Intel Officially Launches Optane Memory, Shows Performance

Subject: Storage | March 27, 2017 - 12:16 PM |
Tagged: XPoint, Optane Memory, Optane, M.2, Intel, cache, 3D XPoint

We are just about to hit two years since Intel and Micron jointly launched 3D XPoint, and there have certainly been a lot of stories about it since. Intel officially launched the P4800X last week, and this week they are officially launching Optane Memory. The base level information about Optane Memory is mostly unchanged, however, we do have a slide deck we are allowed to pick from to point out some of the things we can look forward to once the new tech starts hitting devices you can own.

Optane Memory-6.png

Alright, so this is Optane Memory in a nutshell. Put some XPoint memory on an M.2 form factor device, leverage Intel's SRT caching tech, and you get a 16GB or 32GB cache laid over your system's primary HDD.

Optane Memory-15.png

To help explain what good Optane can do for typical desktop workloads, first we need to dig into Queue Depths a bit. Above are some examples of the typical QD various desktop applications run at. This data is from direct IO trace captures of systems in actual use. Now that we've established that the majority of desktop workloads operate at very low Queue Depths (<= 4), lets see where Optane performance falls relative to other storage technologies:

Optane Memory-22.png

There's a bit to digest in this chart, but let me walk you through it. The ranges tapering off show the percentage of IOs falling at the various Queue Depths, while the green, red, and orange lines ramping up to higher IOPS (right axis) show relative SSD performance at those same Queue Depths. The key to Optane's performance benefit here is that it can ramp up to full performance at very low QD's, while the other NAND-based parts require significantly higher parallel requests to achieve full rated performance. This is what will ultimately lead to a much snappier responsiveness for, well, just about anything hitting the storage. Fun fact - there is actually a HDD on that chart. It's the yellow line that you might have mistook as the horizontal axis :).

Optane Memory-11.png

As you can see, we have a few integrators on board already. Official support requires a 270 series motherboard and Kaby Lake CPU, but it is possible that motherboard makers could backport the required NVMe v1.1 and Intel RST 15.5 requirements into older systems.

Optane Memory-7.png

For those curious, if caching is the only way power users will be able to go with Optane, that's not the case. Atop that pyramid there sits an 'Intel Optane SSD', which should basically be a consumer version of the P4800X. It is sure to be an incredibly fast SSD, but that performance will most definitely come at a price!

We should be testing Optane Memory shortly and will finally have some publishable results of this new tech as soon as we can!

Source: Intel

Intel Officially Kicks Off Optane Launch with SSD DC P4800X

Subject: Storage | March 19, 2017 - 12:21 PM |
Tagged: XPoint, SSD DC P4800X, Optane Memory, Optane, Intel, client, 750GB, 3D XPoint, 375GB, 1.5TB

Intel brought us out to their Folsom campus last week for some in-depth product briefings. Much of our briefing is still under embargo, but the portion that officially lifts this morning is the SSD DC P4800X:

Intel_SSD_4800_FlatFront_OnWhite_RGB_Small.jpg

optane-4.png

optane-9.png

MSRP for the 375GB model is estimated at $1520 ($4/GB), which is rather spendy, but given that the product has shown it can effectively displace RAM in servers, we should be comparing the cost/GB with DRAM and not NAND. It should also be noted this is also nearly half the cost/GB of the X25-M at its launch. Capacities will go all the way up to 1.5TB, and U.2 form factor versions are also on the way.

For those wanting a bit more technical info, the P4800X uses a 7-channel controller, with the 375GB model having 4 dies per channel (28 total). Overprovisioning does not do for Optane what it did for NAND flash, as XPoint can be rewritten at the byte level and does not need to be programmed in (KB) pages and erased in larger (MB) blocks. The only extra space on Optane SSDs is for ECC, firmware, and a small spare area to map out any failed cells.

Those with a keen eye (and calculator) might have noted that the early TBW values only put the P4800X at 30 DWPD for a 3-year period. At the event, Intel confirmed that they anticipate the P4800X to qualify at that same 30 DWPD for a 5-year period by the time volume shipment occurs.

Read on for more about the SSD DC P4800X (and other upcoming products!)