Subject: Memory
Manufacturer: Crucial

Crucial Ballistix Sport LT DDR4-3200 Memory

Shoppers of desktop memory are probably very familiar with Crucial, a brand that has been in business since 1996 and became synonymous with their online Memory Advisor tool (originally the Crucial Memory Selector when that was introduced back in 1998). Beyond offering compatible memory adhering to JEDEC standards for home and business machines Crucial has embraced the enthusiast segment, and since 2004 the Ballistix brand has been a competitor in this space.

Crucial_Sport_LT_3200_1.jpg

Today we’re taking a look at new Ballistix memory in the form of a dual-channel DDR4 desktop kit that offers 3200 MT/s speeds out of the box via XMP 2.0, and has the potential to overclock further. Crucial sent along both 16GB and 32GB kits, and we are focusing on the 16GB kit in this review.

Product highlights for the Ballistix Sport LT series from Crucial:

  • Speeds start at 2400 MT/s
  • Faster speeds and responsiveness than standard DDR4 memory
  • Ideal for gamers and performance enthusiasts
  • Multi-channel memory architecture maximizes data rates
  • Digital camo heat spreader available in white, gray and red
  • Easy plug-and-play installation
  • Intel XMP 2.0 profiles for easy configuration
  • AMD Ryzen Ready
  • Optimized for the latest Intel 300 Series platforms
  • Limited lifetime warranty

These UDIMMs are part of the Sport LT series, offering a smaller overall footprint while still providing some impressive performance numbers via XMP 2.0 profiles. We tested it out in an Intel system and then moved on to have some fun with memory overclocking in a Ryzen 5 2400G system with integrated Vega graphics. Read on to see how it performed, and if faster memory can make a noticeable difference.

Crucial Ballistix Sport LT 3200 MHz Specifications
Series Ballistix Sport
Model Number 16GB Kit: BLS2K8G4D32AESBK
32GB Kit: BLS2K16G4D32AESB
Speed 3200 MT/s (PC4-25600)
Timings 16-18-18
Voltage 1.35V
Form Factor UDIMM
ECC Non-ECC
DIMM Type Unbuffered
Configuration 2048Meg x 64
Warranty Limited Lifetime

Current Pricing and Availability:

Continue reading our review of the Crucial Ballistix Sport LT DDR4-3200 memory

STH Goes Under the Heat Spreader with Intel Optane DC Persistent Memory

Subject: Storage | December 20, 2018 - 10:34 AM |
Tagged: storage, ram, Optane DC Persistent Memory, Optane, micron, memory, Intel, Hynix, flash, ddr4, 3D XPoint

ServeTheHome got up close and personal with Optane DC Persistent Memory in an article posted yesterday, removing the heat spreaders and taking a look at (and several photos of) the components within.

Intel-Optane-v-DDR4-DIMM-Underneath-Controller-Side.jpg

Intel Optane Persistent Memory DDR4 module, front view (via ServeTheHome)

"We are going to take a 128GB Intel Optane Persistent Memory DDR4 module, and open it up. Until now, Intel Optane DC Persistent Memory has mostly been photographed with its big black heat spreader. We ended up with a handful of modules not from Intel, nor a system provider, but a handful to use."

Among their notes we have this interesting find, as SK.Hynix is the provider of the module's DRAM, rather than Micron:

"On the other side of the module from the Optane controller is a DDR4 DRAM module, this one from SK.Hynix. Model number H5AN4G8NAFR-TFC. We are not sure why Intel would not use a Micron module here since Micron has been the manufacturing partner for 3D XPoint thus far."

Intel-Optane-v-DDR4-DIMM-Underneath-Controller-Side-2.jpg

Intel Optane Persistent Memory DDR4 module, rear view (via ServeTheHome)

The full article is available here from STH and includes an embed of this video covering their de-lidding and chip exploration process:

Source: ServeTheHome

Is it a good idea to focus on huge tracts of RAM?

Subject: General Tech | December 19, 2018 - 06:11 PM |
Tagged: gaming, memory

TechSpot took a brief look at a wide variety of modern games to see just how much RAM they make use of.  With benchmarks run on a system with 8GB, 16GB and then 32GB they give you insight into just how much RAM is enough to handle these games.  With the price of memory still high, it is worth considering if it makes more sense to purchase just enough RAM for this generation of games and upgrade as the cost of DIMMs slowly declines.  Take a peek to see how much memory your favourite titles make use of.

