC to MLC while only adding 2-3 us of latency per request. Z-NAND is basically a quicker version of NAND flash designed to compete with 3D XPoint.

170808-121123.jpg

M.2 SSDs started life with the working title of NGFF. Fed up with the limitations of this client-intended form factor for the enterprise, Samsung is pushing a slightly larger NGSFF form factor that supports higher capacities per device. Samsung claimed a PM983 NGSFF SSD will hold 16TB, a 1U chassis full of the same 576TB, and a 2U chassis pushing that figure to 1.15PB.

170808-121423.jpg

Last up is 'Key Value'. This approach allows the flash to be accessed more directly by the application layer, enabling more efficient use of the flash and therefore higher overall performance.

There were more points brought up that we will be covering later on, but for now here is the full press release that went out during the keynote: (after the break)

Podcast #461 - AMD Ryzen 3, Threadripper, Logitech Powerplay, and more!

Subject: General Tech | August 3, 2017 - 12:00 PM |
Tagged: podcast, wolfenstein, wdc, Vibe, Vega Nano, Threadripper, ryzen 3, radeon rx vega, QLC, htc, Fanatec, Clubsport lite elite, BiCS3, amd, video

PC Perspective Podcast #461 - 08/03/17

Join us for AMD Ryzen 3, Threadripper, Logitech Powerplay, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg

Program length: 1:38:20

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:25:45 Ryan: Logitech G903
    2. 1:34:05 Allyn: Things I would have loved to grow up learning / playing (pixel kit): 1 2
  4. Closing/outro

Source:

Western Digital BiCS3 Flash Goes QLC - 96GB per die!

Subject: Storage | August 2, 2017 - 06:21 PM |
Tagged: western digital, wdc, WD, tlc, slc, QLC, nand, mlc, flash, 96GB, 768Gb, 3d

A month ago, WD and Toshiba each put out releases related to their BiCS 3D Flash memory. WD announced 96 layers (BiCS4) as their next capacity node, while Toshiba announced them reliably storing four bits per cell (QLC).

FMS-QLC.jpg

WD recently did their own press release related to QLC, partially mirroring Toshiba's announcement, but this one had some additional details on capacity per die, as well as stating their associated technology name used for these shifts. TLC was referred to as "X3", and "X4" is the name for their QLC tech as applied to BiCS. The WD release stated that X4 tech, applied to BiCS3, yields 768Gbit (96GB) per die vs. 512Gbit (64GB) per die for X3 (TLC). Bear in mind that while the release (and the math) states this is a 50% increase, moving from TLC to QLC with the same number of cells does only yields a 33% increase, meaning X4 BiCS3 dies need to have additional cells (and footprint) to add that extra 17%.

The release ends by hinting at X4 being applied to BiCS4 in the future, which is definitely exciting. Merging the two recently announced technologies would yield a theoretical 96-layer BiCS4 die, using X4 QLC technology, yielding 1152 Gbit (144GB) per die. A 16 die stack of which would come to 2,304 GB (1.5x the previously stated 1.5TB figure). The 2304 figure might appear incorrect but consider that we are multiplying two 'odd' capacities together (768 Gbit (1.5x512Gbit for TLC) and 96 layers (1.5x64 for X3).

Press blast appears after the break.

Toshiba and Western Digital announce QLC and 96-Layer BiCS Flash

Subject: Storage | June 28, 2017 - 09:49 PM |
Tagged: wdc, WD, toshiba, QLC, nand, BiCS, 96-layer, 3d

A couple of announcements out of Toshiba and Western Digital today. First up is Toshiba announcing QLC (4 bit per cell) flash on their existing BiCS 3 (64-layer) technology. QLC may not be the best for endurance as the voltage tolerances become extremely tight with 16 individual voltage states per cell, but Toshiba has been working on this tech for a while now.

FMS-QLC.jpg

In the above slide from the Toshiba keynote at last year's Flash Memory Summit, we see the use case here is for 'archival grade flash', which would still offer fast reads but is not meant to be written as frequently as MLC or TLC flash. Employing QLC in Toshiba's current BiCS 3 (64-layer) flash would enable 1.5TB of storage in a 16-die stack (within one flash memory chip package).

roadmap.png

Next up is BiCS 4, which was announced by Western Digital. We knew BiCS 4 was coming but did not know how many layers it would be. We now know that figure, and it is 96. The initial offerings will be the common 256Gbit (32GB) capacity per die, but stacking 96 cells high means the die will come in considerably smaller, meaning more per wafer, ultimately translating to lower cost per GB in your next SSD.

While these announcements are welcome, their timing and coordinated launch from both companies seems odd. Perhaps it has something to do with this?