The GTX 1080 Ti reviews are here; the card not so much

Subject: Graphics Cards | March 9, 2017 - 01:53 PM |
Tagged: 1080 ti, geforce, gp102, gtx 1080 ti, nvidia, pascal

As you have probably noticed from our front page, today is the day we can see how the GTX 1080 Ti performs in reviewers systems.  The unfortunate news is that you can't buy one yet nor do we know when you will be able to spend the $699 it will cost to order one.  We can share the performance with you, once again NVIDIA's Ti model takes the top spot out performing even the $1200 TITAN X.  As for overclocking the reference model, as we have not had a chance to test any cards with third party cooler on them, [H]ard|OCP were able to increase the GPU frequency over 200MHz to 1967-1987MHz in game and push the memory to 12GHz, somewhat better than what Ryan was able to.  Check out their full review here, with many more just below.

1489035168S7z42o2d6c_1_11_l.png

"NVIDIA is launching the fastest video card it offers for gaming today in the new $699 GeForce GTX 1080 Ti. We will take this video card and test it against the GeForce GTX 1080 and GeForce GTX TITAN X at 1440p and 4K resolutions to find out how it compares. Is it really faster than a $1200 GeForce GTX TITAN X Pascal?"

Here are some more Graphics Card articles from around the web:

Graphics Cards

Source: [H]ard|OCP
Author:
Manufacturer: NVIDIA

Flagship Performance Gets Cheaper

UPDATE! If you missed our launch day live stream, you can find the replay below:

It’s a very interesting time in the world of PC gaming hardware. We just saw the release of AMD’s Ryzen processor platform that shook up the processor market for the first time in a decade, AMD’s Vega architecture has been given the brand name “Vega”, and the anticipation for the first high-end competitive part from AMD since Hawaii grows as well. AMD was seemingly able to take advantage of Intel’s slow innovation pace on the processor and it was hoping to do the same to NVIDIA on the GPU. NVIDIA’s product line has been dominant in the mid and high-end gaming market since the 900-series with the 10-series products further cementing the lead.

box1.jpg

The most recent high end graphics card release came in the form of the updated Titan X based on the Pascal architecture. That was WAY back in August of 2016 – a full seven months ago! Since then we have seen very little change at the top end of the product lines and what little change we did see came from board vendors adding in technology and variation on the GTX 10-series.

Today we see the release of the new GeForce GTX 1080 Ti, a card that offers only a handful of noteworthy technological changes but instead is able to shake up the market by instigating pricing adjustments to make the performance offers more appealing, and lowering the price of everything else.

The GTX 1080 Ti GP102 GPU

I already wrote about the specifications of the GPU in the GTX 1080 Ti when it was announced last week, so here’s a simple recap.

  GTX 1080 Ti Titan X (Pascal) GTX 1080 GTX 980 Ti TITAN X GTX 980 R9 Fury X R9 Fury R9 Nano
GPU GP102 GP102 GP104 GM200 GM200 GM204 Fiji XT Fiji Pro Fiji XT
GPU Cores 3584 3584 2560 2816 3072 2048 4096 3584 4096
Base Clock 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1000 MHz 1126 MHz 1050 MHz 1000 MHz up to 1000 MHz
Boost Clock 1582 MHz 1480 MHz 1733 MHz 1076 MHz 1089 MHz 1216 MHz - - -
Texture Units 224 224 160 176 192 128 256 224 256
ROP Units 88 96 64 96 96 64 64 64 64
Memory 11GB 12GB 8GB 6GB 12GB 4GB 4GB 4GB 4GB
Memory Clock 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 7000 MHz 500 MHz 500 MHz 500 MHz
Memory Interface 352-bit 384-bit G5X 256-bit G5X 384-bit 384-bit 256-bit 4096-bit (HBM) 4096-bit (HBM) 4096-bit (HBM)
Memory Bandwidth 484 GB/s 480 GB/s 320 GB/s 336 GB/s 336 GB/s 224 GB/s 512 GB/s 512 GB/s 512 GB/s
TDP 250 watts 250 watts 180 watts 250 watts 250 watts 165 watts 275 watts 275 watts 175 watts
Peak Compute 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 5.63 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS 7.20 TFLOPS 8.19 TFLOPS
Transistor Count 12.0B 12.0B 7.2B 8.0B 8.0B 5.2B 8.9B 8.9B 8.9B
Process Tech 16nm 16nm 16nm 28nm 28nm 28nm 28nm 28nm 28nm
MSRP (current) $699 $1,200 $599 $649 $999 $499 $649 $549 $499

