Is the GPU in Intel Kaby Lake-G More Polaris than Vega?

Subject: Graphics Cards, Processors | April 9, 2018 - 04:25 PM |
Tagged: Vega, Polaris, kaby lake-g, Intel, amd

Over the weekend, some interesting information has surfaced surrounding the new Kaby Lake-G hardware from Intel. A product that is officially called the “8th Generation Intel Core Processors with Radeon RX Vega M Graphics” is now looking like it might be more of a Polaris-based GPU than a Vega-based one. This creates an interesting marketing and technology capability discussion for the community, and both Intel and AMD, that is worth diving into.

PCWorld first posted the question this weekend, using some interesting data points as backup that Kaby Lake-G may in fact be based on Polaris. In Gordon’s story he notes that in AIDA64 the GPU is identified as “Polaris 22” while the Raven Ridge-based APUs from AMD show up as “Raven Ridge.” Obviously the device identification of a third party piece of software is a suspect credential in any situation, but the second point provided is more salient: based on the DXDiag information, the GPU on the Hades Canyon NUC powered by Kaby Lake-G does not support DirectX 12.1.

dx_diag_comparo-100754201-orig.jpg

Image source: PCWorld

AMD clearly stated in its launch of the Vega architecture last year that the new GPUs supported DX 12.1, among other features. The fact that the KBL-G part does NOT include support for it is compelling evidence that the GPU might be more similar to Polaris than Vega.

Tom’s Hardware did some more digging that was posted this morning, using a SiSoft Sandra test that can measure performance of FP16 math and FP32. For both the Radeon RX Vega 64 and 56 discrete graphics cards, running the test with FP16 math results in a score that is 65% faster than the FP32 results. With a Polaris-based graphics card, an RX 470, the scores between FP32 and FP16 were identical as the architecture can support FP16 math functions but doesn’t accelerate it with AMD’s “rapid packed math” feature (that was a part of the Vega launch).

tomsmath.jpg

Image source: Tom's Hardware

And you guessed it, the Kaby Lake-G part only runs essentially even in the FP16 mode. (Also note that AMD’s Raven Ridge APU that integrated Vega graphics does get accelerated by 61% using FP16.)

What Kaby Lake-G does have that leans toward Vega is support for HBM2 memory (which none of the Polaris cards have) and “high bandwidth memory cache controller and enhanced compute units with additional ROPs” according to the statement from Intel given to Tom’s Hardware.

It should be noted that just because the benchmarks and games that can support rapid packed math don’t take advantage of that capability today, does not mean they won’t have the capability to do so after a driver or firmware update. That being said, if that’s the plan, and even if it’s not, Intel should come out and tell the consumers and media.

The debate and accusations of conspiracy are running rampant again today with this news. Is Intel trying to pull one over on us by telling the community that this is a Vega-based product when it is in fact based on Polaris? Why would AMD allow and promote the Vega branding with a part that it knows didn’t meet the standards it created to be called a Vega architecture solution?

Another interesting thought comes when analyzing this debate with the Ryzen 7 2400G and Ryzen 5 2200G products, both of which claim to use Vega GPUs as a portion of the APU. However, without support for HBM2 or the high-bandwidth cache controller, does that somehow shortchange the branding for it? Or are the memory features of the GPU considered secondary to its design?

This is the very reason why companies hate labels, hate specifications, and hate having all of this tracked by a competent and technical media. Basically every company in the tech industry is guilty of this practice: Intel has 2-3 architectures running as “8th Generation” in the market, AMD is selling RX 500 cards that were once RX 400 cards, and NVIDIA has changed performance capabilities of the MX 150 at least once or twice.

The nature of semi-custom chips designs is that they are custom. Are the GPUs used in the PS4 and Xbox One or Xbox One X called Polaris, Vega, or something else? It would be safer for AMD and its partners to give each new product its own name, its own brand—but then the enthusiasts would want to know what it was most like, and how did it compare to Polaris, or Vega, etc.? It’s also possible that AMD was only willing to sell this product to Intel if it included some of these feature restrictions. In complicated negotiations like this one surely was, anything is feasible.

