Phoronix Tests NVIDIA GPUs OpenGL vs Vulkan on Linux

Subject: Graphics Cards | November 5, 2016 - 08:19 PM |
Tagged: linux, DOTA 2, valve, nvidia, vulkan, opengl

Phoronix published interesting benchmark results for OpenGL vs Vulkan on Linux, across a wide spread of thirteen NVIDIA GPUs. Before we begin, the CPU they chose was an 80W Intel Xeon E3-1280 v5, which fits somewhere between the Skylake-based Core i7-6700k and Core i7-6700 (no suffix). You may think that Xeon v5 would be based on Broadwell, but, for some reason, Intel chose the E3-1200 series to be based on Skylake. Regardless, the choice of CPU will come in to play.

They will apparently follow up this article with AMD results.

khronos-vulkan-logo.png

A trend arose throughout the whole article. At 1080p, everything, from the GTX 760 to the GTX 1080, was rendering at ~101 FPS on OpenGL and ~115 FPS on Vulkan. The obvious explanation is that the game is 100% CPU-bound on both APIs, but Vulkan is able to relax the main CPU thread enough to squeeze out about 14% more frames.

The thing is, the Xeon E3-1280 v5 is about as high-end of a mainstream CPU as you can get. It runs the most modern architecture and it can achieve clocks up to 4 GHz on all cores. DOTA 2 can get harsh on the CPU when a lot of units are on screen, but this is a little surprisingly low. Then again, I don't have any experience running DOTA 2 benchmarks, so maybe it's a known thing, or maybe even a Linux-version thing?

Moving on, running the game at 4K, the results get more interesting. In GPU-bound scenarios, NVIDIA's driver shows a fairly high performance gain on OpenGL. Basically all GPUs up to the GTX 1060 run at a higher frame rate in OpenGL, only switching to Vulkan with the GTX 1070 and GTX 1080, where OpenGL hits that 101 FPS ceiling and Vulkan goes a little above.

Again, it will be interesting to see how AMD fairs against this line of products, both in Vulkan and OpenGL. Those will apparently come “soon”.

Source: Phoronix
Manufacturer: PC Perspective

Why Two 4GB GPUs Isn't Necessarily 8GB

We're trying something new here at PC Perspective. Some topics are fairly difficult to explain cleanly without accompanying images. We also like to go fairly deep into specific topics, so we're hoping that we can provide educational cartoons that explain these issues.

This pilot episode is about load-balancing and memory management in multi-GPU configurations. There seems to be a lot of confusion around what was (and was not) possible with DirectX 11 and OpenGL, and even more confusion about what DirectX 12, Mantle, and Vulkan allow developers to do. It highlights three different load-balancing algorithms, and even briefly mentions what LucidLogix was attempting to accomplish almost ten years ago.

pcper-2016-animationlogo-multiGPU.png

If you like it, and want to see more, please share and support us on Patreon. We're putting this out not knowing if it's popular enough to be sustainable. The best way to see more of this is to share!

Open the expanded article to see the transcript, below.

Podcast #387 - ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

Subject: General Tech | February 18, 2016 - 02:16 PM |
Tagged: x16 LTE, vulkan, video, ssd, Samsung, qualcomm, podcast, pb328q, opengl, nvidia, micron, Khronos, gtx 950, asus, apple, 840 evo, 750ti, 750 evo, 3d nand

PC Perspective Podcast #387 - 02/18/2016

Join us this week as we discuss the ASUS PB328Q, Samsung 750 EVO SSD, the release of Vulkan and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Program length: 1:34:18

