Podcast #436 - ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

Subject: Editorial | February 9, 2017 - 10:50 AM |
Tagged: podcast, Zen, Windows 10 Game Mode, webcam, ryzen, quadro, Optane, nvidia, mini-stx, humble bundle, gddr6, evga, ECS, atom, amd, 4k

PC Perspective Podcast #436 - 02/09/17

Join us for ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Allyn Malventano, Ken Addison, Josh Walrath, Jermey Hellstrom

Program length: 1:32:21

Podcast topics of discussion:

  1. Week in Review:
  2. News items of interest:
    1. 1:14:00 Zen Price Points Leaked
  3. Hardware/Software Picks of the Week
  4. Closing/outro
 
 

Source:

Intel Has Started Shipping Optane Memory Modules

Subject: Memory | February 3, 2017 - 08:42 PM |
Tagged: XPoint, server, Optane, Intel Optane, Intel, big data

Last week Hexus reported that Intel has begun shipping Optane memory modules to its partners for testing. This year should see the launch of both these enterprise products designed for servers as well as tiny application accelerator M.2 solid state drives based on the Intel and Micron joint 3D memory venture. The modules that Intel is shipping are the former type of Optane memory and will be able to replace DDR4 DIMMs (RAM) with a memory solution that is not as fast but is cheaper and has much larger storage capacities. The Optane modules are designed to slot into DDR4 type memory slots on server boards. The benefit for such a product lies in big data and scientific workloads where massive datasets will be able to be held in primary memory and the processor(s) will be able to access the data sets at much lower latencies than if it had to reach out to mass storage on spinning rust or even SAS or PCI-E solid state drives. Being able to hold all the data being worked on in one pool of memory will be cheaper with Optane as well as it is allegedly priced closer to NAND than RAM and the cost of RAM adds up extremely quickly when you need many terabytes of it (or more!). Various technologies attempting to bring higher capacity non volatile and/or flash-based storage in memory module form have been theorized or in the works in various forms for years now, but it appears that Intel will be the first ones to roll out actual products.

Intel Optane Memory Module.JPG

It will likely be years before the technology trickles down to consumer desktops and notebooks, so slapping what would effectively be a cheap RAM disk into your PC is still a ways out. Consumers will get a small taste of the Optane memory in the form of tiny storage drives that were rumored for a first quarter 2017 release following its Kaby Lake Z270 motherboards. Previous leaks suggest that the Intel Optane Memory 8000P would come in 16 GB and 32 GB capacities in a M.2 form factor. With a single 128-bit (16 GB) die Intel is able to hit speeds that current NAND flash based SSDs can only hit with multiple dies. Specifically the 16GB Optane application accelerator drive is allegedly capable of 285,000 random 4K IOPS, 70,000 random write 4K IOPS, Sequential 128K reads of 1400 MB/s, and sequential 128K writes of 300 MB/s. The 32GB Optane drive is a bit faster at 300,000 4K IOPS, 120,000 4K IOPS, 1600 MB/s, and 500 MB/s respectively.

Unfortunately, I do not have any numbers on how fast the Optane memory that will slot into the DDR4 slots will be, but seeing as two dies already max out the x2 PCI-E link they use in the M.2 Optane SSD, a dual sided memory module packed with rows of Optane dies on the significantly wider memory bus is very promising. It should lie somewhere closer to (but slower than) DDR4 but much faster than NAND flash while still being non volatile (it doesn't need constant power to retain the data).

I am interested to see what the final numbers are for Intel's Optane RAM and Optane storage drives. The company has certainly dialed down the hype for the technology as it approached fruition though that may be more to do with what they are able to do right now versus what the 3D XPoint memory technology itself is potentially capable of enabling. I look forward to what it will enable in the HPC market and eventually what will be possible for the desktop and gaming markets.

What are your thoughts on Intel and Micron's 3D XPoint memory and Intel's Optane implementation (Micron's implementation is QuantX)?

Also read:

Source: Hexus

Intel Z270 Express and H270 Express Chipsets Support Kaby Lake, More PCI-E 3.0 Lanes

Subject: Motherboards | December 2, 2016 - 08:19 AM |
Tagged: Intel, z270, h270, intel z270, kaby lake, Optane, PCI-E 3.0

Details on Intel’s upcoming Z270 and H270 chipsets surfaced last month that fleshed out the new platform and its capabilities including the inclusion of additional PCI-E 3.0 lanes and out-of-the-box support for 7th Generation Intel Kaby Lake processors versus the current generation Z170 and H170 chipsets.

