Build and Upgrade Components

Spring is in the air! And while many traditionally use this season for cleaning out their homes, what could be the point of reclaiming all of that space besides filling it up again with new PC hardware and accessories? If you answered, "there is no point, other than what you just said," then you're absolutely right. Spring a great time to procrastinate about housework and build up a sweet new gaming PC (what else would you really want to use that tax return for?), so our staff has listed their favorite PC hardware right now, from build components to accessories, to make your life easier. (Let's make this season far more exciting than taking out the trash and filing taxes!)

While our venerable Hardware Leaderboard has been serving the PC community for many years, it's still worth listing some of our favorite PC hardware for builds at different price points here.

Processors - the heart of the system.

No doubt about it, AMD's Ryzen CPU launch has been the biggest news of the year so far for PC enthusiasts, and while the 6 and 4-core variants are right around the corner the 8-core R7 processors are still a great choice if you have the budget for a $300+ CPU. To that end, we really like the value proposition of the Ryzen R7 1700, which offers much of the performance of its more expensive siblings for a really compelling price, and can potentially be overclocked to match the higher-clocked members of the Ryzen lineup, though moving up to either the R7 1700X or R7 1800X will net you higher clocks (without increasing voltage and power draw) out of the box.

box1.jpg

Really, any of these processors are going to provide a great overall PC experience with incredible multi-threaded performance for your dollar in many applications, and they can of course handle any game you throw at them - with optimizations already appearing to make them even better for gaming.

Don't forget about Intel, which has some really compelling options starting even at the very low end (Pentium G4560, when you can find one in stock near its ~$60 MSRP), thanks to their newest Kaby Lake CPUs. The high-end option from Intel's 7th-gen Core lineup is the Core i7-7700K (currently $345 on Amazon), which provides very fast gaming performance and plenty of power if you don't need as many cores as the R7 1700 (or Intel's high-end LGA-2011 parts). Core i5 processors provide a much more cost-effective way to power a gaming system, and an i5-7500 is nearly $150 less than the Core i7 while providing excellent performance if you don't need an unlocked multiplier or those additional threads.

Continue reading our Spring Buyer's Guide for selections of graphics cards, motherboards, memory and more!

AMD Ryzen Community Update Addresses Windows 10 Thread Scheduling, SMT Performance, and More

Subject: Processors | March 13, 2017 - 08:48 PM |
Tagged: Windows 7, windows 10, thread scheduling, SMT, ryzen, Robert Hallock, processor, cpu, amd

AMD's Robert Hallock (previously the Head of Global Technical Marketing for AMD and now working full time on the CPU side of things) has posted a comprehensive Ryzen update, covering AMD's official stance on Windows 10 thread scheduling, the performance implications of SMT, Windows power management settings, and more. The post in its entirety is reproduced below, and also available from AMD by following this link.

AMD_RYZEN.png

(Begin statement:)

It’s been about two weeks since we launched the new AMD Ryzen™ processor, and I’m just thrilled to see all the excitement and chatter surrounding our new chip. Seems like not a day goes by when I’m not being tweeted by someone doing a new build, often for the first time in many years. Reports from media and users have also been good:

  • “This CPU gives you something that we needed for a long time, which is a CPU that gives you a well-rounded experience.” –JayzTwoCents
  • Competitive performance at 1080p, with Tech Spot saying the “affordable Ryzen 7 1700” is an “awesome option” and a “safer bet long term.”
  • ExtremeTech showed strong performance for high-end GPUs like the GeForce GTX 1080 Ti, especially for gamers that understand how much value AMD Ryzen™ brings to the table
  • Many users are noting that the 8-core design of AMD Ryzen™ 7 processors enables “noticeably SMOOTHER” performance compared to their old platforms.

While these findings have been great to read, we are just getting started! The AMD Ryzen™ processor and AM4 Platform both have room to grow, and we wanted to take a few minutes to address some of the questions and comments being discussed across the web.

Thread Scheduling

We have investigated reports alleging incorrect thread scheduling on the AMD Ryzen™ processor. Based on our findings, AMD believes that the Windows® 10 thread scheduler is operating properly for “Zen,” and we do not presently believe there is an issue with the scheduler adversely utilizing the logical and physical configurations of the architecture.