  1. Week in Review:
  2. 0:35:00 This episode of the PC Perspective Podcast is brought to you by Audible, the world's leading provider of audiobooks with more than 180,000 downloadable titles across all types of literature including fiction, nonfiction, and periodicals. For your free audiobook, go to audible.com/pcper
  3. News items of interest:
  4. 1:07:00 This episode of PC Perspective Podcast is brought to you by Braintree. Even the best mobile app won’t work without the right payments API. That’s where the Braintree v.0 SDK comes in. One amazingly simple integration gives you every way to pay. Try out the sandbox and see for yourself at braintree­payments.com/pcper
  5. Hardware/Software Picks of the Week
  6. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Tessellation Support Expands for Intel's Open Linux Driver

Subject: Graphics Cards | December 29, 2015 - 07:05 AM |
Tagged: opengl, mesa, linux, Intel

The open-source driver for Intel is known to be a little behind on Linux. Because Intel does not provide as much support as they should, the driver still does not support OpenGL 4.0, although that is changing. One large chunk of that API is support for tessellation, which comes from DirectX 11, and recent patches are adding it for supported hardware. Proprietary drivers exist, at least for some platforms, but they have their own issues.

intel-2015-linux-driver-mesa.png

According to the Phoronix article, once the driver succeeds in supporting OpenGL 4.0, it will not be too long to open the path to 4.2. Tessellation is a huge hurdle, partially because it involves adding two whole shading stages to the rendering pipeline. Broadwell GPUs were recently added, but a patch that was committed yesterday will expand that to Ivy Bridge and Haswell. On Windows, Intel is far ahead -- pushing OpenGL 4.4 for Skylake-based graphics, although that platform only has proprietary drivers. AMD and NVIDIA are up to OpenGL 4.5, which is the latest version.

While all of this is happening, Valve is working on an open-source Vulkan driver for Intel on Linux. This API will be released adjacent to OpenGL, and is built for high-performance graphics and compute. (Note that OpenCL is more sophisticated than Vulkan "1.0" will be on the compute side of things.) As nice as it would be to get high-end OpenGL support, especially for developers who want a more simplified structure to communicate to GPUs with, Vulkan will probably be the API that matters most for high-end video games. But again, that only applies to games that are developed for it.

Source: Phoronix

NVIDIA GameWorks VR 1.1 arrives with support for OpenGL VR SLI support and the Oculus SDK

Subject: Graphics Cards | December 21, 2015 - 01:04 PM |
Tagged: GameWorks VR 1.1, nvidia, Oculus, opengl, vive

If you are blessed with the good fortune of already having a VR headset and happen to be running an NVIDIA GPU then there is a new driver you want to grab as soon as you can.  The driver includes a new OpenGL extension that enables NVIDIA SLI support for OpenGL apps that display on an Oculus or Vive.  NVIDIA's PR suggests you can expect your performance to improve 1.7 times, not quite doubling but certainly offering a noticeable performance improvement.  The update is for both GeForce and Quadro cards.

vrlock.jpg

They describe how the update will generate images in their blog post here.  They imply that the changes to your code in order to benefit from this update will be minimal and it will also reduce the CPU overhead required to display the images for the right and left eye.  Read on if you are interested in the developer side of this update, otherwise download your new driver and keep an eye out for application updates that enable support for SLI in VR.

Source: NVIDIA

Who Decided to Call a Lightweight API "Metal"?

Subject: Graphics Cards | October 7, 2015 - 07:01 AM |
Tagged: opengl, metal, apple

Ars Technica took it upon themselves to benchmark Metal in the latest OSX El Capitan release. Even though OpenGL on Mac OSX is not considered to be on par with its Linux counterparts, which is probably due to the driver situation until recently, it pulls ahead of Metal in many situations.

apple-2015-geforce-benchmark-metal.png

Image Credit: Ars Technica

Unlike the other graphics APIs, Metal uses the traditional binding model. Basically, you have a GPU object that you attach your data to, then call one of a handful of “draw” functions to signal the driver. DirectX 12, Vulkan, and Mantle, on the other hand, treat work like commands on queues. The latter model works better in multi-core environments, and it aligns with GPU compute APIs, but the former is easier to port OpenGL and DirectX 11 applications to.