These are tough choices for companies to make. AMD loves having the Vega branding in more products as it gives weight to the development cost and time it spent on the design. Having Vega associated with more high-end consumer products, including those sold by Intel, give them leverage for other products down the road. From Intel’s vantage point using the Vega brand makes it looks like it has the very latest technology in its new processor and it can benefit from any cross-promotion that occurs around the Vega brand from AMD or its partners.

Unfortunately, it means that the devil is in the details, and the details are something that no one appears to be willing to share. Does it change the performance we saw in our recent Hades Canyon NUC review or our perspective on it as a product? It does not. But as features like Rapid Packed Math or the new geometry shader accelerate in adoption, the capability for Kaby Lake-G to utilize them is going to be scrutinized more heavily.

Source: Various

ASRock Enters Graphics Card Market With Phantom Gaming Series of AMD GPUs

Subject: Graphics Cards | March 29, 2018 - 05:45 PM |
Tagged: RX 580, RX 570, RX 560, RX 550, Polaris, mining, asrock, amd

ASRock, a company known mostly for its motherboards that was formerly an Asus sub-brand but is now an independent company owned by Pegatron since 2010 is now getting into the graphics card market with a new Phantom Gaming series. At launch, the Phantom Gaming series is comprised of four AMD Polaris-based graphics cards including the Phantom Gaming RX 550 2G and RX 560 2G on the low end and the Phantom Gaming X RX 570 8G OC and RX 580 8G OC on the mid/high end range.

Phantom Gaming X Radeon RX580 8G OC(L4).png

ASRock is using black shrouds with white accents and silver and red logos. The lower end Phantom Gaming cards utilize a single dual ball bearing fan while the Phantom Gaming X cards use a dual fan configuration. ASRock is using copper baseplates paired with aluminum heatsinks and composite heatpipes. The Phantom Gaming RX 550 and RX 560 cards use only PCI-E slot power while the Phantom Gaming X RX 570 and RX 580 cards get power from both the slot and a single 8-pin PCI-E power connector.

Video outputs include one HDMI 2.0, one DisplayPort 1.4, and one DL-DVI-D on the Phantom Gaming parts and one HDMI 2.0, three DisplayPort 1.4, and one DL-DVI-D on the higher-end Phantom Gaming X graphics cards. All of the graphics card models feature both silent and overclocked modes in addition to their out-of-the-box default clocks depending on whether you value performance or noise. Users can select which mode they want or perform a custom overclock or fan curve using ASRock's Phantom Gaming Tweak utility.

On the performance front, out of the box ASRock is slightly overclocking the Phantom Gaming X OC cards (the RX 570 and RX 580 based ones) and slightly underclocking the lower end Phantom Gaming cards (including the memory which is downclocked to 6 GHz) compared to their AMD reference specifications.

  ASRock RX 580 OC RX 580 ASRock RX 570 OC RX 570 ASRock RX 560 RX 560 ASRock RX 550 RX 550
Cores 2304 2304 2048 2048 896 896 512 512
GPU Clock (MHz) 1380 1340 1280 1244 1149 1275 1100 1183
GPU Clock OC Mode (MHz) 1435 - 1331 - 1194 - 1144 -
Memory (GDDR5) 8GB 8GB 8GB 8GB 2GB 2GB/4GB 2GB 2GB/4GB
Memory Clock (GHz) 8GHz 8GHz 7GHz 7GHz 6GHz 7GHz 6GHz 7GHz
Memory Clock OC Mode (MHz) 8320 - 7280 - 6240 - 6240 -
Texture Units 144 144 128 128 64 64 32 32
ROPs 32 32 32 32 16 16 16 16

The table above shows the comparisons between the ASRock graphics cards and their AMD reference card counterparts. Note that the Phantom Gaming RX 560 2G is based on the cut-down 14 CU (compute unit) model rather than the launch 16 CU GPU. Also, even in OC Mode, ASRock does not bring the memory up to the 7 GT/s reference spec. On the positive side, turning on OC mode does give a decent factory overclock of the GPU over reference. Also nice to see is that on the higher end "OC Certified" Phantom Gaming X cards, ASRock overclocks both the GPU and memory speeds which is often not the case with factory overclocks.

