Podcast #476 - Scythe Coolers, Huawei MateBook E, EA for better or worse, and more!

Subject: General Tech | November 16, 2017 - 01:41 PM |
Tagged: video, youtube, wolfenstein, vesa, scythe, phanteks, nvidia shield, nvidia, NVDIMM, micron, matebook, Huawei, fsp, ea, podcast

PC Perspective Podcast #476 - 11/16/17

Join us for discussion on Intel with AMD graphics, Raja's move to Intel, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, Allyn Malventano

Peanut Gallery: Alex Lustenberg, Ken Addison

Program length: 1:44:19

Podcast topics of discussion:
  1. Week in Review:
    1. 0:06:15 Podcast 475 Recap
  2. 0:37:30 AD BREAK HelloFresh
  3. News items of interest:
  4. Hardware/Software Picks of the Week
  5. Closing/outro

Source:

Micron Launches 32GB NVDIMM-N - Intel Announces 3D XPoint NVDIMM

Subject: Storage | November 15, 2017 - 09:59 PM |
Tagged: NVDIMM, XPoint, 3D XPoint, 32GB, NVDIMM-N, NVDIMM-F, NVDIMM-P, DIMM

We're finally starting to see NVDIMM materialize beyond the unobtanium. Micron recently announced 32GB NVDIMM-N:

micron-nvdimm.png

These come with 32GB of DRAM plus 64GB of SLC NAND flash.

micron-nvdimm-modes.png

These are in the NVDIMM-N form factor and can offer some very impressive latency improvements over other non-volatile storage methods.

Next up is Intel, who recently presented at the UBS Global Technology Conference:

XPoint_DIMM.png

We've seen Intel's Optane in many different forms, and now it looks like we finally have a date for 3D XPoint DIMMs - 2nd half of 2018! There are lots of hurdles to overcome as the JEDEC spec is not yet finalized (and might not be by the time this launches). Motherboard and BIOS support also needs to be more widely adopted for this to take off as well.

Don't expect this to be in your desktop machine anytime soon, but one can hope!

Press blast for the Micron 32GB NVDIMM-N appears after the break.

NVDIMM: Nonvolatile... Not NVIDIA

Subject: General Tech, Memory, Systems | February 10, 2013 - 03:44 AM |
Tagged: NVDIMM, micron, IMFT NAND, imft

So a RAM chip, a NAND module, and an “ultracapacitor” walk into stick...

This week Micron released a press blast for technology called, “NVDIMM”. The goal is to create memory modules which perform as quickly as DRAM but can persist without power. At this point you could probably guess the acronym: Nonvolatile Dual In-line Memory Module. It has been around for a few years now, but it is in the news now so let's chat about it.

I often like to play the game, “Was this named by an engineer or a marketer?” You can typically tell who was responsible for naming something by gauging how literally it breaks down into a simple meaning versus not having any apparent meaning at all. A good example of an engineer name is UHF, which breaks down into ultra-high frequency because it's higher than VHF, very-high frequency. A good example of a marketing name would be something like “Centrino”, which sounds like the biggest little penny-slot machine in the world. I would quite comfortable guessing that NVDIMM was named by an engineer.

NVDIMM.jpg

This is AgigA Tech's module, who provides the capacitors for Micron and their NVDIMMs.

The actual makeup of NVDIMMs is quite sensible: DIMMs are fast but die when the power goes out. You could prevent the power from going out but it takes quite a lot of battery life to keep a computer online for extended periods of time. NAND Flash is quite slow, relative to DIMMs, in normal operation but can persist without power for very long periods of time. Also, modern-day capacitors are efficient and durable enough to keep DIMMs powered for long enough to be copied to flash memory.

As such, if the power goes out: memory is dumped to flash on the same chip. When power is restored, DIMMs get reloaded and continue on their merry way.

According to the Micron press release, the first NVDIMM was demonstrated last November at SC12. That module contained twice as much NAND as it did DIMM memory: 8GB of Flash for 4GB of RAM. Micron did not specify why they required having that much extra Flash memory although my gut instinct is to compensate for write wearing problems. A two-fold increase to offset NAND that had just one too many write operations seems like quite a lot compared to consumer drives. That said, SSDs do not have to weather half of their whole capacity being written to each time the computer shuts down.

Who knows, double-provisioning might even be too little in practice.

Source: Micron