The GTX 1080 Ti looks a whole lot like the TITAN X launched in August of last year. Based on the 12B transistor GP102 chip, the new GTX 1080 Ti will have 3,584 CUDA core with a 1.60 GHz Boost clock. That gives it the same processor count as Titan X but with a slightly higher clock speed which should make the new GTX 1080 Ti slightly faster by at least a few percentage points and has a 4.7% edge in base clock compute capability. It has 28 SMs, 28 geometry units, 224 texture units.

GeForce_GTX_1080_Ti_Block_Diagram.png

Interestingly, the memory system on the GTX 1080 Ti gets adjusted – NVIDIA has disabled a single 32-bit memory controller to give the card a total of 352-bit wide bus and an odd-sounding 11GB memory capacity. The ROP count also drops to 88 units. Speaking of 11, the memory clock on the G5X implementation on GTX 1080 Ti will now run at 11 Gbps, a boost available to NVIDIA thanks to a chip revision from Micron and improvements to equalization and reverse signal distortion.

The move from 12GB of memory on the GP102-based Titan X to 11GB on the GTX 1080 Ti is an interesting move, and evokes memories of the GTX 970 fiasco where NVIDIA disabled a portion of that memory controller but left the memory that would have resided on it ON the board. At that point, what behaved as 3.5GB of memory at one speed and 500 MB at another speed, was the wrong move to make. But releasing the GTX 970 with "3.5GB" of memory would have seemed odd too. NVIDIA is not making the same mistake, instead building the GTX 1080 Ti with 11GB out the gate.

Continue reading our review of the NVIDIA GeForce GTX 1080 Ti 11GB graphics card!

NVIDIA Announces GeForce GTX 1080 Ti 11GB Graphics Card, $699, Available Next Week

Subject: Graphics Cards | February 28, 2017 - 10:59 PM |
Tagged: pascal, nvidia, gtx 1080 ti, gp102, geforce

Tonight at a GDC party hosted by CEO Jen-Hsun Huang, NVIDIA announced the GeForce GTX 1080 Ti graphics card, coming next week for $699. Let’s dive right into the specifications!

card1.jpg

  GTX 1080 Ti Titan X (Pascal) GTX 1080 GTX 980 Ti TITAN X GTX 980 R9 Fury X R9 Fury R9 Nano
GPU GP102 GP102 GP104 GM200 GM200 GM204 Fiji XT Fiji Pro Fiji XT
GPU Cores 3584 3584 2560 2816 3072 2048 4096 3584 4096
Base Clock 1480 MHz 1417 MHz 1607 MHz 1000 MHz 1000 MHz 1126 MHz 1050 MHz 1000 MHz up to 1000 MHz
Boost Clock 1600 MHz 1480 MHz 1733 MHz 1076 MHz 1089 MHz 1216 MHz - - -
Texture Units 224 224 160 176 192 128 256 224 256
ROP Units 88 96 64 96 96 64 64 64 64
Memory 11GB 12GB 8GB 6GB 12GB 4GB 4GB 4GB 4GB
Memory Clock 11000 MHz 10000 MHz 10000 MHz 7000 MHz 7000 MHz 7000 MHz 500 MHz 500 MHz 500 MHz
Memory Interface 352-bit 384-bit G5X 256-bit G5X 384-bit 384-bit 256-bit 4096-bit (HBM) 4096-bit (HBM) 4096-bit (HBM)
Memory Bandwidth 484 GB/s 480 GB/s 320 GB/s 336 GB/s 336 GB/s 224 GB/s 512 GB/s 512 GB/s 512 GB/s
TDP 250 watts 250 watts 180 watts 250 watts 250 watts 165 watts 275 watts 275 watts 175 watts
Peak Compute 10.6 TFLOPS 10.1 TFLOPS 8.2 TFLOPS 5.63 TFLOPS 6.14 TFLOPS 4.61 TFLOPS 8.60 TFLOPS 7.20 TFLOPS 8.19 TFLOPS
Transistor Count 12.0B 12.0B 7.2B 8.0B 8.0B 5.2B 8.9B 8.9B 8.9B
Process Tech 16nm 16nm 16nm 28nm 28nm 28nm 28nm 28nm 28nm
MSRP (current) $699 $1,200 $599 $649 $999 $499 $649 $549 $499