ASUS-Z270G-Gaming00_642_9e661.jpg

An alleged Z270 motherboard from ASUS (STRIX Z270G GAMING) per Wccftech.

TechPowerUp reported that Intel’s 200-series chipsets – which would be used on motherboards with the LGA 1151 socket – would feature incremental improvements over their current generation equivalents including the upgrade to Intel Rapid Storage Technology (RST) version 15, support for Intel Optane Technology, and additional downstream PCI-E 3.0 lanes. The Z270 and H270 chipsets each have four extra lanes compared to their 100-series predecessors. These “downstream lanes” allow for additional high bandwidth connections that hang off the chipset (which does appear to still be ultimately limited by the physical four PCI-E 3.0 lanes that make up the DMI 3.0 link between the CPU and PCH). Examples include extra Thunderbolt, USB 3.1, and PCI-E slots for NICs, capture cards, storage controllers, or even graphics cards.

Intel Z270 Express will feature 14 general purpose PCI-E lanes versus 10 on Z170 Express along with a total lane budget of 30 versus 26 (16 of those lanes are reserved for CPU to one or two PCI-E 3.0 x16 slots (electrically 1x16 or 2x8) and the others come from the chipset but really connect back to the CPU over a DMI 3.0 link that is equivalent to four lanes of PCI-E 3.0. H270 also features 14 general purpose lanes versus what appears to be six on H170. H270 and H170 have 16 PCI-E 3.0 lanes coming from the CPU for graphics so it is a total lane budget of 30 versus 22 respectively.

  Z270 Z170 H270 H170
High Speed IO (HSIO) 30 26 30 22
PCI-E 3.0 Lanes 24 20 20 16
Maximum M.2 slots 3 3 2 2

H270 will see the biggest benefit from the additional PCI-E lanes which could mean systems like HTPCs and budget desktops where overclocking and multi-GPU setups are not a concern using H270 chipset motherboards could still support a full range of external IO and fast storage.

One interesting thing I noticed from the table is that Z270 and H270 do not support additional M.2 slots. The maximum number of M.2 slots remains the same as their 100-series counterparts at three and two respectively.  After talking with Allyn, this makes sense because of that limiting factor that is the four lane DMI 3.0 link to the CPU and memory. Specifically, he explained:

“Think of the chipset as a means of fanout to individual things that won't simultaneously consumer more than x4. You can use the extra lanes for other stuff, like additional USB 3.1 controllers, Ethernet, audio, etc. Heck, you can route them to the last PCIe slot if you wanted.”

Further, Intel will continue to differentiate the Z270 Express and H270 Express by supporting multiplier overclocking and multi-GPU setups solely on Z270-based motherboards. H270 will be single x16 slot boards that do not allow multiplier-based overclocking at best and more than likely any CPU overclocking. The tradeoff being that H270-based boards should be much cheaper.

Intel Optane support is compelling, but will not be a reason to upgrade quite yet as drives are still a ways off and when they do arrive are sure to be very expensive. Rumors do suggest that Intel may introduce a small 3D XPoint-based Optane SSD up to 32GB alongside the rollout of Kaby Lake and new motherboards but as that is not large enough for an OS drive it will remain more of a niche thing at first. As larger drives come out at lower price points, the support for them on Z270 and H270 would help make the case for enthusiasts running Z170 and H170 boards to make the jump.

Of course, that brings me to my main thought surrounding Z270 and H270 based motherboards which is that while someone looking to build a new PC could justify going straight to the newer chipset-based motherboards, users running existing Z170 and H170 motherboards – many of which will support Kaby Lake processors with a BIOS update – have little reason to jump at an upgrade. Budget builds might even justify going to the older and cheaper boards if they don’t need the new features and putting the saved money towards something like more memory or a better CPU cooler.

For the highest end (save HEDT) builds, Z270-based boards should offer more connectivity options for Thunderbolt and USB 3.1 ports and the ability to dive into XPoint storage when it fully rolls out is nice. There are arguments to be main on both sides.

What are your plans for Kaby Lake? Will you be upgrading to the new processor, and if so will be using a Z170/H170 or a new Z270/H270 board?

Also read:

Source: TechPowerUp

Podcast #422 - Samsung 960 Pro, Acer Z850 Projector, Surface Studio and more!