As an extension of this investigation, we have also reviewed topology logs generated by the Sysinternals Coreinfo utility. We have determined that an outdated version of the application was responsible for originating the incorrect topology data that has been widely reported in the media. Coreinfo v3.31 (or later) will produce the correct results.

Finally, we have reviewed the limited available evidence concerning performance deltas between Windows® 7 and Windows® 10 on the AMD Ryzen™ CPU. We do not believe there is an issue with scheduling differences between the two versions of Windows.  Any differences in performance can be more likely attributed to software architecture differences between these OSes.

Going forward, our analysis highlights that there are many applications that already make good use of the cores and threads in Ryzen, and there are other applications that can better utilize the topology and capabilities of our new CPU with some targeted optimizations. These opportunities are already being actively worked via the AMD Ryzen™ dev kit program that has sampled 300+ systems worldwide.

Above all, we would like to thank the community for their efforts to understand the Ryzen processor and reporting their findings. The software/hardware relationship is a complex one, with additional layers of nuance when preexisting software is exposed to an all-new architecture. We are already finding many small changes that can improve the Ryzen performance in certain applications, and we are optimistic that these will result in beneficial optimizations for current and future applications.

Temperature Reporting

The primary temperature reporting sensor of the AMD Ryzen™ processor is a sensor called “T Control,” or tCTL for short. The tCTL sensor is derived from the junction (Tj) temperature—the interface point between the die and heatspreader—but it may be offset on certain CPU models so that all models on the AM4 Platform have the same maximum tCTL value. This approach ensures that all AMD Ryzen™ processors have a consistent fan policy.

Specifically, the AMD Ryzen™ 7 1700X and 1800X carry a +20°C offset between the tCTL° (reported) temperature and the actual Tj° temperature. In the short term, users of the AMD Ryzen™ 1700X and 1800X can simply subtract 20°C to determine the true junction temperature of their processor. No arithmetic is required for the Ryzen 7 1700. Long term, we expect temperature monitoring software to better understand our tCTL offsets to report the junction temperature automatically.

The table below serves as an example of how the tCTL sensor can be interpreted in a hypothetical scenario where a Ryzen processor is operating at 38°C.

TEMPS.png

Power Plans

Users may have heard that AMD recommends the High Performance power plan within Windows® 10 for the best performance on Ryzen, and indeed we do. We recommend this plan for two key reasons: 

  1. Core Parking OFF: Idle CPU cores are instantaneously available for thread scheduling. In contrast, the Balanced plan aggressively places idle CPU cores into low power states. This can cause additional latency when un-parking cores to accommodate varying loads.
  2. Fast frequency change: The AMD Ryzen™ processor can alter its voltage and frequency states in the 1ms intervals natively supported by the “Zen” architecture. In contrast, the Balanced plan may take longer for voltage and frequency (V/f) changes due to software participation in power state changes.

In the near term, we recommend that games and other high-performance applications are complemented by the High Performance plan. By the first week of April, AMD intends to provide an update for AMD Ryzen™ processors that optimizes the power policy parameters of the Balanced plan to favor performance more consistent with the typical usage models of a desktop PC.

Simultaneous Multi-threading (SMT)

Finally, we have investigated reports of instances where SMT is producing reduced performance in a handful of games. Based on our characterization of game workloads, it is our expectation that gaming applications should generally see a neutral/positive benefit from SMT. We see this neutral/positive behavior in a wide range of titles, including: Arma® 3, Battlefield™ 1, Mafia™ III, Watch Dogs™ 2, Sid Meier’s Civilization® VI, For Honor™, Hitman™, Mirror’s Edge™ Catalyst and The Division™. Independent 3rd-party analyses have corroborated these findings.

For the remaining outliers, AMD again sees multiple opportunities within the codebases of specific applications to improve how this software addresses the “Zen” architecture. We have already identified some simple changes that can improve a game’s understanding of the "Zen" core/cache topology, and we intend to provide a status update to the community when they are ready.

Wrap-up

Overall, we are thrilled with the outpouring of support we’ve seen from AMD fans new and old. We love seeing your new builds, your benchmarks, your excitement, and your deep dives into the nuts and bolts of Ryzen. You are helping us make Ryzen™ even better by the day.  You should expect to hear from us regularly through this blog to answer new questions and give you updates on new improvements in the Ryzen ecosystem.