Phantom Gaming Radeon RX550 2G(L1).png

ASRock did not detail pricing with any of the launch announcement cards, but they should be coming soon with 4GB models of the RX 560 an RX 550 to follow later this year.

It is always nice to have more competition in this space and hopefully a new AIB partner for AMD helps alleviate shortages and demand for gaming cards if only by a bit. I am curious how well the cards will perform as while they look good on paper the company is new to graphics cards and the build quality really needs to be there. I am just hoping that the Phantom Gaming moniker is not an allusion to how hard these cards are going to be to find for gaming! (heh) If the rumored Ethereum ASICs do not kill the demand for AMD GPUs I do expect that ASRock will also be releasing mining specific cards as well at some point.

What are your thoughts on the news of ASRock moving into graphics cards?

Also read:

Source: Tech Report
Author:
Subject: Editorial
Manufacturer: AMD

Beating AMD and Analyst Estimates

January 30th has rolled around and AMD released their Q4 2017 results. The results were positive and somewhat unexpected. I have been curious how the company fared and was waiting for these results to compare them to the relatively strong quarter that Intel experienced. At the Q3 earnings AMD was not entirely bullish about how Q4 would go. The knew that it was going to be a down quarter as compared to an unexpectedly strong third quarter, but they were unsure how that was going to pan out. The primary reason that Q4 was not going to be as strong was due to the known royalty income that AMD was expecting from their Semi-Custom Group. Q4 has traditionally been bad for that group as all of their buildup for the holiday season came from Q1 and Q2 rampings of the physical products that would be integrated into consoles.

amd_logo_2.png

The results exceeded AMD’s and analysts’ expectations. They were expecting in the $1.39B range, but their actual revenue came in at a relatively strong $1.48B. Not only was the quarter stronger than expected, but AMD was able to pull out another positive net income of $61M. It has been a while since AMD was able to post back to back profitable quarters. This allowed AMD to have a net positive year to the tune of $43M where in 2016 AMD had a loss of $497M. 2017 as a whole was $1.06B more in revenue over 2016. AMD has been historically lean in terms of expenses for the past few years, and a massive boost in revenue has allowed them to invest in R&D as well as more aggressively ramp up their money making products to compete more adequately with Intel, who is having their own set of issues right now with manufacturing and security.

Click here to continue reading about AMD's Q4 2017 Earnings analysis!

CES 2018: Acer Unleashes Nitro 5 Gaming Laptop Powered By Ryzen Mobile

Subject: Mobile | January 8, 2018 - 04:46 PM |
Tagged: CES, CES 2018, acer, nitro 5, ryzen mobile, RX 560, Polaris, amd

Acer is showing off a new 15.6" gaming laptop at CES using both AMD's Ryzen Mobile processors and RX 560 discrete graphics cards. The Acer Nitro 5 is a stylized gaming notebook aimed at mainstream and casual gamers that are looking for a mobile platform for LAN parties and portable PC gaming.

Acer Nitro 5 (AN515-42)_01.jpg

The laser etched top cover and stylish chassis holds a large 15.6" 1080p display and webcam up top and a full backlit keyboard and trackpad on the bottom half. A large crimson red hinge accents the slate gray and black angular body. There is support for USB 3.1 with three USB Type-A ports and one USB Type-C, one headset jack, one HDMI output, one SD card reader, and one Gigabit Ethernet jack. Audio is handled by Dobly Audio Premium and Acer TrueHarmony powered speakers. There is a numpad and the trackpad appears fairly large, but the arrow keys are somewhat squished between the standard keys and the numpad. The WASD keys can be outlined with brighter backlighting and CPU and GPU temps can be monitored with NitroSense software though, so there's that (heh).