Ars Technica notes that faster GPUs, such as the NVIDIA GeForce GTX 680MX, show higher gains than slower ones. Their “best explanation” is that “faster GPUs can offload more work from the CPU”. That is pretty much true, yes. The new APIs are designed to keep GPUs loaded and working as much as possible, because they really do sit around doing nothing a lot. If you are able to keep a GPU loaded, because it can't accept much load in the first place, then there is little benefit to decreasing CPU load or spreading out across multiple cores.

Granted, there are many ways that benchmarks like these could be incorrectly used. I'll assume that Ars Technica and GFXBench are not making any simple mistakes, though, but it's good to be critical just in case.

Source: Ars Technica

Khronos Group at SIGGRAPH 2015

Subject: Graphics Cards, Processors, Mobile, Shows and Expos | August 10, 2015 - 09:01 AM |
Tagged: vulkan, spir, siggraph 2015, Siggraph, opengl sc, OpenGL ES, opengl, opencl, Khronos

When the Khronos Group announced Vulkan at GDC, they mentioned that the API is coming this year, and that this date is intended to under promise and over deliver. Recently, fans were hoping that it would be published at SIGGRAPH, which officially begun yesterday. Unfortunately, Vulkan has not released. It does hold a significant chunk of the news, however. Also, it's not like DirectX 12 is holding a commanding lead at the moment. The headers were public only for a few months, and the code samples are less than two weeks old.

khronos-2015-siggraph-sixapis.png

The organization made announcements for six products today: OpenGL, OpenGL ES, OpenGL SC, OpenCL, SPIR, and, as mentioned, Vulkan. They wanted to make their commitment clear, to all of their standards. Vulkan is urgent, but some developers will still want the framework of OpenGL. Bind what you need to the context, then issue a draw and, if you do it wrong, the driver will often clean up the mess for you anyway. The briefing was structure to be evident that it is still in their mind, which is likely why they made sure three OpenGL logos greeted me in their slide deck as early as possible. They are also taking and closely examining feedback about who wants to use Vulkan or OpenGL, and why.

As for Vulkan, confirmed platforms have been announced. Vendors have committed to drivers on Windows 7, 8, 10, Linux, including Steam OS, and Tizen (OSX and iOS are absent, though). Beyond all of that, Google will accept Vulkan on Android. This is a big deal, as Google, despite its open nature, has been avoiding several Khronos Group standards. For instance, Nexus phones and tablets do not have OpenCL drivers, although Google isn't stopping third parties from rolling it into their devices, like Samsung and NVIDIA. Direct support of Vulkan should help cross-platform development as well as, and more importantly, target the multi-core, relatively slow threaded processors of those devices. This could even be of significant use for web browsers, especially in sites with a lot of simple 2D effects. Google is also contributing support from their drawElements Quality Program (dEQP), which is a conformance test suite that they bought back in 2014. They are going to expand it to Vulkan, so that developers will have more consistency between devices -- a big win for Android.

google-android-opengl-es-extensions.jpg

While we're not done with Vulkan, one of the biggest announcements is OpenGL ES 3.2 and it fits here nicely. At around the time that OpenGL ES 3.1 brought Compute Shaders to the embedded platform, Google launched the Android Extension Pack (AEP). This absorbed OpenGL ES 3.1 and added Tessellation, Geometry Shaders, and ASTC texture compression to it. It was also more tension between Google and cross-platform developers, feeling like Google was trying to pull its developers away from Khronos Group. Today, OpenGL ES 3.2 was announced and includes each of the AEP features, plus a few more (like “enhanced” blending). Better yet, Google will support it directly.

Next up are the desktop standards, before we finish with a resurrected embedded standard.

OpenGL has a few new extensions added. One interesting one is the ability to assign locations to multi-samples within a pixel. There is a whole list of sub-pixel layouts, such as rotated grid and Poisson disc. Apparently this extension allows developers to choose it, as certain algorithms work better or worse for certain geometries and structures. There were probably vendor-specific extensions for a while, but now it's a ratified one. Another extension allows “streamlined sparse textures”, which helps manage data where the number of unpopulated entries outweighs the number of populated ones.

