Manufacturer: RockIt Cool

Introduction

Introduction

With the introduction of the Intel Kaby Lake processors and Intel Z270 chipset, unprecedented overclocking became the norm. The new processors easily hit a core speed of 5.0GHz with little more than CPU core voltage tweaking. This overclocking performance increase came with a price tag. The Kaby Lake processor runs significantly hotter than previous generation processors, a seeming reversal in temperature trends from previous generation Intel CPUs. At stock settings, the individual cores in the CPU were recording in testing at hitting up to 65C - and that's with a high performance water loop cooling the processor. Per reports from various enthusiasts sites, Intel used inferior TIM (thermal interface material) in between the CPU die and underside of the CPU heat spreader, leading to increased temperatures when compared with previous CPU generations (in particular Skylake). This temperature increase did not affect overclocking much since the CPU will hit 5.0GHz speed easily, but does impact the means necessary to hit those performance levels.

Like with the previous generation Haswell CPUs, a few of the more adventurous enthusiasts used known methods in an attempt to address the heat concerns of the Kaby Lake processor be delidding the processor. Unlike in the initial days of the Haswell processor, the delidding process is much more stream-lined with the availability of delidding kits from several vendors. The delidding process still involves physically removing the heat spreader from the CPU, and exposing the CPU die. However, instead of cooling the die directly, the "safer" approach is to clean the die and underside of the heat spreader, apply new TIM (thermal interface material), and re-affix the heat spreader to the CPU. Going this route instead of direct-die cooling is considered safer because no additional or exotic support mechanisms are needed to keep the CPU cooler from crushing your precious die. However, calling it safe is a bit of an over-statement, you are physically separating the heat spreader from the CPU surface and voiding your CPU warranty at the same time. Although if that was a concern, you probably wouldn't be reading this article in the first place.

Continue reading our Kaby Lake Relidding article!

NETGEAR Issues Non-Urgent Recall of Some Enterprise Devices

Subject: Networking, Storage | March 4, 2017 - 11:57 PM |
Tagged: netgear, Intel, Avoton, recall

While this is more useful for our readers in the IT field, NETGEAR has issued a (non-urgent) recall on sixteen models of Rackmount NAS and Wireless Controller devices. It looks like the reason for this announcement is to maintain customer relations. They are planning to reach out to customers “over the next several months” to figure out a solution for them. Note the relaxed schedule.

netgear-2017-RN3130.png

The affected model numbers are:

  1. RN3130
  2. RN3138
  3. WC7500 Series:
    • WC7500-10000S, WC7500-100INS, WC7500-100PRS, WB7520-10000S, WB7520-100NAS, WB7530-10000S, WB7530-100NAS
  4. WC7600 Series:
    • WC7600-20000S, WC7600-200INS, WC7600-200PRS, WB7620-10000S, WB7620-100NAS, WB7630-10000S, WB7630-100NAS

The Register noticed that each of these devices contain Intel’s Avoton-based Atom processors. You may remember our coverage from last month, which also sourced The Register, that states these chips may fail to boot over time. NETGEAR is not blaming Intel for their recall, but gave The Register a wink and a nudge when pressed: “We’re not naming the vendor but it sounds as if you’ve done your research.”

Again, while this news applies to enterprise customers and it’s entirely possible that Intel (if it actually is the Avoton long-term failure issue) is privately supporting them, it’s good to see NETGEAR being honest and upfront. Problems will arise in the tech industry; often (albeit not always) what matters more is how they are repaired.

Source: NETGEAR
Author:
Subject: Processors
Manufacturer: AMD

What Makes Ryzen Tick

We have been exposed to details about the Zen architecture for the past several Hot Chips conventions as well as other points of information directly from AMD.  Zen was a clean sheet design that borrowed some of the best features from the Bulldozer and Jaguar architectures, as well as integrating many new ideas that had not been executed in AMD processors before.  The fusion of ideas from higher performance cores, lower power cores, and experience gained in APU/GPU design have all come together in a very impressive package that is the Ryzen CPU.

zen_01.jpg

It is well known that AMD brought back Jim Keller to head the CPU group after the slow downward spiral that AMD entered in CPU design.  While the Athlon 64 was a tremendous part for the time, the subsequent CPUs being offered by the company did not retain that leadership position.  The original Phenom had problems right off the bat and could not compete well with Intel’s latest dual and quad cores.  The Phenom II shored up their position a bit, but in the end could not keep pace with the products that Intel continued to introduce with their newly minted “tic-toc” cycle.  Bulldozer had issues  out of the gate and did not have performance numbers that were significantly greater than the previous generation “Thuban” 6 core Phenom II product, much less the latest Intel Sandy Bridge and Ivy Bridge products that it would compete with.

AMD attempted to stop the bleeding by iterating and evolving the Bulldozer architecture with Piledriver, Steamroller, and Excavator.  The final products based on this design arc seemed to do fine for the markets they were aimed at, but certainly did not regain any marketshare with AMD’s shrinking desktop numbers.  No matter what AMD did, the base architecture just could not overcome some of the basic properties that impeded strong IPC performance.

52_perc_design_opt.png

The primary goal of this new architecture is to increase IPC to a level consistent to what Intel has to offer.  AMD aimed to increase IPC per clock by at least 40% over the previous Excavator core.  This is a pretty aggressive goal considering where AMD was with the Bulldozer architecture that was focused on good multi-threaded performance and high clock speeds.  AMD claims that it has in fact increased IPC by an impressive 54% from the previous Excavator based core.  Not only has AMD seemingly hit its performance goals, but it exceeded them.  AMD also plans on using the Zen architecture to power products from mobile products to the highest TDP parts offered.