Acer Nitro 5 (AN515-42)_03.jpg

Acer did not provide exact specifications, but the Nitro 5 will be able to be configured with Zen-based Ryzen Mobile processors and Polaris-based AMD RX 560 graphics. It is not clear which specific Ryzen Mobile chips Acer will use or if the Vega-based onboard GPU will be able to be used with the discrete graphics active (perhaps in DX 12 games). The AMD chips are paired with up to 32 GB of DDR4 RAM and 512GB of PCI-E based SSD storage. In addition to the wired networking, the Nitro 5 also has dual stream 802.11ac Wi-Fi.

The AMD-powered Acer Nitro 5 will be available in North America in April starting at $799. EMEA (countries in Europe, the Middle East, and Africa) availability is also slated for April starting at €1,099. It is nice to see AMD getting some design wins with Ryzen Mobile, though discrete mobile Vega would be a nice thing to see happen sooner than later.

Source: Acer
Author:
Manufacturer: Intel

The Expected Unexpected

Last night we first received word that Raja had resigned from AMD (during a sabbatical) after they had launched Vega.  The initial statement was that Raja would come back to resume his position at AMD in a December/January timeframe.  During this time there was some doubt as to if Raja would in fact come back to AMD, as “sabbaticals” in the tech world would often lead the individual to take stock of their situation and move on to what they would consider to be greener pastures.

raja_ryan.JPG

Raja has dropped by the PCPer offices in the past.

Initially it was thought that Raja would take the time off and then eventually jump to another company and tackle the issues there.  This behavior is quite common in Silicon Valley and Raja is no stranger to this.  Raja cut his teeth on 3D graphics at S3, but in 2001 he moved to ATI.  While there he worked on a variety of programs including the original Radeon, the industry changing Radeon 9700 series, and finishing up with the strong HD 4000 series of parts.  During this time ATI was acquired by AMD and he became one of the top graphics guru at that company.  In 2009 he quit AMD and moved on to Apple.  He was Director of Graphics Architecture at Apple, but little is known about what he actually did.  During that time Apple utilized AMD GPUs and licensed Imagination Technologies graphics technology.  Apple could have been working on developing their own architecture at this point, which has recently showed up in the latest iPhone products.

In 2013 Raja rejoined AMD and became a corporate VP of Visual Computing, but in 2015 he was promoted to leading the Radeon Technology Group after Lisu Su became CEO of the company. While there Raja worked to get AMD back on an even footing under pretty strained conditions. AMD had not had the greatest of years and had seen their primary moneymakers start taking on water.  AMD had competitive graphics for the most part, and the Radeon technology integrated into AMD’s APUs truly was class leading.  On the discrete side AMD was able to compare favorably to NVIDIA with the HD 7000 and later R9 200 series of cards.  After NVIDIA released their Maxwell based chips, AMD had a hard time keeping up.  The general consensus here is that the RTG group saw its headcount decreased by the company-wide cuts as well as a decrease in R&D funds.

Continue reading about Raja Koduri joinging Intel...

Intel Announces New CPUs Integrating AMD Radeon Graphics

Subject: Processors | November 6, 2017 - 02:00 PM |
Tagged: radeon, Polaris, mobile, kaby lake, interposer, Intel, HBM2, gaming, EMIB, apple, amd, 8th generation core

In what is probably considered one of the worst kept secrets in the industry, Intel has announced a new CPU line for the mobile market that integrates AMD’s Radeon graphics.  For the past year or so rumors of such a partnership were freely flowing, but now we finally get confirmation as to how this will be implemented and marketed.

Intel’s record on designing GPUs has been rather pedestrian.  While they have kept up with the competition, a slew of small issues and incompatibilities have plagued each generation.  Performance is also an issue when trying to compete with AMD’s APUs as well as discrete mobile graphics offerings from both AMD and NVIDIA.  Software and driver support is another area where Intel has been unable to compete due largely to economics and the competitions’ decades of experience in this area.

intel-8th-gen-cpu-discrete-graphics-2.jpg

There are many significant issues that have been solved in one fell swoop.  Intel has partnered with AMD’s Semi-Custom Group to develop a modern and competent GPU that can be closely connected to the Intel CPU all the while utilizing HBM2 memory to improve overall performance.  The packaging of this product utilizes Intel’s EMIB (Embedded Multi-die Interconnect Bridge) tech.