The GTX 1080 Ti looks a whole lot like the TITAN X launched in August of last year. Based on the 12B transistor GP102 chip, the new GTX 1080 Ti will have 3,584 CUDA core with a 1.60 GHz Boost clock. That gives it the same processor count as Titan X but with a slightly higher clock speed which should make the new GTX 1080 Ti slightly faster by at least a few percentage points and has a 4.7% edge in base clock compute capability. It has 28 SMs, 28 geometry units, 224 texture units.

archoverview.jpg

Interestingly, the memory system on the GTX 1080 Ti gets adjusted – NVIDIA has disabled a single 32-bit memory controller to give the card a total of 352-bit wide bus and an odd-sounding 11GB memory capacity. The ROP count also drops to 88 units. Speaking of 11, the memory clock on the G5X implementation on GTX 1080 Ti will now run at 11 Gbps, a boost available to NVIDIA thanks to a chip revision from Micron and improvements to equalization and reverse signal distortion.

memoryeye.jpg

The TDP of the new part is 250 watts, falling between the Titan X and the GTX 1080. That’s an interesting move considering that the GP102 was running at 250 watts with identical to the Titan product. The cooler has been improved compared to the GTX 1080, offering quieter fan speeds and lower temperatures when operating at the same power envelope.

coolerperf.jpg

Performance estimates from NVIDIA put the GTX 1080 Ti about 35% faster than the GTX 1080, the largest “kicker performance increase” that we have seen from a flagship Ti launch.

perf.jpg

Pricing is going to be set at $699 so don't expect to find this in any budget builds. But for the top performing GeForce card on the market, it's what we expect. It should be on virtual shelves starting next week.

(Side note, with the GTX 1080 getting a $100 price drop tonight, I think we'll find this new lineup very compelling to enthusiasts.)

card2.jpg

card3.jpg

NVIDIA did finally detail its tiled caching rendering technique. We'll be diving more into that in a separate article with a little more time for research.

One more thing…

In another interesting move, NVIDIA is going to be offering “overclocked” versions of the GTX 1080 and GTX 1060 with +1 Gbps memory speeds. Partners will be offering them with some undisclosed price premium.

1080oc.jpg

I don’t know how much performance this will give us but it’s clear that NVIDIA is preparing its lineup for the upcoming AMD Vega release.

GeForce_GTX_1080ti_3qtr_Front_Left_1488313915.jpg

We’ll have more news from NVIDIA and GDC as it comes!

Source: NVIDIA

GDC: NVIDIA Announces GTX 1080 Price Drop to $499

Subject: Graphics Cards | February 28, 2017 - 10:55 PM |
Tagged: pascal, nvidia, GTX 1080, GDC

Update Feb 28 @ 10:03pm It's official, NVIDIA launches $699 GTX 1080 Ti.

NVIDIA is hosting a "Gaming Celebration" live event during GDC 2017 to talk PC gaming and possibly launch new hardware (if rumors are true!). During the event, NVIDIA CEO Jen-Hsun Huang made a major announcement regarding its top-end GTX 1080 graphics card with a price drop to $499 effective immediately.

NVIDIA 499 GTX 1080.png

The NVIDIA GTX 1080 is a pascal based graphics card with 2560 CUDA cores paired with 8GB of GDDR5X memory. Graphics cards based on this GP104 GPU are currently selling for around $580 to $700 (most are around $650+/-) with the "Founders Edition" having an MSRP of $699. The $499 price teased at the live stream represents a significant price drop compared to what the graphics cards are going for now. NVIDIA did not specify if the new $499 MSRP was the new Founders Edition price or an average price that includes partner cards as well but even if it only happened on the reference cards, the partners would have to adjust their prices downwards accordingly to compete.