(End statement.)

Such topics as Windows 7 vs. Windows 10 performance, SMT impact, and thread scheduling will no doubt still be debated, and AMD has correctly pointed out that optimization for this brand new architecture will only improve Ryzen performance going forward. Our own findings as to Ryzen and the Windows 10 thread scheduler appear to be validated as AMD officially dismisses performance impact in that area, though there is still room for improvement in other areas from our initial gaming performance findings. As mentioned in the post, AMD will have an update for Windows power plan optimization by the first week of April, and the company has "already identified some simple changes that can improve a game’s understanding of the 'Zen' core/cache topology, and we intend to provide a status update to the community when they are ready", as well.

It is refreshing to see a company publicly acknowledging the topics that have resulted in so much discussion in the past couple of weeks, and their transparency is commendable, with every issue (that this author is aware of) being touched on in the post.

Source: AMD

Report: Leaked AMD Ryzen 7 1700X Benchmarks Show Strong Performance

Subject: Processors | February 21, 2017 - 10:54 AM |
Tagged: ryzen, rumor, report, R7, processor, leak, IPC, cpu, Cinebench, benchmark, amd, 1700X

VideoCardz.com, continuing their CPU coverage of the upcoming Ryzen launch, has posted images from XFASTEST depicting the R7 1700X processor and some very promising benchmark screenshots.

AMD-Ryzen-7-1700X.jpg

(Ryzen 7 1700X on the right) Image credit XFASTEST via VideoCardz

The Ryzen 7 1700X is reportedly an 8-core/16-thread processor with a base clock speed of 3.40 GHz, and while overall performance from the leaked benchmarks looks very impressive, it is the single-threaded score from the Cinebench R15 run pictured which really makes this CPU look like major competition for Intel with IPC.

AMD-Ryzen-7-1700X-Cinebench.jpg

Image credit XFASTEST via VideoCardz

An overall score of 1537 is outstanding, placing the CPU almost even with the i7-6900K at 1547 based on results from AnandTech:

AnandTech_Benchmarks.png

Image credit AnandTech

And the single-threaded performance score of the reported Ryzen 7 1700X is 154, which places it above the i7-6900K's score of 153. (It is worth noting that Cinebench R15 shows a clock speed of 3.40 GHz for this CPU, which is the base, while CPU-Z is displaying 3.50 GHz - likely indicating a boost clock, which can reportedly surpass 3.80 GHz with this CPU.)

Other results from the reported leak include 3DMark Fire Strike, with a physics score of 17,916 with Ryzen 7 1700X clocking in at ~3.90 GHz:

AMD-Ryzen-7-1700X-Fire-Strike-Physics.png

Image credit XFASTEST via VideoCardz

We will know soon enough where this and other Ryzen processors stand relative to Intel's current offerings, and if Intel will respond to the (rumored) price/performance double whammy of Ryzen. An i7-6900K retails for $1099 and currently sells for $1049 on Newegg.com, and the rumored pricing (taken from Wccftech), if correct, gives AMD a big win here. Competition is very, very good!

wccftech_chart.PNG

Chart credit Wccftech.com

Source: VideoCardz

Report: AMD Ryzen Performance in Ashes of the Singularity Benchmark

Subject: Processors | February 3, 2017 - 08:22 PM |
Tagged: titan x, ryzen, report, processor, nvidia, leak, cpu, benchmark, ashes of the singularity, amd

AMD's upcoming 8-core Ryzen CPU has appeared online in an apparent leak showing performance from an Ashes of the Singularity benchmark run. The benchmark results, available here on imgur and reported by TechPowerUp (among others today) shows the result of a run featuring the unreleased CPU paired with an NVIDIA Titan X graphics card.

Ryzen_Ashes_Screenshot.jpg

It is interesting to consider that this rather unusual system configuration was also used by AMD during their New Horizon fan event in December, with an NVIDIA Titan X and Ryzen 8-core processor powering the 4K game demos of Battlefield 1 that were pitted against an Intel Core i7-6900K/Titan X combo.

It is also interesting to note that the processor listed in the screenshot above is (apparently) not an engineering sample, as TechPowerUp points out in their post:

"Unlike some previous benchmark leaks of Ryzen processors, which carried the prefix ES (Engineering Sample), this one carried the ZD Prefix, and the last characters on its string name are the most interesting to us: F4 stands for the silicon revision, while the 40_36 stands for the processor's Turbo and stock speeds respectively (4.0 GHz and 3.6 GHz)."