EMIB is an interposer-like technology that integrates silicon bridges into the PCB instead of relying upon a large interposer.  This allows a bit more flexibility in layout of the chips as well as lowers the Z height of the package as there is not a large interposer sitting between the chips and the PCB.  Just as interposer technology allows the use of chips from different process technologies to work seamlessly together, EMIB provides that same flexibility.

The GPU looks to be based on the Polaris architecture which is a slight step back from AMD’s cutting edge Vega architecture.  Polaris does not implement the Infinity Fabric component that Vega does.  It is more conventional in terms of data communication.  It is a step beyond what AMD has provided for Sony and Microsoft, who each utilize a semi-custom design for the latest console chips.  AMD is able to integrate the HBM2 controller that is featured in Vega.  Using HBM2 provides a tremendous amount of bandwidth along with power savings as compared to traditional GDDR-5 memory modules.  It also saves dramatically on PCB space allowing for smaller form factors.

intel_tech_manu_embedded_multi_die_interconnect_bridge-100715607-orig.jpg

EMIB provides nearly all of the advantages of the interposer while keeping the optimal z-height of the standard PCB substrate.

Intel did have to do quite a bit of extra work on the power side of the equation.  AMD utilizes their latest Infinity Fabric for fine grained power control in their upcoming Raven Ridge based Ryzen APUs.  Intel had to modify their current hardware to be able to do much the same work with 3rd party silicon.  This is no easy task as the CPU needs to monitor and continually adjust for GPU usage in a variety of scenarios.  This type of work takes time and a lot of testing to fine tune as well as the inevitable hardware revisions to get thing to work correctly.  This then needs to be balanced by the GPU driver stack which also tends to take control of power usage in mobile scenarios.

This combination of EMIB, Intel Kaby Lake CPU, HBM2, and a current AMD GPU make this a very interesting combination for the mobile and small form factor markets.  The EMIB form factor provides very fast interconnect speeds and a smaller footprint due to the integration of HBM2 memory.  The mature AMD Radeon software stack for both Windows and macOS environments provides Intel with another feature in which to sell their parts in areas where previously they were not considered.  The 8th Gen Kaby Lake CPU provides the very latest CPU design on the new 14nm++ process for greater performance and better power efficiency.

This is one of those rare instances where such cooperation between intense rivals actually improves the situation for both.  AMD gets a financial shot in the arm by signing a large and important customer for their Semi-Custom division.  The royalty income from this partnership should be more consistent as compared to the console manufacturers due to the seasonality of the console product.  This will have a very material effect on AMD’s bottom line for years to come.  Intel gets a solid silicon solution with higher performance than they can offer, as well as aforementioned mature software stack for multiple OS.  Finally throw in the HBM2 memory support for better power efficiency and a smaller form factor, and it is a clear win for all parties involved.

intel-8th-gen-cpu-discrete-graphics.jpg

The PCB savings plus faster interconnects will allow these chips to power smaller form factors with better performance and battery life.

One of the unknowns here is what process node the GPU portion will be manufactured on.  We do not know which foundry Intel will use, or if they will stay in-house.  Currently TSMC manufactures the latest console SoCs while GLOBALFOUNDRIES handles the latest GPUS from AMD.  Initially one would expect Intel to build the GPU in house, but the current rumor is that AMD will work to produce the chips with one of their traditional foundry partners.  Once the chip is manufactured then it is sent to Intel to be integrated into their product.

Apple is one of the obvious candidates for this particular form factor and combination of parts.  Apple has a long history with Intel on the CPU side and AMD on the GPU side.  This product provides all of the solutions Apple needs to manufacture high performance products in smaller form factors.  Gaming laptops also get a boost from such a combination that will offer relatively high performance with minimal power increases as well as the smaller form factor.

core-radeon-leak.png

The potential (leaked) performance of the 8th Gen Intel CPU with Radeon Graphics.