CoD.jpg

"Today we're looking into how much RAM you need to play the latest and greatest gaming titles. About this time each year we set on a memory capacity quest and last year's expedition lead us to conclude that for gamers 4GB is out, 8GB was the minimum, 16GB is the sweet spot and 32GB is overkill."

Here is some more Tech News from around the web:

Tech Talk

Source: TechSpot

Introduction, How PCM Works, Reading, Writing, and Tweaks

I’ve seen a bit of flawed logic floating around related to discussions about 3D XPoint technology. Some are directly comparing the cost per die to NAND flash (you can’t - 3D XPoint likely has fewer fab steps than NAND - especially when compared with 3D NAND). Others are repeating a bunch of terminology and element names without taking the time to actually explain how it works, and far too many folks out there can't even pronounce it correctly (it's spoken 'cross-point'). My plan is to address as much of the confusion as I can with this article, and I hope you walk away understanding how XPoint and its underlying technologies (most likely) work. While we do not have absolute confirmation of the precise material compositions, there is a significant amount of evidence pointing to one particular set of technologies. With Optane Memory now out in the wild and purchasable by folks wielding electron microscopes and mass spectrometers, I have seen enough additional information come across to assume XPoint is, in fact, PCM based.

XPoint.png

XPoint memory. Note the shape of the cell/selector structure. This will be significant later.

While we were initially told at the XPoint announcement event Q&A that the technology was not phase change based, there is overwhelming evidence to the contrary, and it is likely that Intel did not want to let the cat out of the bag too early. The funny thing about that is that both Intel and Micron were briefing on PCM-based memory developments five years earlier, and nearly everything about those briefings lines up perfectly with what appears to have ended up in the XPoint that we have today.

comparison.png

Some die-level performance characteristics of various memory types. source

The above figures were sourced from a 2011 paper and may be a bit dated, but they do a good job putting some actual numbers with the die-level performance of the various solid state memory technologies. We can also see where the ~1000x speed and ~1000x endurance comparisons with XPoint to NAND Flash came from. Now, of course, those performance characteristics do not directly translate to the performance of a complete SSD package containing those dies. Controller overhead and management must take their respective cuts, as is shown with the performance of the first generation XPoint SSD we saw come out of Intel:

gap.png

The ‘bridging the gap’ Latency Percentile graph from our Intel SSD DC P4800X review.
(The P4800X comes in at 10us above).

There have been a few very vocal folks out there chanting 'not good enough', without the basic understanding that the first publicly available iteration of a new technology never represents its ultimate performance capabilities. It took NAND flash decades to make it into usable SSDs, and another decade before climbing to the performance levels we enjoy today. Time will tell if this holds true for XPoint, but given Micron's demos and our own observed performance of Intel's P4800X and Optane Memory SSDs, I'd argue that it is most certainly off to a good start!

XPoint Die.jpg

A 3D XPoint die, submitted for your viewing pleasure (click for larger version).

You want to know how this stuff works, right? Read on to find out!

Intel Quietly Launches Official Optane Memory Site

Subject: Storage | February 15, 2017 - 08:58 PM |
Tagged: XPoint, ssd, Optane, memory, Intel, cache

We've been hearing a lot about Intel's upcoming Optane memory over the past two years, but the information had all been in the form of press announcements and leaked roadmap slides.

optane-memory-marquee-16x9.png.rendition.intel_.web_.1072.603.png

We now have an actual Optane landing page on the Intel site that discusses the first iteration of 'Intel Optane Memory', which appears to be the 8000p Series that we covered last October and saw as an option on some upcoming Lenovo laptops. The site does not cover the upcoming enterprise parts like the 375GB P4800X, but instead, focuses on the far smaller 16GB and 32GB 'System Accelerator' M.2 modules.

intel-optane-memory-8000p.jpg

Despite using only two lanes of PCIe 3.0, these modules turn in some impressive performance, but the capacities when using only one or two (16GB each) XPoint dies preclude an OS install. Instead, these will be used, presumably in combination with a newer form of Intel's Rapid Storage Technology driver, as a caching layer meant as an HDD accelerator:

While the random write performance and endurance of these parts blow any NAND-based SSD out of the water, the 2-lane bottleneck holds them back compared to high-end NVMe NAND SSDs, so we will likely see this first consumer iteration of Intel Optane Memory in OEM systems equipped with hard disks as their primary storage. A very quick 32GB caching layer should help speed things up considerably for the majority of typical buyers of these types of mobile and desktop systems, while still keeping the total cost below that for a decent capacity NAND SSD as primary storage. Hey, if you can't get every vendor to switch to pure SSD, at least you can speed up that spinning rust a bit, right?

Source: Intel

Microwave your RAM to make it faster?

Subject: General Tech | October 13, 2016 - 03:19 PM |
Tagged: terahertz, research, memory

You have probably recently heard of terahertz radiation used to scan physical objects, be it the T-Rays at airports or the the researchers at MIT who are reading books through the covers.  There is more recent of news on researchers utilizing the spectrum between frequencies of 0.3THz and 3THz, this time pertaining to RAM cycles and the possibility of increasing the speed at which RAM can flip between a 0 and 1.  In theory a terahertz electric field could flip bits 1000 times faster than the electromagnetic process currently used in flash memory. This could also be used in the new prototype RAM technology we have seen, such as MRAM, PRAM or STT-RAM.  This is still a long way off but a rather interesting read, especially if you can follow the links from The Inquirer to the Nature submission.

EM Spectrum.png

"Using the prototypical antiferromagnet thulium orthoferrite (TmFeO3), we demonstrate that resonant terahertz pumping of electronic orbital transitions modifies the magnetic anisotropy for ordered Fe3+ spins and triggers large-amplitude coherent spin oscillations," the researchers helpfully explained."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

Existing Corsair Water Coolers Support (At Least) Skylake

Subject: Cases and Cooling, Memory | August 3, 2015 - 08:10 PM |
Tagged: corsair, dd4, ddr3l, memory, PSU, hydro, h100, H100i GTX, H110, H110i GTX

Skylake is coming up, with rumors pointing to a release at Gamescom in Germany, which is August 5th through August 9th. Beyond seeing the retail packaging, we are beginning to see to companies open up about how their products relate to the new architecture and chipset.

Corsair put up a blog post a few days ago to explain how their memory, water coolers, and power supplies interact with Skylake and Z170. On the PSU side, nothing has changed since Haswell. In terms for memory, DDR3L is supported with Skylake under certain motherboards, but users should look to DDR4.

None of the above should be new information.

corsair-2015-h110i-gtx.jpg

What might be new information, though, is that Skylake supports existing LGA-1150 cooler mounts. This means that the Corsair Hydro series of sealed CPU liquid coolers will support Skylake without modification. This is where Corsair's blog stops but, knowing Intel's typical release structure, this likely means that the story will not change for Kaby Lake or Cannonlake, either. These three architectures are expected to use the same socket, which should mean the cooler is the same too.

So your aftermarket cooler should have quite a bit of legs, even with the stock mounts.

Source: Corsair

Breaking: Intel and Micron announce 3D XPoint Technology - 1000x Faster Than NAND

Subject: Storage | July 28, 2015 - 12:41 PM |
Tagged: XPoint, non-volatile RAM, micron, memory, Intel

Everyone that reads SSD reviews knows that NAND Flash memory comes with advantages and disadvantages. The cost is relatively good as compared to RAM, and the data remains even with power removed (non-volatile), but there are penalties in the relatively slow programming (write) speeds. To help solve this, today Intel and Micron jointly launched a new type of memory technology.

XPoint.png

XPoint (spoken 'cross point') is a new class of memory technology with some amazing characteristics. 10x the density (vs. DRAM), 1000x the speed, and most importantly, 1000x the endurance as compared to current NAND Flash technology.

2303661_3D_XPoint_Die.jpg

128Gb XPoint memory dies, currently being made by Intel / Micron, are of a similar capacity to current generation NAND dies. This is impressive for a first generation part, especially since it is physically smaller than a current gen NAND die of the same capacity.