OpenCL 2.0 was given a refresh, too. It contains a few bug fixes and clarifications that will help it be adopted. C++ headers were also released, although I cannot comment much on it. I do not know the state that OpenCL 2.0 was in before now.

And this is when we make our way back to Vulkan.

khronos-2015-siggraph-spirv.png

SPIR-V, the code that runs on the GPU (or other offloading device, including the other cores of a CPU) in OpenCL and Vulkan is seeing a lot of community support. Projects are under way to allow developers to write GPU code in several interesting languages: Python, .NET (C#), Rust, Haskell, and many more. The slide lists nine that Khronos Group knows about, but those four are pretty interesting. Again, this is saying that you can write code in the aforementioned languages and have it run directly on a GPU. Curiously missing is HLSL, and the President of Khronos Group agreed that it would be a useful language. The ability to cross-compile HLSL into SPIR-V means that shader code written for DirectX 9, 10, 11, and 12 could be compiled for Vulkan. He expects that it won't take long for a project to start, and might already be happening somewhere outside his Google abilities. Regardless, those who are afraid to program in the C-like GLSL and HLSL shading languages might find C# and Python to be a bit more their speed, and they seem to be happening through SPIR-V.

As mentioned, we'll end on something completely different.

khronos-2015-siggraph-sc.png

For several years, the OpenGL SC has been on hiatus. This group defines standards for graphics (and soon GPU compute) in “safety critical” applications. For the longest time, this meant aircraft. The dozens of planes (which I assume meant dozens of models of planes) that adopted this technology were fine with a fixed-function pipeline. It has been about ten years since OpenGL SC 1.0 launched, which was based on OpenGL ES 1.0. SC 2.0 is planned to launch in 2016, which will be based on the much more modern OpenGL ES 2 and ES 3 APIs that allow pixel and vertex shaders. The Khronos Group is asking for participation to direct SC 2.0, as well as a future graphics and compute API that is potentially based on Vulkan.

The devices that this platform intends to target are: aircraft (again), automobiles, drones, and robots. There are a lot of ways that GPUs can help these devices, but they need a good API to certify against. It needs to withstand more than an Ouya, because crashes could be much more literal.

Who Should Care? Thankfully, Many People

The Khronos Group has made three announcements today: Vulkan (their competitor to DirectX 12), OpenCL 2.1, and SPIR-V. Because there is actually significant overlap, we will discuss them in a single post rather than splitting them up. Each has a role in the overall goal to access and utilize graphics and compute devices.

khronos-Vulkan-700px-eventpage.png

Before we get into what everything is and does, let's give you a little tease to keep you reading. First, Khronos designs their technologies to be self-reliant. As such, while there will be some minimum hardware requirements, the OS pretty much just needs to have a driver model. Vulkan will not be limited to Windows 10 and similar operating systems. If a graphics vendor wants to go through the trouble, which is a gigantic if, Vulkan can be shimmed into Windows 8.x, Windows 7, possibly Windows Vista despite its quirks, and maybe even Windows XP. The words “and beyond” came up after Windows XP, but don't hold your breath for Windows ME or anything. Again, the further back in Windows versions you get, the larger the “if” becomes but at least the API will not have any “artificial limitations”.

Outside of Windows, the Khronos Group is the dominant API curator. Expect Vulkan on Linux, Mac, mobile operating systems, embedded operating systems, and probably a few toasters somewhere.

On that topic: there will not be a “Vulkan ES”. Vulkan is Vulkan, and it will run on desktop, mobile, VR, consoles that are open enough, and even cars and robotics. From a hardware side, the API requires a minimum of OpenGL ES 3.1 support. This is fairly high-end for mobile GPUs, but it is the first mobile spec to require compute shaders, which are an essential component of Vulkan. The presenter did not state a minimum hardware requirement for desktop GPUs, but he treated it like a non-issue. Graphics vendors will need to be the ones making the announcements in the end, though.