The data above could very well be wrong about the potential performance of this combination.  What we see is pretty compelling though.  The Intel/AMD product performs like a higher end CPU with discrete GPU combo.  It is faster than a NVIDIA GTX 1050 Ti and trails the GTX 1060.  It also is significantly faster than a desktop AMD RX 560 part.  We can also see that it is going to be much faster than the flagship 15 watt TDP AMD Ryzen 7 2700U.  We do not yet know how it compares to the rumored 65 watt TDP Raven Ridge based APUs from AMD that will likely be released next year.  What will be fascinating here is how much power the new Intel combination will draw as compared to the discrete solutions utilizing NVIDIA graphics.

To reiterate, this is Intel as a customer for AMD’s Semi-Custom group rather than a licensing agreement between the two companies.  They are working hand in hand in developing this solution and then both profiting from it.  AMD getting royalties from every Intel package sold that features this technology will have a very positive effect on earnings.  Intel gets a cutting edge and competent graphics solution along with the improved software and driver support such a package includes.

Update: We have been informed that AMD is producing the chips and selling them directly to Intel for integration into these new SKUs. There are no royalties or licensing, but the Semi-Custom division should still receive the revenue for these specialized products made only for Intel.

Source: Intel
Author:
Manufacturer: Sapphire

Overview

There has been a lot of news lately about the release of Cryptocurrency-specific graphics cards from both NVIDIA and AMD add-in board partners. While we covered the currently cryptomining phenomenon in an earlier article, today we are taking a look at one of these cards geared towards miners.

IMG_4681.JPG

It's worth noting that I purchased this card myself from Newegg, and neither AMD or Sapphire are involved in this article. I saw this card pop up on Newegg a few days ago, and my curiosity got the best of me.

There has been a lot of speculation, and little official information from vendors about what these mining cards will actually entail.

From the outward appearance, it is virtually impossible to distinguish this "new" RX 470 from the previous Sapphire Nitro+ RX 470, besides the lack of additional display outputs beyond the DVI connection. Even the branding and labels on the card identify it as a Nitro+ RX 470.

In order to test the hashing rates of this GPU, we are using Claymore's Dual Miner Version 9.6 (mining Ethereum only) against a reference design RX 470, also from Sapphire.

IMG_4684.JPG

On the reference RX 470 out of the box, we hit rates of about 21.8 MH/s while mining Ethereum. 

Once we moved to the Sapphire mining card, we move up to at least 24 MH/s from the start.

Continue reading about the Sapphire Radeon RX 470 Mining Edition!

Author:
Manufacturer: AMD

Is it time to buy that new GPU?

Testing commissioned by AMD. This means that AMD paid us for our time, but had no say in the results or presentation of them.

Earlier this week Bethesda and Arkane Studios released Prey, a first-person shooter that is a re-imaging of the 2006 game of the same name. Fans of System Shock will find a lot to love about this new title and I have found myself enamored with the game…in the name of science of course.

Prey-2017-05-06-15-52-04-16.jpg

While doing my due diligence and performing some preliminary testing to see if we would utilize Prey for graphics testing going forward, AMD approached me to discuss this exact title. With the release of the Radeon RX 580 in April, one of the key storylines is that the card offers a reasonably priced upgrade path for users of 2+ year old hardware. With that upgrade you should see some substantial performance improvements and as I will show you here, the new Prey is a perfect example of that.

Targeting the Radeon R9 380, a graphics card that was originally released back in May of 2015, the RX 580 offers substantially better performance at a very similar launch price. The same is true for the GeForce GTX 960: launched in January of 2015, it is slightly longer in the tooth. AMD’s data shows that 80% of the users on Steam are running on R9 380X or slower graphics cards and that only 10% of them upgraded in 2016. Considering the great GPUs that were available then (including the RX 480 and the GTX 10-series), it seems more and more likely that we going to hit an upgrade inflection point in the market.

slides-5.jpg

A simple experiment was setup: does the new Radeon RX 580 offer a worthwhile upgrade path for those many users of R9 380 or GTX 960 classifications of graphics cards (or older)?