Intel stated that the method used to store the bits is vastly different from what is being used in NAND flash memory today. Intel stated that the 'whole cell' properties change as a bit is being programmed, and that the fundamental physics involved is different, and that it is writable in small amounts (NAND flash must be erased in large blocks). While they did not specifically state it, it looks to be phase change memory (*edit* at the Q&A Intel stated this is not Phase Change). The cost of this technology should end up falling somewhere between the cost of DRAM and NAND Flash.

IMFT.jpg

3D XPoint memory is already being produced at the Intel / Micron Flash Technology plant at Lehi, Utah. We toured this facility a few years ago.

Intel and Micron stated that this technology is coming very soon. 2016 was stated as a launch year, and there was a wafer shown to us on stage:

DSC03273.JPG

You know I'm a sucker for good wafer / die photos. As soon as this session breaks I'll get a better shot!

There will be more analysis to follow on this exciting new technology, but for now I need to run to a Q&A meeting with the engineers who worked on it. Feel free to throw some questions in the comments and I'll answer what I can!

*edit* - here's a die shot:

DSC03304.JPG

Added note - this wafer was manufactured on a 20nm process, and consists of a 2-layer matrix. Future versions should scale with additional layers to achieve higher capacities.

Press blast after the break.

Source: Intel

How about that High Bandwidth Memory

Subject: Graphics Cards | May 19, 2015 - 03:51 PM |
Tagged: memory, high bandwidth memory, hbm, Fiji, amd

Ryan and the rest of the crew here at PC Perspective are excited about AMD's new memory architecture and the fact that they will be first to market with it.  However as any intelligent reader is wont to look for; a second opinion on the topic is worth finding.  Look no further than The Tech Report who have also been briefed on AMD's new memory architecture.  Read on to see what they learned from Joe Macri and their thoughts on the successor to GDDR5 and HBM2 which is already in the works.

stack-diagram.jpg

"HBM is the next generation of memory for high-bandwidth applications like graphics, and AMD has helped usher it to market. Read on to find out more about HBM and what we've learned about the memory subsystem in AMD's next high-end GPU, code-named Fiji."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Author:
Manufacturer: AMD

High Bandwidth Memory

UPDATE: I have embedded an excerpt from our PC Perspective Podcast that discusses the HBM technology that you might want to check out in addition to the story below.

The chances are good that if you have been reading PC Perspective or almost any other website that focuses on GPU technologies for the past year, you have read the acronym HBM. You might have even seen its full name: high bandwidth memory. HBM is a new technology that aims to turn the ability for a processor (GPU, CPU, APU, etc.) to access memory upside down, almost literally. AMD has already publicly stated that its next generation flagship Radeon GPU will use HBM as part of its design, but it wasn’t until today that we could talk about what HBM actually offers to a high performance processor like Fiji. At its core HBM drastically changes how the memory interface works, how much power is required for it and what metrics we will use to compare competing memory architectures. AMD and its partners started working on HBM with the industry more than 7 years ago, and with the first retail product nearly ready to ship, it’s time to learn about HBM.

We got some time with AMD’s Joe Macri, Corporate Vice President and Product CTO, to talk about AMD’s move to HBM and how it will shift the direction of AMD products going forward.

The first step in understanding HBM is to understand why it’s needed in the first place. Current GPUs, including the AMD Radeon R9 290X and the NVIDIA GeForce GTX 980, utilize a memory technology known as GDDR5. This architecture has scaled well over the past several GPU generations but we are starting to enter the world of diminishing returns. Balancing memory performance and power consumption is always a tough battle; just ask ARM about it. On the desktop component side we have much larger power envelopes to work inside but the power curve that GDDR5 is on will soon hit a wall, if you plot it far enough into the future. The result will be either drastically higher power consuming graphics cards or stalling performance improvements of the graphics market – something we have not really seen in its history.

01-gddr5powergraph.jpg

While it’s clearly possible that current and maybe even next generation GPU designs could still have depended on GDDR5 as the memory interface, the move to a different solution is needed for the future; AMD is just making the jump earlier than the rest of the industry.

Continue reading our look at high bandwidth memory (HBM) architecture!!