Author:
Subject: General Tech
Manufacturer: ARM

New Products for 2017

PC Perspective was invited to Austin, TX on May 11 and 12 to participate in ARM’s yearly tech day.  Also invited were a handful of editors and analysts that cover the PC and mobile markets.  Those folks were all pretty smart, so it is confusing as to why they invited me.  Perhaps word of my unique talent of screenshoting PDFs into near-unreadable JPGs preceded me?  Regardless of the reason, I was treated to two full days of in-depth discussion of the latest generation of CPU and GPU cores, 10nm test chips, and information on new licensing options.

A73_formfactors.png

Today ARM is announcing their next CPU core with the introduction of the Cortex-A73. They are also unwrapping the latest Mali-G71 graphics technology.  Other technologies such as the CCI-550 interconnect are also revealed.  It is a busy and important day for ARM, especially in light of Intel seemingly abandoning the sub-milliwatt mobile market.

A73_boost.png

Cortex-A73

ARM previously announced the Cortex-A72 in February, 2015.  Since that time it has been seen in most flagship mobile devices in late 2015 and throughout 2016.  The market continues to evolve, and as such the workloads and form factors have pushed ARM to continue to develop and improve their CPU technology.

A73_perf_comp_A72.png

The Sofia Antipolis, France design group is behind the new A73.  The previous several core architectures had been developed by the Cambridge group.  As such, the new design differs quite dramatically from the previous A72.  I was actually somewhat taken aback by the differences in the design philosophy of the two groups and the changes between the A72 and A73, but the generational jumps we have seen in the past make a bit more sense to me.

The marketplace is constantly changing when it comes to workloads and form factors.  More and more complex applications are being ported to mobile devices, including hot technologies like AR and VR.  Other technologies include 3D/360 degree video, greater than 20 MP cameras, and 4K/8K displays and their video playback formats.  Form factors on the other hand have continued to decrease in size, especially in overall height.  We have relatively large screens on most premium devices, but the designers have continued to make these phones thinner and thinner throughout the years.  This has put a lot of pressure on ARM and their partners to increase performance while keeping TDPs in check, and even reducing them so they more adequately fit in the TDP envelope of these extremely thin devices.

A73_power_comp_A72.png

Click here to continue reading about ARM's Tech Day 2016!

MWC 2016: MediaTek Announces Helio P20 True Octa-Core SoC

Subject: Processors, Mobile | February 22, 2016 - 11:11 AM |
Tagged: TSMC, SoC, octa-core, MWC 2016, MWC, mediatek, Mali-T880, LPDDR4X, Cortex-A53, big.little, arm

MediaTek might not be well-known in the United States, but the company has been working to expand from China, where it had a 40% market share as of June 2015, into the global market. While 2015 saw the introduction of the 8-core Helio P10 and the 10-core helio X20 SoCs, the company continues to expand their lineup, today announcing the Helio P20 SoC.

Helio_P20.jpg

There are a number of differences between the recent SoCs from MediaTek, beginning with the CPU core configuration. This new Helio P20 is a “True Octa-Core” design, but rather than a big.LITTLE configuration it’s using 8 identically-clocked ARM Cortex-A53 cores at 2.3 GHz. The previous Helio P10 used a similar CPU configuration, though clocks were limited to 2.0 GHz with that SoC. Conversely, the 10-core Helio X20 uses a tri-cluster configuration, with 2x ARM Cortex-A72 cores running at 2.5 GHz, along with a typical big.LITTLE arrangement (4x Cortex-A53 cores at 2.0 Ghz and 4x Cortex-A53 cores at 1.4 GHz).

Another change affecting MediaTek’s new SoC and he industry at large is the move to smaller process nodes. The Helio P10 was built on 28 nm HPM, and this new P20 moves to 16 nm FinFET. Just as with the Helio P10 and Helio X20 (a 20 nm part) this SoC is produced at TSMC using their 16FF+ (FinFET Plus) technology. This should provide up to “40% higher speed and 60% power saving” compared to the company’s previous 20 nm process found in the Helio X20, though of course real-world results will have to wait until handsets are available to test.

