X points to the spot; in 3D!

Subject: Storage | July 18, 2017 - 07:31 PM |
Tagged: XPoint, srt, rst, Optane Memory, Optane, Intel, hybrid, CrossPoint, cache, 32GB, 16GB

It has been a few months since Al looked at Intel's Optane and its impressive performance and price.  This is why it seems appropriate to revist the 2280 M.2 stick with a PCIe 3.0 x2 interface.  It is not just the performance which is interesting but the technology behind Optane and the limitations.  For anyone looking to utilize Optane is is worth reminding you of the compatibility limitations Intel requires, only Kaby Lake processors with Core i7, i5 or i3 heritage.  If you do qualify already or are planning a system build, you can revisit the performance numbers over at Kitguru.

Intel-Optane-32GB-Memory-Review-on-KitGuru-INTRODUCTION-650.jpg

"Optane is Intel’s brand name for their 3D XPoint memory technology. The first Optane product to break cover was the Optane PC P4800X, a very high-performance SSD aimed at the Enterprise segment. Now we have the second product using the technology, this time aimed at the consumer market segment – the Intel Optane Memory module."

Here are some more Memory articles from around the web:

Memory

Source: Kitguru

Podcast #447 - Intel Optane, Watercooling, Mini ITX AM4, and Intel Optane

Subject: Editorial | April 27, 2017 - 12:19 PM |
Tagged: podcast, Win 3.11, ssd, riotoro, Optane Memory, Optane, Intel, GTX 1080Ti, fsp, evga, EK Supremacy, corsair, biostar, asus, video

PC Perspective Podcast #447 - 04/27/17

Join us for loads of Intel Optane, multiple water cooling parts, a Mini-ITX AM4 board, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Jeremy Hellstrom, Allyn Malventano, Ken Addison, Morry Teitelman

Peanut Gallery: Alex Lustenberg

Program length: 1:50:22

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. Allyn: Factorio fans - 0.15 experimental is out! (new graphics)(dev test img)
    2. Morry: Bayonetta
  4. Closing/outro

 

 

Source:

Spent all your money on a new CPU and couldn't afford an SSD? Intel Optane Memory is here

Subject: Storage | April 24, 2017 - 05:20 PM |
Tagged: XPoint, srt, rst, Optane Memory, Optane, Intel, hybrid, CrossPoint, cache, 32GB, 16GB

At $44 for 16GB or $77 for a 32GB module Intel's Optane memory will cost you less in total for an M.2 SSD, though a significantly higher price per gigabyte.  The catch is that you need to have a Kaby Lake Core system to be able to utilize Optane, which means you are unlikely to be using a HDD.  Al's test show that Optane will also benefit a system using an SSD, reducing latency noticeably although not as significantly as with a HDD.

The Tech Report tested it differently, by sourcing a brand new desktop system with Kaby Lake Core APU that did not ship with an SSD.  Once installed, the Optane drive enabled the system to outpace an affordable 480GB SSD in some scenarios; very impressive for a HDD.  They also did peek at the difference Optane makes when paired with aforementioned affordable SSD in their full review.

requirements.png

"Intel's Optane Memory tech purports to offer most of the responsiveness of an SSD to systems whose primary storage device is a good old hard drive. We put a 32GB stick of Optane Memory to the test to see whether it lives up to Intel's claims."

Here are some more Storage reviews from around the web:

Storage

 

Subject: Storage
Manufacturer: Intel

Introduction, Specifications, and Requirements

Introduction:

170421-115336a.jpg

Finally! Optane Memory sitting in our lab! Sure, it’s not the mighty P4800X we remotely tested over the past month, but this is right here, sitting on my desk. It’s shipping, too, meaning it could be sitting on your desk (or more importantly, in your PC) in just a matter of days.

Intel-3D-Xpoint.png

The big deal about Optane is that it uses XPoint Memory, which has fast-as-lightning (faster, actually) response times of less than 10 microseconds. Compare this to the fastest modern NAND flash at ~90 microseconds, and the differences are going to add up fast. What’s wonderful about these response times is that they still hold true even when scaling an Optane product all the way down to just one or two dies of storage capacity. When you consider that managing fewer dies means less work for the controller, we can see latencies fall even further in some cases (as we will see later).