I suspect that NVIDIA is making such a bold move to make room in their lineup for a new product (the long-rumored 1080 Ti perhaps?) as well as a pre-emptive strike against AMD and their Radeon RX Vega products. This move may also be good news for GTX 1070 pricing as they may also see price drops to make room for cheaper GTX 1080 partner cards that come in below the $499 price point.

If you have been considering buying a new graphics card, NVIDIA has sweetened the pot a bit especially if you had already been eyeing a GTX 1080. (Note that while the price drop is said to be effective immediately, at the time of writing Amazon was still showing "normal"/typical prices for the cards. Enthusiasts might have to wait a few hours or days for the retailers to catch up and update their sites.)

This makes me a bit more excited to see what AMD will have to offer with Vega as well as the likelihood of a GTX 1080 Ti launch happening sooner rather than later!

Source: NVIDIA
Author:
Manufacturer: EVGA

The new EVGA GTX 1080 FTW2 with iCX Technology

Back in November of 2016, EVGA had a problem on its hands. The company had a batch of GTX 10-series graphics cards using the new ACX 3.0 cooler solution leave the warehouse missing thermal pads required to keep the power management hardware on its cards within reasonable temperature margins. To its credit, the company took the oversight seriously and instituted a set of solutions for consumers to select from: RMA, new VBIOS to increase fan speeds, or to install thermal pads on your hardware manually. Still, as is the case with any kind of product quality lapse like that, there were (and are) lingering questions about EVGA’s ability to maintain reliable product; with features and new options that don’t compromise the basics.

Internally, the drive to correct these lapses was…strong. From the very top of the food chain on down, it was hammered home that something like this simply couldn’t occur again, and even more so, EVGA was to develop and showcase a new feature set and product lineup demonstrating its ability to innovate. Thus was born, and accelerated, the EVGA iCX Technology infrastructure. While this was something in the pipeline for some time already, it was moved up to counter any negative bias that might have formed for EVGA’s graphics cards over the last several months. The goal was simple: prove that EVGA was the leader in graphics card design and prove that EVGA has learned from previous mistakes.

EVGA iCX Technology

Previous issues aside, the creation of iCX Technology is built around one simple question: is one GPU temperature sensor enough? For nearly all of today’s graphics cards, cooling is based around the temperature of the GPU silicon itself, as measured by NVIDIA (for all of EVGA’s cards). This is how fan curves are built, how GPU clock speeds are handled with GPU Boost, how noise profiles are created, and more. But as process technology has improved, and GPU design has weighed towards power efficiency, the GPU itself is often no longer the thermally limiting factor.

slides05.jpg

As it turns out, converting 12V (from the power supply) to ~1V (necessary for the GPU) is a simple process that creates a lot of excess heat. The thermal images above clearly demonstrate that and EVGA isn’t the only card vendor to take notice of this. As it turns out, EVGA’s product issue from last year was related to this – the fans were only spinning fast enough to keep the GPU cool and did not take into account the temperature of memory or power delivery.

The fix from EVGA is to ratchet up the number of sensors on the card PCB and wrap them with intelligence in the form of MCUs, updated Precision XOC software and user viewable LEDs on the card itself.

slides10.jpg

EVGA graphics cards with iCX Technology will include 9 total thermal sensors on the board, independent of the GPU temperature sensor directly integrated by NVIDIA. There are three sensors for memory, five for power delivery and an additional sensor for the GPU temperature. Some are located on the back of the PCB to avoid any conflicts with trace routing between critical components, including the secondary GPU sensor.

Continue reading about EVGA iCX Technology!

Author:
Manufacturer: NVIDIA

NVIDIA P100 comes to Quadro

At the start of the SOLIDWORKS World conference this week, NVIDIA took the cover off of a handful of new Quadro cards targeting professional graphics workloads. Though the bulk of NVIDIA’s discussion covered lower cost options like the Quadro P4000, P2000, and below, the most interesting product sits at the high end, the Quadro GP100.

As you might guess from the name alone, the Quadro GP100 is based on the GP100 GPU, the same silicon used on the Tesla P100 announced back in April of 2016. At the time, the GP100 GPU was specifically billed as an HPC accelerator for servers. It had a unique form factor with a passive cooler that required additional chassis fans. Just a couple of months later, a PCIe version of the GP100 was released under the Tesla GP100 brand with the same specifications.

quadro2017-2.jpg

Today that GPU hardware gets a third iteration as the Quadro GP100. Let’s take a look at the Quadro GP100 specifications and how it compares to some recent Quadro offerings.