The Helio P20 also takes advantage of LPDDR4X, and is “the world’s first SoC to support low power double data rate random access memory” according to MediaTek. The company says this new memory provides “70 percent more bandwidth than the LPDDR3 and 50 percent power savings by lowering supply voltage to 0.6v”. Graphics are powered by ARM’s high-end Mali T880 GPU, clocked at an impressive 900 MHz. And all-important modem connectivity includes CAT6 LTE with 2x carrier aggregation for speeds of up to 300 Mbps down, 50 Mbps up. The Helio P20 also supports up to 4k/30 video decode with H.264/265 support, and the 12-bit dual camera ISP supports up to 24 MP sensors.

Specs from MediaTek:

  • Process: 16nm
  • Apps CPU: 8x Cortex-A53, up to 2.3GHz
  • Memory: Up to 2 x LPDDR4X 1600MHz (up to 6GB) + 1x LPDDR3 933Mhz (up to 4GB) + eMMC 5.1
  • Camera: Up to 24MP at 24FPS w/ZSD, 12bit Dual ISP, 3A HW engine, Bayer & Mono sensor support
  • Video Decode: Up to 4Kx2K 30fps H.264/265
  • Video Encode: Up to 4Kx2K 30fps H.264
  • Graphics: Mali T-880 MP2 900MHz
  • Display: FHD 1920x1080 60fps. 2x DSI for dual display
  • Modem: LTE FDD TDD R.11 Cat.6 with 2x20 CA. C2K SRLTE. L+W DSDS support
  • Connectivity: WiFiac/abgn (with MT6630). GPS/Glonass/Beidou/BT/FM.
  • Audio: 110db SNR & -95db THD

It’s interesting to see SoC makers experiment with less complex CPU designs after a generation of multi-cluster (big.LITTLE) SoCs, as even the current flagship Qualcomm SoC, the Snapdragon 820, has reverted to a straight quad-core design. The P20 is expected to be in shipping devices by the second half of 2016, and we will see how this configuration performs once some devices using this new P20 SoC are in the wild.

Full press release after the break:

Source: MediaTek
Author:
Subject: Processors
Manufacturer: ARM

ARM Releases Top Cortex Design to Partners

ARM has an interesting history of releasing products.  The company was once in the shadowy background of the CPU world, but with the explosion of mobile devices and its relevance in that market, ARM has had to adjust how it approaches the public with their technologies.  For years ARM has announced products and technology, only to see it ship one to two years down the line.  It seems that with the increased competition in the marketplace from Apple, Intel, NVIDIA, and Qualcomm ARM is now pushing to license out its new IP in a way that will enable their partners to achieve a faster time to market.

arm_01.jpg

The big news this time is the introduction of the Cortex A72.  This is a brand new design that will be based on the ARMv8-A instruction set.  This is a 64 bit capable processor that is also backwards compatible with 32 bit applications programmed for ARMv7 based processors.  ARM does not go into great detail about the product other than it is significantly faster than the previous Cortex-A15 and Cortex-A57.

The previous Cortex-A15 processors were announced several years back and made their first introduction in late 2013/early 2014.  These were still 32 bit processors and while they had good performance for the time, they did not stack up well against the latest A8 SOCs from Apple.  The A53 and A57 designs were also announced around two years ago.  These are the first 64 bit designs from ARM and were meant to compete with the latest custom designs from Apple and Qualcomm’s upcoming 64 bit part.  We are only now just seeing these parts make it into production, and even Qualcomm has licensed the A53 and A57 designs to insure a faster time to market for this latest batch of next-generation mobile devices.

arm_02.jpg

We can look back over the past five years and see that ARM is moving forward in announcing their parts and then having their partners ship them within a much shorter timespan than we were used to seeing.  ARM is hoping to accelerate the introduction of its new parts within the next year.

Click here to continue reading about ARM's latest releases!