Subject: General Tech | October 27, 2016 - 12:19 PM |
Tagged: z850, x50, video, tegra, switch, surface studio, Samsung, qualcomm, podcast, Optane, nvidia, Nintendo, microsoft, Intel, gtx 1050, Fanatec, evga, acer, 960 PRO, 5G

PC Perspective Podcast #422 - 10/27/16

Join us this week as we discuss the Samsung 960 Pro, Fanatec racing gear, an Acer UltraWide projector, Optane leaks, MS Surface Studio and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Ryan Shrout, Allyn Malventano, Josh Walrath, Jeremy Hellstrom

Program length: 1:47:11

  1. Join our spam list to get notified when we go live!
  2. Patreon
  3. Fragging Frogs VLAN 14
  4. Week in Review:
    1. 0:06:00 Fanatec ClubSport V2 Ecosystem Review: What is Realism Worth?
    2. 0:25:20 Samsung 960 PRO 2TB M.2 NVMe SSD Full Review - Even Faster!
    3. 0:45:35 Acer Predator Z850 UltraWide 24:9 Gaming Projector Review
    4. 0:54:28 EVGA SuperNOVA 750W G2L Power Supply Review
  5. Today’s episode is brought to you by Harry’s! Use code PCPER at checkout!
  6. News items of interest:
    1. 1:00:50 GTX 1050 and 1050Ti
    2. 1:05:30 Intel Optane (XPoint) First Gen Product Specifications Leaked
    3. 1:11:20 Microsoft Introduces Surface Studio AiO Desktop PC
    4. 1:21:45 Microsoft Windows 10 Creators Update Formally Announced
    5. 1:25:25 Qualcomm Announces Snapdragon X50 5G Modem
    6. 1:31:55 NVIDIA Tegra SoC powers new Nintendo Switch gaming system
  7. Hardware/Software Picks of the Week
    1. Ryan: Chewbacca Hoodie
    2. Jeremy: The Aimpad R5 is actually much cooler than I thought
    3. Josh: Solid for the price. Get on special!
    4. Allyn: Factorio
  8. http://pcper.com/podcast
  9. http://twitter.com/pcper
  10. Closing/Outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Intel Optane (XPoint) First Gen Product Specifications Leaked

Subject: Storage | October 14, 2016 - 08:05 PM |
Tagged: XPoint, Optane, 8000p, Intel

Intel and Micron jointly launched XPoint technology over a year ago, and we've been waiting to see any additional info ever since. We saw Micron demo a prototype at FMS 2016, and we also saw the actual prototype. Intel's last demo was not so great, later demos were better), and we saw a roadmap leaked a few months ago. Thanks to another leak, we now have specs for one of Intel's first Optane products:

intel-optane-memory-8000p.jpg

Now I know there is a bunch of rambling around the net already. "Why so small?!?!". What I think we are looking at is Stony Beach - Intel's 'Application Accelerator" seen here:

intel-octane-ssd-roadmap.jpg

What further backs this theory is that you'll note the PCIe 3.0 x2 link of that product in the above roadmap, which couples nicely with the upper end limits seen in the 32GB product, which is clearly hitting a bandwidth limit at 1.6 GB/s, which is the typical max seen on a x2 PCIe 3.0 link.

DSC03304.JPG

Now with the capacity thing aside, there is another important thing to bring up. First gen XPoint dies are 128 Gbit, which works out to 16 GB. That means the product specs for the 16GB part are turning in those specs *WITH ONE DIE*. NAND based SSDs can only reach these sorts of figures by spreading the IO's across four, eight, or more dies operating in parallel. This is just one die, and it is nearly saturating two lanes of PCIe 3.0!

Another cool thing to note is that we don't typically get to know how well a single die of anything will perform. We always have to extrapolate backwards from the smaller capacities of SSDs, where the dies are the bottleneck instead of the interface to the host. Here we have the specs of one die of a product. Imagine what could be done with even wider interfaces and more dies!

DSC02095.jpg

XPoint fills the still relatively large performance gap between RAM and NAND, and does so while being non-volatile. There are good things on the horizon to be enabled by this technology, even if we first see it in smaller capacity products.

IDF 2016: Intel To Demo Optane XPoint, Announces Optane Testbed for Enterprise Customers

Subject: Storage | August 16, 2016 - 02:00 PM |
Tagged: XPoint, Testbed, Optane, Intel, IDF 2016, idf

IDF 2016 is up and running, and Intel will no doubt be announcing and presenting on a few items of interest. Of note for this Storage Editor are multiple announcements pertaining to upcoming Intel Optane technology products.

P1020336-.JPG

Optane is Intel’s branding of their joint XPoint venture with Micron. Intel launched this branding at last year's IDF, and while the base technology is as high as 1000x faster than NAND flash memory, full solutions wrapped around an NVMe capable controller have shown to sit at roughly a 10x improvement over NAND. That’s still nothing to sneeze at, and XPoint settles nicely into the performance gap seen between NAND and DRAM.