March is fast approaching, and we won't have to wait long to see just how powerful this new processor will be for 4K gaming (and other, less important stuff). For now, I want to find results from an AotS benchmark with a Titan X and i7-6900K to see how these numbers compare!

Source: TechPowerUp

CES 2017: Qualcomm and ODG Announce AR Smartglasses Powered by Snapdragon 835

Subject: General Tech | January 3, 2017 - 09:10 PM |
Tagged: VR, SoC, snapdragon 835, qualcomm, processor, mobile, CES 2017, CES, AR

Qualcomm Technologies, Inc and ODG (Osterhout Design Group) have announced that the R-8 and R-9 smartglasses will be the first devices powered by the new Qualcomm Snapdragon 835 SoC. ODG is a developer of "mobile headworn computing and augmented reality technologies and products", and these new models leverage the reduced size and thermal requirements of the new Snapdragon 835 processor.

ODG-R8-Scale.jpg

The R-8 smartglasses, seated next to a glass mug for scale

"The premium Snapdragon 835 processor was designed from the ground-up to support new and innovative products and experiences beyond mobile phones, and it’s great to see that the first announced Snapdragon 835 devices will be ODG’s smartglasses," said Raj Talluri, senior vice president, product management, Qualcomm Technologies, Inc. "Thermal dissipation on a heavy compute but small device is very difficult so higher power efficiency is a must. The Snapdragon 835 processor, with our unique SoC design expertise on a 10nm process node, enables ODG to meet their design goals and develop lighter, smaller and sleeker smartglasses that take advantage of the new processor’s superior performance and power efficiency."

ODG-R9-Scale.jpg

The R-9 smartglasses

The Snapdragon-powered R-8 smartglasses are "lighter, smaller and sleeker than any other device in ODG’s portfolio", which should make their use a more attractive option for those interested in AR, VR, and Mixed Reality overlay capabilities. For their part the larger R-9 smartglasses are "based on ODG’s award-winning 50° FOV and 1080p Project Horizon platform". The company's previous smartglasses, the R-7, were powered by a Snapdragon 801 SoC.

Coverage of CES 2017 is brought to you by NVIDIA!

PC Perspective's CES 2017 coverage is sponsored by NVIDIA.

Follow all of our coverage of the show at https://pcper.com/ces!

Source: Qualcomm
Author:
Subject: Processors
Manufacturer: AMD
Tagged: Zen, ryzen, processor, cpu, amd

Ryzen coming in 2017

As much as we might want it to be, today is not the day that AMD launches its new Zen processors to the world. We’ve been teased with it for years now, with trickles of information at event after event…but we are going to have to wait a little bit longer with one more tease at least. Today’s AMD is announcing the official branding of the consumer processors based on Zen, previously code named Summit Ridge, along with a clock speed data point and a preview of five technology that will help it be competitive with the Intel Core lineup.

ryzen-22.jpg

The future consumer desktop processor from AMD will now officially be known as Ryzen. That’s pronounced “RISE-IN” not “RIS-IN”, just so we are all on the same page. CEO Lisa Su was on stage during the reveal at a media event last week and claimed that while media, fans and AMD fell in love with the Zen name, it needed a differentiation from the architecture itself. The name is solid – not earth shattering though I foresee a long life of mispronunciation ahead of it.

Now that we have the official branding behind us, let’s get to the rest of the disclosed information we can reveal today.

ryzen-24.jpg

We already knew that Summit Ridge would ship with an 8 core, 16 thread version (with lower core counts at lower prices very likely) but now we know a frequency and a cache size. AMD tells us that there will be a processor (the flagship) that will have a base clock of 3.4 GHz with boost clocks above that. How much above that is still a mystery – AMD is likely still tweaking its implementation of boost to get as much performance as possible for launch. This should help put those clock speed rumors to rest for now.