  Quadro GP100 Quadro P6000 Quadro M6000 Full GP100
GPU GP100 GP102 GM200 GP100 (Pascal)
SMs 56 60 48 60
TPCs 28 30 24 (30?)
FP32 CUDA Cores / SM 64 64 64 64
FP32 CUDA Cores / GPU 3584 3840 3072 3840
FP64 CUDA Cores / SM 32 2 2 32
FP64 CUDA Cores / GPU 1792 120 96 1920
Base Clock 1303 MHz 1417 MHz 1026 MHz TBD
GPU Boost Clock 1442 MHz 1530 MHz 1152 MHz TBD
FP32 TFLOPS (SP) 10.3 12.0 7.0 TBD
FP64 TFLOPS (DP) 5.15 0.375 0.221 TBD
Texture Units 224 240 192 240
ROPs 128? 96 96 128?
Memory Interface 1.4 Gbps
4096-bit HBM2
9 Gbps
384-bit GDDR5X
6.6 Gbps
384-bit
GDDR5
4096-bit HBM2
Memory Bandwidth 716 GB/s 432 GB/s 316.8 GB/s ?
Memory Size 16GB 24 GB 12GB 16GB
TDP 235 W 250 W 250 W TBD
Transistors 15.3 billion 12 billion 8 billion 15.3 billion
GPU Die Size 610mm2 471 mm2 601 mm2 610mm2
Manufacturing Process 16nm 16nm 28nm 16nm

There are some interesting stats here that may not be obvious at first glance. Most interesting is that despite the pricing and segmentation, the GP100 is not the de facto fastest Quadro card from NVIDIA depending on your workload. With 3584 CUDA cores running at somewhere around 1400 MHz at Boost speeds, the single precision (32-bit) rating for GP100 is 10.3 TFLOPS, less than the recently released P6000 card. Based on GP102, the P6000 has 3840 CUDA cores running at something around 1500 MHz for a total of 12 TFLOPS.

gp102-blockdiagram.jpg

GP100 (full) Block Diagram

Clearly the placement for Quadro GP100 is based around its 64-bit, double precision performance, and its ability to offer real-time simulations on more complex workloads than other Pascal-based Quadro cards can offer. The Quadro GP100 offers 1/2 DP compute rate, totaling 5.2 TFLOPS. The P6000 on the other hand is only capable of 0.375 TLOPS with the standard, consumer level 1/32 DP rate. Inclusion of ECC memory support on GP100 is also something no other recent Quadro card has.

quadro2017-3.jpg

Raw graphics performance and throughput is going to be questionable until someone does some testing, but it seems likely that the Quadro P6000 will still be the best solution for that by at least a slim margin. With a higher CUDA core count, higher clock speeds and equivalent architecture, the P6000 should run games, graphics rendering and design applications very well.

There are other important differences offered by the GP100. The memory system is built around a 16GB HBM2 implementation which means more total memory bandwidth but at a lower capacity than the 24GB Quadro P6000. Offering 66% more memory bandwidth does mean that the GP100 offers applications that are pixel throughput bound an advantage, as long as the compute capability keeps up on the backend.

m.jpg

Continue reading our preview of the new Quadro GP100!

Gigabyte Shows Off Half Height GTX 1050 and GTX 1050 Ti Graphics Cards

Subject: Graphics Cards | January 17, 2017 - 10:31 PM |
Tagged: SFF, pascal, low profile, GTX 1050 Ti, gtx 1050, gigabyte

Without much fanfare Gigabyte recently launched two new low profile half height graphics cards packing factory overclocked GTX 1050 and GTX 1050 Ti GPUs. The new cards measure 6.6” x 2.7” x 1.5” (167mm long) and are cooled by a small shrouded single fan cooler. 
 
Gigabyte GTX 1050 OC Low Profile 2G.png
 
Around back, both the Gigabyte GTX 1050 OC Low Profile 2G and GTX 1050 Ti OC Low Profile 4G offer four display outputs in the form of two HDMI 2.0b, one DisplayPort 1.4, and one dual-link DVI-D. It appears that Gigabyte is using the same cooler for both cards. There is not much information on this cooler, but it utilizes an aluminum heatsink and what looks like a ~50mm fan. Note that while the cards are half-height, they use a dual slot design which may limit the cases it can be used in.
 