XPoint.png

Since modern M.2 NVMe SSDs are encroaching on the point of diminishing returns for consumer products, Intel’s initial Optane push will be into the enterprise sector. There are plenty of use cases for a persistent storage tier faster than NAND, but most enterprise software is not currently equipped to take full advantage of the gains seen from such a disruptive technology.

DSC03304.JPG

XPoint die. 128Gbit of storage at a ~20nm process.

In an effort to accelerate the development and adoption of 3D XPoint optimized software, Intel will be offering enterprise customers access to an Optane Testbed. This will allow for performance testing and tuning of customers’ software and applications ahead of the shipment of Optane hardware.

U.2.jpg

I did note something interesting in Micron's FMS 2016 presentation. QD=1 random performance appears to start at ~320,000 IOPS, while the Intel demo from a year ago (first photo in this post) showed a prototype running at only 76,600 IOPS. Using that QD=1 example, it appears that as controller technology improves to handle the large performance gains of raw XPoint, so does performance. Given a NAND-based SSD only turns in 10-20k IOPS at that same queue depth, we're seeing something more along the lines of 16-32x performance gains with the Micron prototype. Those with a realistic understanding of how queues work will realize that the type of gains seen at such low queue depths will have a significant impact in real-world performance of these products.

future NVM.PNG

The speed of 3D XPoint immediately shifts the bottleneck back to the controller, PCIe bus, and OS/software. True 1000x performance gains will not be realized until second generation XPoint DIMMs are directly linked to the CPU.

The raw die 1000x performance gains simply can't be fully realized when there is a storage stack in place (even an NVMe one). That's not to say XPoint will be slow, and based on what I've seen so far, I suspect XPoint haters will still end up burying their heads in the sand once we get a look at the performance results of production parts.

intel-optane-ssd-roadmap.jpg

Leaked roadmap including upcoming Optane products

Intel is expected to show a demo of their own more recent Optane prototype, and we suspect similar performance gains there as their controller tech has likely matured. We'll keep an eye out and fill you in once we've seen Intel's newer Optane goodness it in action!

FMS 2016: Facebook Talks WORM QLC NAND Flash, Benchmarks XPoint

Subject: Storage | August 9, 2016 - 05:59 PM |
Tagged: XPoint, Worm, storage, ssd, RocksDB, Optane, nand, flash, facebook

At their FMS 2016 Keynote, Facebook gave us some details on the various storage technologies that fuel their massive operation:

DSC02009.jpg

In the four corners above, they covered the full spectrum of storing bits. From NVMe to Lightning (huge racks of flash (JBOF)), to AVA (quad M.2 22110 NVMe SSDs), to the new kid on the block, WORM storage. WORM stands for Write Once Read Many, and as you might imagine, Facebook has lots of archival data that they would like to be able to read quickly, so this sort of storage fits the bill nicely. How do you pull off massive capacity in flash devices? QLC. Forget MLC or TLC, QLC stores four bits per cell, meaning there are 16 individual voltage states for each cell. This requires extremely precise writing techniques and reads must appropriately compensate for cell drift over time, and while this was a near impossibility with planar NAND, 3D NAND has more volume to store those electrons. This means one can trade the endurance gains of 3D NAND for higher bit density, ultimately enabling SSDs upwards of ~100TB in capacity. The catch is that they are rated at only ~150 write cycles. This is fine for archival storage requiring WORM workloads, and you still maintain NAND speeds when it comes to reading that data later on, meaning that decade old Facebook post will appear in your browser just as quickly as the one you posted ten minutes ago.

DSC02028.jpg

Next up was a look at some preliminary Intel Optane SSD results using RocksDB. Compared to a P3600, the prototype Optane part offers impressive gains in Facebook's real-world workload. Throughput jumped by 3x, and latency reduced to 1/10th of its previous value. These are impressive gains given this fairly heavy mixed workload.

More to follow from FMS 2016!

Podcast #404 - Crucial MX300, E3 hardware news, GTX 1080 Shortages and more!

Subject: General Tech | June 16, 2016 - 11:43 AM |
Tagged: XPoint, xbox one, void, video, Strider, Silverstone, rx 480, rx 470, rx 460, podcast, PHAB2, Optane, MX300, Lenovo, GTX 1080, Egil, crucial, corsair, asus, arm

PC Perspective Podcast #404 - 06/16/2016

Join us this week as we discuss the new Crucial MX300 SSD, news on upcoming Xbox hardware changes, GTX 1080 shortages and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Lenovo!