The 20MB of cache matches the Core i7-6900K, though obviously with some dramatic architecture differences between Broadwell and Zen, the effect and utilization of that cache will be interesting measure next year.

ryzen-10.jpg

We already knew that Ryzen will be utilizing the AM4 platform, but it’s nice to see it reiterated a modern feature set and expandability. DDR4 memory, PCI Express Gen3, native USB 3.1 and NVMe support – there are all necessary building blocks for a modern consumer and enthusiast PC. We still should see how many of these ports the chipset offers and how aggressive motherboard companies like ASUS, MSI and Gigabyte are in their designs. I am hoping there are as many options as would see for an X99/Z170 platform, including budget boards in the $100 space as well as “anything and everything” options for those types of buyers that want to adopt AMD’s new CPU.

Continue reading our latest preview of AMD Zen, now known as Ryzen!

AMD's Upcoming Socket AM4 Pictured with 1331 Pins

Subject: Processors | September 19, 2016 - 10:35 AM |
Tagged: Socket AM4, processor, FX, cpu, APU, amd, 1331 pins

A report from Hungarian site HWSW (cited by Bit-Tech) has a close-up photo of the new AMD AM4 processor socket, and it looks like this will have 1331 pins (go ahead and count them, if you dare!).

socket_am4.jpg

Image credit: Bit-Tech via HWSW

AMD's newest socket will merge the APU and FX series CPUs into this new AM4 socket, unlike the previous generation which split the two between AM3+ and FM2+. This is great news for system builders, who now have the option of starting with an inexpensive CPU/APU, and upgrading to a more powerful FX processor later on - with the same motherboard.

The new socket will apparently require a new cooler design, which is contrary to early reports (yes, we got it wrong, too) that the AM4 socket would be compatible with existing AM3 cooler mounts (manufacturers could of course offer hardware kits for existing cooler designs). In any case, AMD's new socket takes more of the delicate copper pins you love to try not to bend!

Source: Bit-Tech

Qualcomm Releases the Snapdragon 821 Mobile Processor

Subject: Processors, Mobile | August 31, 2016 - 07:30 AM |
Tagged: SoC, Snapdragon 821, snapdragon, SD821, qualcomm, processor, mobile, adreno

Qualcomm has officially launched the Snapdragon 821 SoC, an upgraded successor to the existing Snapdragon 820 found in such phones as the Samsung Galaxy S7.

snapdragon821_1.jpg

"With Snapdragon 820 already powering many of the premier flagship Android smartphones today, Snapdragon 821 is now poised to become the processor of choice for leading smartphones and devices for this year’s holiday season. Qualcomm Technologies’ engineers have improved Snapdragon 821 in three key areas to ensure Snapdragon 821 maintains the level of industry leadership introduced by its predecessor."

Specifications were previously revealed when the Snapdragon 821 was announced in July, with a 10% increase on the CPU clocks (2.4 GHz, up from the previous 2.2 GHz max frequency). The Adreno 530 GPU clock increases 5%, to 650 MHz from 624 MHz. In addition to improved performance from CPU and GPU clock speed increases, the SD821 is said to offer lower power consumption (estimated at 5% compared to the SD820), and offers new functionality including improved auto-focus capability.

snapdragon-821.jpg

From Qualcomm:

Enhanced overall user experience:

The Snapdragon 821 has been specifically tuned to support a more responsive user experience when compared with the 820, including:

  • Shorter boot times: Snapdragon 821 powered devices can boot up to 10 percent faster.
  • Faster application launch times: Snapdragon 821 can reduce app load times by up to 10 percent.
  • Smoother, more responsive user interactions: UI optimizations and performance enhancements designed to allow users to enjoy smoother scrolling and more responsive browsing performance.

Improved performance and power consumption:

  • CPU speeds increase: As we previously announced, the 821 features Qualcomm Kryo CPU speeds up to 2.4GHz, representing an up to 10 percent improvement in performance over Snapdragon 820.
  • GPU speeds increase: The Qualcomm Adreno GPU received a 5 percent speed increase over Snapdragon 820.
  • Power savings: The 821 is engineered to deliver an incremental 5 percent power savings when comparing standard use case models. This power savings can extend battery life and support OEMs interested in reducing battery size for slimmer phones.