The GTX 1050 OC Low Profile 2G features 640 Pascal-based CUDA cores clocked at 1366 MHz base and 1468 MHz boost out of the box (1392 MHz base and 1506 MHz boost in OC Mode using Gigabyte’s software) and 2GB of GDDR5 memory at 7008 MHz (7GT/s). For comparison, the GTX 1050 reference clock speeds are 1354 MHz base and 1455 MHz boost.
 
Meanwhile, the GTX 1050 Ti OC Low Profile 4G has 768 cores clocked at 1303 MHz base and 1417 MHz boost by default and 1328 MHz base and 1442 MHz boost in OC Mode. The GPU is paired with 4GB of GDDR5 memory at 7GT/s. NVIDIA’s reference GPU clocks are 1290 MHz base and 1392 MHz boost.
 
The pint-sized graphics cards would certainly allow for gaming on your SFF home theater or other desktop PC as well as being an easy upgrade to make a tiny OEM PC gaming capable (think those thin towers HP, Lenovo, and Dell like to use). 
 
Of course, Gigabyte is not yet talking pricing and availability has only been narrowed down to a general Q1 2017 time frame. I would expect the cards to hit retailers within a month or so and be somewhere around $135 for their half height GTX 1050 OC LP 2G and approximately $155 for the faster GTX 1050 Ti variant. That is to say that the low profile cards should be available at a slight premium over the company's larger GTX 1050 and GTX 1050 Ti graphics cards.
Source: Gigabyte

CES 2017: Gigabyte Shows Off First Aorus Branded Graphics Card

Subject: Graphics Cards | January 10, 2017 - 10:11 PM |
Tagged: CES, CES 2017, aorus, gigabyte, xtreme gaming, GTX 1080, pascal

One interesting development from Gigabyte at this year’s CES was the expansion of its Aorus branding and the transition from Xtreme Gaming. Initially used on its RGB LED equipped motherboards, the company is rolling out the brand to its other higher end products including laptops and graphics cards. While it appears that Xtreme Gaming is not going away entirely, Aorus is taking the spotlight with the introduction of the first Aorus branded graphics card: the GTX 1080.

Aorus GTX 1080 CES 2017 Pauls Hardware.png

Paul's Hardware got hands on with the new card (video) at the Gigabyte CES booth.

Featuring a similar triple 100mm fan cooler as the GTX 1080 Xtreme Gaming 8G, the Aorus GTX 1080 comes with x patterned LED lighting as well as a backlit Aorus logo on the side and a backlit Eagle on the backplate. The cooler is comprised of three 100mm double stacked fans (the center fan is recessed and spins in the opposite direction of the side fans) over a shrouded angled aluminum fin stack that connects to the GPU over five large copper heatpipes.

The graphics card is powered by two 8-pin PCI-E power connectors.

In an interesting twist, the card has two HDMI ports on the back of the card that are intended to be used to hook up front panel HDMI outputs for things like VR headsets. Another differentiator between the upcoming card and the Xtreme Gaming 8G is the backplate which has a large copper plate secured over the underside of the GPU. Several sites are reporting that this area can be used for watercooling, but I am skeptical of this as if you are going to go out and buy a waterblock for your graphics card you might as well buy a block to put on top of the GPU and not on the area of the PCB opposite the GPU!). As is, the copper plate on the backplate certainly won’t hurt cooling, and it looks cool, but that’s all I suspect it is.

Think Computers also checked out the Aorus graphics card. (video above)

Naturally, Gigabyte is not talking clock speeds on this new card, but I expect it to hit at least the same clocks as its Xtreme Gaming 8G predecessor which was clocked at 1759 MHz base and 1848 MHz boost out of the box and 1784 MHz base and 1936 MHz boost in OC Mode respectively. Gigabyte also overlocked the memory on that card up to 10400 MHz on OC Mode.

Gigabyte also had new SLI HB bridges on display bearing the Aorus logo to match the Aorus GPU. The company also had Xtreme Gaming SLI HB bridges though which further suggests that they are not completely retiring that branding (at least not yet).