Before we go further, some background is necessary. Read on for that and lots more!

glNext Initiative Unveiled at GDC 2015

Subject: Graphics Cards, Shows and Expos | February 4, 2015 - 03:33 AM |
Tagged: OpenGL Next, opengl, glnext, gdc 2015, GDC

The first next-gen, released graphics API was Mantle, which launched a little while after Battlefield 4, but the SDK is still invite-only. The DirectX 12 API quietly launched with the recent Windows 10 Technical Preview, but no drivers, SDK, or software (that we know about) are available to the public yet. The Khronos Group has announced their project, and that's about it currently.

opengl_logo.jpg

According to Develop Magazine, the GDC event listing, and participants, the next OpenGL (currently called “glNext initiative”) will be unveiled at GDC 2015. The talk will be presented by Valve, but it will also include Epic Games, who was closely involved in DirectX 12 with Unreal Engine, Oxide Games and EA/DICE, who were early partners with AMD on Mantle, and Unity, who recently announced support for DirectX 12 when it launches with Windows 10. Basically, this GDC talk includes almost every software developer that came out in early support of either DirectX 12 or Mantle, plus Valve. Off the top of my head, I can only think of FutureMark as unlisted. On the other hand, while they will obviously have driver support from at least one graphics vendor, none are listed. Will we see NVIDIA? Intel? AMD? All of the above? We don't know.

When I last discussed the next OpenGL initiative, it was attempting to parse the naming survey to figure out bits of the technology itself. As it turns out, the talk claims to go deep into the API, with demos, examples, and “real-world applications running on glNext drivers and hardware”. If this information makes it out (and some talks remain private unfortunately although this one looks public) then we should know more about it than what we know about any competing API today. Personally, I am hoping that they spent a lot of effort on the GPGPU side of things, sort-of building graphics atop it rather than having them be two separate entities. This would be especially good if it could be sandboxed for web applications.

This could get interesting.

Source: GDC

Graphics Developers: Help Name Next Generation OpenGL

Subject: General Tech, Graphics Cards | January 16, 2015 - 10:37 PM |
Tagged: Khronos, opengl, OpenGL ES, webgl, OpenGL Next

The Khornos Group probably wants some advice from graphics developers because they ultimately want to market to them, as the future platform's success depends on their applications. If you develop games or other software (web browsers?) then you can give your feedback. If not, then it's probably best to leave responses to its target demographic.

opengl_logo.jpg

As for the questions themselves, first and foremost they ask if you are (or were) an active software developer. From there, they ask you to score your opinion on OpenGL, OpenGL ES, and WebGL. They then ask whether you value “Open” or “GL” in the title. They then ask you whether you feel like OpenGL, OpenGL ES, and WebGL are related APIs. They ask how you learn about the Khronos APIs. Finally, they directly ask you for name suggestions and any final commentary.

Now it is time to (metaphorically) read tea leaves. The survey seems written primarily to establish whether developers consider OpenGL, OpenGL ES, and WebGL as related libraries, and to gauge their overall interest in each. If you look at the way OpenGL ES has been developing, it has slowly brought mobile graphics into a subset of desktop GPU features. It is basically an on-ramp to full OpenGL.

We expect that, like Mantle and DirectX 12, the next OpenGL initiative will be designed around efficiently loading massively parallel processors, with a little bit of fixed-function hardware for common tasks, like rasterizing triangles into fragments. The name survey might be implying that the Next Generation OpenGL Initiative is intended to be a unified platform, for high-end, mobile, and even web. Again, modern graphics APIs are based on loading massively parallel processors as directly as possible.

If you are a graphics developer, the Khronos Group is asking for your feedback via their survey.