New features and functionality:

  • Snapdragon 821 introduces several new features and capabilities, offering OEMs new options to create more immersive and engaging user experiences, including support for:
  • Snapdragon VR SDK (Software Development Kit): Offers developers a superior mobile VR toolset, provides compatibility with the Google Daydream platform, and access to Snapdragon 821’s powerful heterogeneous architecture. Snapdragon VR SDK supports a superior level of visual and audio quality and more immersive virtual reality and gaming experiences in a mobile environment.
  • Dual PD (PDAF): Offers significantly faster image autofocus speeds under a wide variety of conditions when compared to single PDAF solutions.
  • Extended Laser Auto-Focus Ranging: Extends the visible focusing range, improving laser focal accuracy over Snapdragon 820.
  • Android Nougat OS: Snapdragon 821 (as well as the 820) will support the latest Android operating system when available, offering new features, expanded compatibility, and additional security compared to prior Android versions.

Qualcomm says the ASUS ZenFone 3 Deluxe is the first phone to use this new Snapdragon 821 SoC while other OEMs will be working on designs implementing the upgraded SoC.

Source: Qualcomm

Report: Intel Tigerlake Revealed; Company's Third 10nm CPU

Subject: Processors | January 24, 2016 - 12:19 PM |
Tagged: Tigerlake, rumor, report, processor, process node, Intel, Icelake, cpu, Cannonlake, 10 nm

A report from financial website The Motley Fool discusses Intel's plan to introduce three architectures at the 10 nm node, rather than the expected two. This comes after news that Kaby Lake will remain at the present 14 nm, interrupting Intel's 2-year manufacturing tech pace.

intel_10nm.jpg

(Image credit: wccftech)

"Management has told investors that they are pushing to try to get back to a two-year cadence post-10-nanometer (presumably they mean a two-year transition from 10-nanometer to 7-nanometer), however, from what I have just learned from a source familiar with Intel's plans, the company is working on three, not two, architectures for the 10-nanometer node."

Intel's first 10 nm processor architecture will be known as Cannonlake, with Icelake expected to follow about a year afterward. With Tigerlake expected to be the third architecture build on 10 nm, and not coming until "the second half of 2019", we probably won't see 7 nm from Intel until the second half of 2020 at the earliest.

It appears that the days of two-year, two product process node changes are numbered for Intel, as the report continues:

"If all goes well for the company, then 7-nanometer could be a two-product node, implying a transition to the 5-nanometer technology node by the second half of 2022. However, the source that I spoke to expressed significant doubts that Intel will be able to return to a two-years-per-technology cycle."

intel-node-density_large.png

(Image credit: The Motley Fool)

It will be interesting to see how players like TSMC, themselves "planning to start mass production of 7-nanometer in the first half of 2018", will fare moving forward as Intel's process development (apparently) slows.

Report: Intel Broadwell-E Flagship i7-6950X a 10 Core, 20 Thread CPU

Subject: Processors | November 13, 2015 - 06:40 PM |
Tagged: X99, processor, LGA2011-v3, Intel, i7-6950X, HEDT, Haswell-E, cpu, Broadwell-E

Intel's high-end desktop (HEDT) processor line will reportedly be moving from Haswell-E to Broadwell-E soon, and with the move Intel will offer their highest consumer core count to date, according to a post at XFastest which WCCFtech reported on yesterday.

Broadwell-E.png

Image credit: VR-Zone

While it had been thought that Broadwell-E would feature the same core counts as Haswell-E (as seen on the leaked slide above), according to the report the upcoming flagship Core i7-6950X will be a massive 10 core, 20 thread part built using Intel's 14 nm process. Broadwell-E is expected to provide an upgrade to those running on Intel's current enthusiast X99 platform before Skylake-E arrives with an all-new chipset.

WCCFtech offered this chart in their report, outlining the differences between the HEDT generations (and providing a glimpse of the future Skylake-E variant):

chart.png

Intel HEDT generations compared (Credit: WCCFtech)

It isn't all that surprising that one of Intel's LGA2011-v3 processors would arrive on desktops with 10 cores as these are closely related to the Xeon server processors, and Haswell based Xeon CPUs are already available with up to 18 cores, though priced far beyond what even the extreme builder would probably find reasonable (not to mention being far less suited to a desktop build based on motherboard compatibility). The projected $999 price tag for the Extreme Edition part with 10 cores would mark not only the first time an Intel desktop processor reached the core-count milestone, but it would also mark the lowest price to attain one of the company's 10-core parts to date (Xeon or otherwise).