Pricing has not been announced, but the card will be available in February.

Gigabyte has yet to release official photos of the card or a product page, but it should show up on their website shortly. In the meantime, Paul's Hardware and Think Computers shot some video of the card on the show floor which I have linked above if you are interested in the card. Looking on Amazon, the Xtreme Gaming 1080 8GB is approximately $690 before rebate so I would guess that the Aorus card would come out at a slight premium over that if only for the fact that it is a newer release, has a more expensive backplate and additional RGB LED backlighting.

What are your thoughts on the move to everything-Aorus? 

Coverage of CES 2017 is brought to you by NVIDIA!

PC Perspective's CES 2017 coverage is sponsored by NVIDIA.

Follow all of our coverage of the show at https://pcper.com/ces!

Serious Sam VR, now with tag teaming NVIDIA cards

Subject: General Tech | November 30, 2016 - 03:31 PM |
Tagged: serious sam vr, nvidia, gaming, pascal

Having already looked at AMD's performance with two RX 480's in a system, the recent patch which enables support for multiple NVIDIA GPUs have dragged [H]ard|OCP back into the game.  Lacking a pair of Titan X cards, they tested the performance of a pair of GTX 1080s and 1070s; the GTX 1060 will not be receiving support from Croteam.  It would seem that adding a second Pascal card to your system will benefit you, however the scaling they saw was nowhere near as impressive as with the AMD RX 480 which saw a 36% boost.  Check out the full results here and yes ... in this case the m in mGPU indicates multiple GPUs, not mobile.

1480447611nZ8LrzvbVG_5_1.jpg

"Serious Sam VR was the first commercial enthusiast gaming title to include multi-GPU support with AMD's RX 480 GPU. Now the folks at Croteam have added mGPU support for NVIDIA cards as well. We take a look at how well NVIDIA's VRSLI technology fares in this VR shooter title."

Here is some more Tech News from around the web:

Gaming

Source: [H]ard|OCP
Author:
Manufacturer: NVIDIA

A Holiday Project

A couple of years ago, I performed an experiment around the GeForce GTX 750 Ti graphics card to see if we could upgrade basic OEM, off-the-shelf computers to become competent gaming PCs. The key to this potential upgrade was that the GTX 750 Ti offered a great amount of GPU horsepower (at the time) without the need for an external power connector. Lower power requirements on the GPU meant that even the most basic of OEM power supplies should be able to do the job.

That story was a success, both in terms of the result in gaming performance and the positive feedback it received. Today, I am attempting to do that same thing but with a new class of GPU and a new class of PC games.

The goal for today’s experiment remains pretty much the same: can a low-cost, low-power GeForce GTX 1050 Ti graphics card that also does not require any external power connector offer enough gaming horsepower to upgrade current shipping OEM PCs to "gaming PC" status?

Our target PCs for today come from Dell and ASUS. I went into my local Best Buy just before the Thanksgiving holiday and looked for two machines that varied in price and relative performance.

01.jpg

  Dell Inspiron 3650 ASUS M32CD-B09
Processor Intel Core i3-6100 Intel Core i7-6700
Motherboard Custom Custom
Memory 8GB DDR4 12GB DDR4
Graphics Card Intel HD Graphics 530 Intel HD Graphics 530
Storage 1TB HDD 1TB Hybrid HDD
Case Custom Custom
Power Supply 240 watt 350 watt
OS Windows 10 64-bit Windows 10 64-bit
Total Price $429 (Best Buy) $749 (Best Buy)

The specifications of these two machines are relatively modern for OEM computers. The Dell Inspiron 3650 uses a modest dual-core Core i3-6100 processor with a fixed clock speed of 3.7 GHz. It has a 1TB standard hard drive and a 240 watt power supply. The ASUS M32CD-B09 PC has a quad-core HyperThreaded processor with a 4.0 GHz maximum Turbo clock, a 1TB hybrid hard drive and a 350 watt power supply. Both of the CPUs share the same Intel brand of integrated graphics, the HD Graphics 520. You’ll see in our testing that not only is this integrated GPU unqualified for modern PC gaming, but it also performs quite differently based on the CPU it is paired with.

Continue reading our look at upgrading an OEM machine with the GTX 1050 Ti!!