Hosts:  Ryan Shrout, Allyn Malventano, Jeremy Hellstrom, and Josh Walrath

Program length: 1:48:30
  1. Week in Review:
  2. News items of interest:
    1. 0:39:00 Xbox E3 Hardware Discussion
    2. 0:49:50 GeForce GTX 1080 Shortages?
  3. Hardware/Software Picks of the Week
    1. Ryan: Trackr
    2. Allyn: Safely Remove USB devices (or figure out what’s stopping them)
  4. Closing/outro

Leaked Intel Roadmap Details Upcoming Optane XPoint SSDs and Storage Accelerators

Subject: Storage | June 13, 2016 - 03:46 AM |
Tagged: XPoint, tlc, Stony Beach, ssd, pcie, Optane, NVMe, mlc, Mansion Beach, M.2, kaby lake, Intel, imft, Brighton Beach, 3DNAND, 3d nand

A recent post over at benchlife.info included a slide of some significant interest to those who have been drooling over XPoint technology:

intel-octane-ssd-roadmap.jpg

For those unaware, XPoint (spoken 'cross-point') is a new type of storage technology that is persistent like NAND Flash but with speeds closer to that of RAM. Intel's brand name for devices implementing XPoint are called Optane.

Starting at the bottom of the slide, we see a new 'System Acceleration' segment with a 'Stony Beach PCIe/NVMe m.2 System Accelerator'. This is likely a new take on Larson Creek, which was a 20GB SLC SSD launched in 2011. This small yet very fast SLC flash was tied into the storage subsystem via Intel's Rapid Storage Technology and acted as a caching tier for HDDs, which comprised most of the storage market at that time. Since Optane excels at random access, even a PCIe 3.0 x2 part could outmaneuver the fastest available NAND, meaning these new System Accelerators could act as a caching tier for Flash-based SSDs or even HDDs. These accelerators can also be good for boosting the performance of mobile products, potentially enabling the use of cheaper / lower performing Flash / HDD for bulk storage.

XPoint.png

Skipping past the mainstream parts for now, enthusiasts can expect to see Brighton Beach and Mansion Beach, which are Optane SSDs linked via PCIe 3x2 or x4, respectively. Not just accelerators, these products should have considerably more storage capacity, which may bring costs fairly high unless either XPoint production is very efficient or if there is also NAND Flash present on those parts for bulk storage (think XPoint cache for NAND Flash all in one product).

We're not sure if or how the recent delays to Kaby Lake will impact the other blocks on the above slide, but we do know that many of the other blocks present are on-track. The SSD 540s and 5400s were in fact announced in Q2, and are Intel's first shipping products using IMFT 3D NAND. Parts not yet seen announced are the Pro 6000p and 600p, which are long overdue m.2 SSDs that may compete against Samsung's 950 Pro. Do note that those are marked as TLC products (purple), though I suspect they may actually be a hybrid TLC+SLC cache solution.

3D-NAND-32-Layer-Stack.png

Going further out on the timeline we naturally see refreshes to all of the Optane parts, but we also see the first mention of second-generation IMFT 3DNAND. As I hinted at in an article back in February, second-gen 3D NAND will very likely *double* the per-die capacity to 512Gbit (64GB) for MLC and 768Gbit (96GB) for TLC. While die counts will be cut in half for a given total SSD capacity, speed reductions will be partially mitigated by this flash having at least four planes per die (most previous flash was double-plane). A plane is an effective partitioning of flash within the die, with each section having its own buffer. Each plane can perform erase/program/read operations independently, and for operations where the Flash is more limiting than the interface (writes), doubling the number of planes also doubles the throughput. In short, doubling planes roughly negates the speed drop caused by halving the die count on an SSD (until you reach the point where controller-to-NAND channels become the bottleneck, of course).

DSC03304.JPG

IMFT XPoint Die shot I caught at the Intel / Micron launch event.

Well, that's all I have for now. I'm excited to see that XPoint is making its way into consumer products (and Storage Accelerators) within the next year's time. I certainly look forward to testing these products, and I hope to show them running faster than they did back at that IDF demo...

Podcast #396 - MSI Gaming Notebooks, Intel Layoffs, the PlayStation Neo and more!

Subject: General Tech | April 21, 2016 - 01:37 PM |
Tagged: podcast, video, msi, Intel, Playstation, ps4, neo, ps4k, phanteks, idf, Optane, XPoint, western digital, nvidia, GTX 1080

PC Perspective Podcast #396 - 04/21/2016

Join us this week as we discuss MSI Gaming Notebooks, Intel Layoffs, the PlayStation Neo and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Lenovo!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!