Read on for our full review of Optane Memory!

Intel Officially Launches Optane Memory, Shows Performance

Subject: Storage | March 27, 2017 - 12:16 PM |
Tagged: XPoint, Optane Memory, Optane, M.2, Intel, cache, 3D XPoint

We are just about to hit two years since Intel and Micron jointly launched 3D XPoint, and there have certainly been a lot of stories about it since. Intel officially launched the P4800X last week, and this week they are officially launching Optane Memory. The base level information about Optane Memory is mostly unchanged, however, we do have a slide deck we are allowed to pick from to point out some of the things we can look forward to once the new tech starts hitting devices you can own.

Optane Memory-6.png

Alright, so this is Optane Memory in a nutshell. Put some XPoint memory on an M.2 form factor device, leverage Intel's SRT caching tech, and you get a 16GB or 32GB cache laid over your system's primary HDD.

Optane Memory-15.png

To help explain what good Optane can do for typical desktop workloads, first we need to dig into Queue Depths a bit. Above are some examples of the typical QD various desktop applications run at. This data is from direct IO trace captures of systems in actual use. Now that we've established that the majority of desktop workloads operate at very low Queue Depths (<= 4), lets see where Optane performance falls relative to other storage technologies:

Optane Memory-22.png

There's a bit to digest in this chart, but let me walk you through it. The ranges tapering off show the percentage of IOs falling at the various Queue Depths, while the green, red, and orange lines ramping up to higher IOPS (right axis) show relative SSD performance at those same Queue Depths. The key to Optane's performance benefit here is that it can ramp up to full performance at very low QD's, while the other NAND-based parts require significantly higher parallel requests to achieve full rated performance. This is what will ultimately lead to a much snappier responsiveness for, well, just about anything hitting the storage. Fun fact - there is actually a HDD on that chart. It's the yellow line that you might have mistook as the horizontal axis :).

Optane Memory-11.png

As you can see, we have a few integrators on board already. Official support requires a 270 series motherboard and Kaby Lake CPU, but it is possible that motherboard makers could backport the required NVMe v1.1 and Intel RST 15.5 requirements into older systems.

Optane Memory-7.png

For those curious, if caching is the only way power users will be able to go with Optane, that's not the case. Atop that pyramid there sits an 'Intel Optane SSD', which should basically be a consumer version of the P4800X. It is sure to be an incredibly fast SSD, but that performance will most definitely come at a price!

We should be testing Optane Memory shortly and will finally have some publishable results of this new tech as soon as we can!

Source: Intel

Intel Officially Kicks Off Optane Launch with SSD DC P4800X

Subject: Storage | March 19, 2017 - 12:21 PM |
Tagged: XPoint, SSD DC P4800X, Optane Memory, Optane, Intel, client, 750GB, 3D XPoint, 375GB, 1.5TB

Intel brought us out to their Folsom campus last week for some in-depth product briefings. Much of our briefing is still under embargo, but the portion that officially lifts this morning is the SSD DC P4800X:

Intel_SSD_4800_FlatFront_OnWhite_RGB_Small.jpg

optane-4.png

optane-9.png

MSRP for the 375GB model is estimated at $1520 ($4/GB), which is rather spendy, but given that the product has shown it can effectively displace RAM in servers, we should be comparing the cost/GB with DRAM and not NAND. It should also be noted this is also nearly half the cost/GB of the X25-M at its launch. Capacities will go all the way up to 1.5TB, and U.2 form factor versions are also on the way.

For those wanting a bit more technical info, the P4800X uses a 7-channel controller, with the 375GB model having 4 dies per channel (28 total). Overprovisioning does not do for Optane what it did for NAND flash, as XPoint can be rewritten at the byte level and does not need to be programmed in (KB) pages and erased in larger (MB) blocks. The only extra space on Optane SSDs is for ECC, firmware, and a small spare area to map out any failed cells.

Those with a keen eye (and calculator) might have noted that the early TBW values only put the P4800X at 30 DWPD for a 3-year period. At the event, Intel confirmed that they anticipate the P4800X to qualify at that same 30 DWPD for a 5-year period by the time volume shipment occurs.

Read on for more about the SSD DC P4800X (and other upcoming products!)