  Radeon RX 580 Radeon R9 380 GeForce GTX 960
GPU Polaris 20 Tonga Pro GM206
GPU Cores 2304 1792 1024
Rated Clock 1340 MHz 918 MHz 1127 MHz
Memory 4GB
8GB
4GB 2GB
4GB
Memory Interface 256-bit 256-bit 128-bit
TDP 185 watts 190 watts 120 watts
MSRP (at launch) $199 (4GB)
$239 (8GB)
$219 $199

Continue reading our look at the Radeon RX 580 in Prey!

Sapphire Launches New Pulse Series of Graphics Cards

Subject: Graphics Cards | April 25, 2017 - 03:11 AM |
Tagged: sapphire, RX 580, RX 550, pulse, Polaris, nitro+, GCN

Earlier this month Sapphire announced a new budget-oriented series of graphics cards it calls PULSE. The new series slides in below the premium Nitro+ series to offer cheaper graphics cards that retain many of the high-quality hardware components but lack the flashy extras on the coolers, come in at lower factory overclocks, and have fewer PCI-E power inputs which, in theory, means lower overclocking headroom. The new graphics cards series is currently made up of five Polaris-based GPUs: the Sapphire Pulse RX 580, RX 570, RX 570 ITX, and RX 550.

Sapphire Pulse Graphics Cards.jpg

According to Sapphire, Pulse graphics cards use many of the high-end components as the Nitro+ cards including Black Diamond Chokes 4, long lasting capacitors, fuse protection. And intelligent fan control. The new graphics cards have aluminum backplates, removeable Quick Connect fans with semi-passive cooling technology that allows the fans to turn off when the card is under light load. The RX 580 and RX 570 use Dual-X coolers and the RX 570 ITX and RX 550 use single fan shrouded coolers.

Compared to Nitro+, the coolers are a bit less flashy and there are no Nitro+ Glow LEDs. If you are not a fan of bling or do not have a windowed case, the Pulse cards might save you a bit of money while getting you most of the performance if Sapphire’s claims are accurate.

Speaking of performance, the Pulse branded graphics cards are factory overclocked, just not as much. The Sapphire Pulse RX 580 with its 2,304 cores comes with a boost clock of 1366 MHz, the RX 570 and RX 570 ITX come with GPU boost clocks of 1,284 MHz and 1,244 MHz respectively, and the RX 550 has a boost clock of 1,206 MHz. Memory clocks sit at 8,000 MHz for the RX 580 and 7,000 MHz for the remaining Pulse cards (RX 570, RX 570 ITX, and RX 550).

Along with the introduction of its new Pulse series of graphics cards, Sapphire has entered a “strategic partnership” with motherboard manufacturer Asrock. The new graphics cards are shipping now and will be available at retailers shortly. Pricing for the RX 550 isn’t available, but prices for the other cards has appeared online as follows: Pulse RX 580 8GB for $229.99, Pulse RX 580 4GB for $199.99, Pulse RX 570 for $179.99, Pulse RX 570 ITX for $169.99.

In all, the Pulse cards appear to be about $20 cheaper than the Nitro+ variant. We will have to wait and see if those prices hold up once retailers get stock in.

Also read:

Source: Sapphire

The RX 580 on Linux, locked stock and overclock

Subject: Graphics Cards | April 24, 2017 - 06:08 PM |
Tagged: linux, RX 580, amd, overclocking, Polaris

Phoronix have had a chance to test out the refreshed Polaris RX 580 on the Linux 4.11 kernel and Mesa 17.1-devel, initially the AMDGPU-PRO 17.10 driver update was not included thanks to interesting timing.  The performance deltas are as you would expect, a slight increase in performance that is relative to the increased clock speeds, just as when run on Windows.  They also had a chance to try overclocking the new card, AMD added support for overclocking GCN 1.2 and newer cards on their proprietary Linux driver in 2016.  They managed to increase the core by 6% without running into stability issues however when they overclocked the memory, they saw serious performance decreases.  Check out the steps they tried along with the results from the overlocked GPU here.

image.php_.jpg

"Yesterday I posted the initial Radeon RX 580 Linux benchmarks while now with having more time with this "Polaris Evolved" card I've been able to try out a bit more, like the AMDGPU Linux overclocking support. Here are the ups and downs of overclocking the Radeon graphics card under Linux."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Source: Phoronix