 

The Zen Core

The basis for Ryzen are the CCX modules.  These modules contain four Zen cores along with 8 MB of shared L3 cache.  Each core has 64 KB of L1 I-cache and 32 KB of D-cache.  There is a total of 512 KB of L2 cache.  These caches are inclusive.  The L3 cache acts as a victim cache which partially copies what is in L1 and L2 caches.  AMD has improved the performance of their caches to a very large degree as compared to previous architectures.  The arrangement here allows the individual cores to quickly snoop any changes in the caches of the others for shared workloads.  So if a cache line is changed on one core, other cores requiring that data can quickly snoop into the shared L3 and read it.  Doing this allows the CPU doing the actual work to not be interrupted by cache read requests from other cores.

ccx.png

l2_cache.png

l3_cache.png

Each core can handle two threads, but unlike Bulldozer has a single integer core.  Bulldozer modules featured two integer units and a shared FPU/SIMD.  Zen gets rid of CMT for good and we have a single integer and FPU units for each core.  The core can address two threads by utilizing AMD’s version of SMT (symmetric multi-threading).  There is a primary thread that gets higher priority while the second thread has to wait until resources are freed up.  This works far better in the real world than in how I explained it as resources are constantly being shuffled about and the primary thread will not monopolize all resources within the core.

Click here to read more about AMD's Zen architecture in Ryzen!

Linked Multi-GPU Arrives... for Developers

The Khronos Group has released the Vulkan 1.0.42.0 specification, which includes experimental (more on that in a couple of paragraphs) support for VR enhancements, sharing resources between processes, and linking similar GPUs. This spec was released alongside a LunarG SDK and NVIDIA drivers, which are intended for developers, not gamers, that fully implement these extensions.

I would expect that the most interesting feature is experimental support for linking similar GPUs together, similar to DirectX 12’s Explicit Linked Multiadapter, which Vulkan calls a “Device Group”. The idea is that the physical GPUs hidden behind this layer can do things like share resources, such as rendering a texture on one GPU and consuming it in another, without the host code being involved. I’m guessing that some studios, like maybe Oxide Games, will decide to not use this feature. While it’s not explicitly stated, I cannot see how this (or DirectX 12’s Explicit Linked mode) would be compatible in cross-vendor modes. Unless I’m mistaken, that would require AMD, NVIDIA, and/or Intel restructuring their drivers to inter-operate at this level. Still, the assumptions that could be made with grouped devices are apparently popular with enough developers for both the Khronos Group and Microsoft to bother.

microsoft-dx12-build15-linked.png

A slide from Microsoft's DirectX 12 reveal, long ago.

As for the “experimental” comment that I made in the introduction... I was expecting to see this news around SIGGRAPH, which occurs in late-July / early-August, alongside a minor version bump (to Vulkan 1.1).

I might still be right, though.

The major new features of Vulkan 1.0.42.0 are implemented as a new classification of extensions: KHX. In the past, vendors, like NVIDIA and AMD, would add new features as vendor-prefixed extensions. Games could query the graphics driver for these abilities, and enable them if available. If these features became popular enough for multiple vendors to have their own implementation of it, a committee would consider an EXT extension. This would behave the same across all implementations (give or take) but not be officially adopted by the Khronos Group. If they did take it under their wing, it would be given a KHR extension (or added as a required feature).

The Khronos Group has added a new layer: KHX. This level of extension sits below KHR, and is not intended for production code. You might see where this is headed. The VR multiview, multi-GPU, and cross-process extensions are not supposed to be used in released video games until they leave KHX status. Unlike a vendor extension, the Khronos Group wants old KHX standards to drop out of existence at some point after they graduate to full KHR status. It’s not something that NVIDIA owns and will keep it around for 20 years after its usable lifespan just so old games can behave expectedly.

khronos-group-logo.png

How long will that take? No idea. I’ve already mentioned my logical but uneducated guess a few paragraphs ago, but I’m not going to repeat it; I have literally zero facts to base it on, and I don’t want our readers to think that I do. I don’t. It’s just based on what the Khronos Group typically announces at certain trade shows, and the length of time since their first announcement.

The benefit that KHX does bring us is that, whenever these features make it to public release, developers will have already been using it... internally... since around now. When it hits KHR, it’s done, and anyone can theoretically be ready for it when that time comes.

Author:
Subject: Editorial
Manufacturer: AMD

Zen vs. 40 Years of CPU Development

Zen is nearly upon us.  AMD is releasing its next generation CPU architecture to the world this week and we saw CPU demonstrations and upcoming AM4 motherboards at CES in early January.  We have been shown tantalizing glimpses of the performance and capabilities of the “Ryzen” products that will presumably fill the desktop markets from $150 to $499.  I have yet to be briefed on the product stack that AMD will be offering, but we know enough to start to think how positioning and placement will be addressed by these new products.

zen_01.jpg

To get a better understanding of how Ryzen will stack up, we should probably take a look back at what AMD has accomplished in the past and how Intel has responded to some of the stronger products.  AMD has been in business for 47 years now and has been a major player in semiconductors for most of that time.  It really has only been since the 90s where AMD started to battle Intel head to head that people have become passionate about the company and their products.

The industry is a complex and ever-shifting one.  AMD and Intel have been two stalwarts over the years.  Even though AMD has had more than a few challenging years over the past decade, it still moves forward and expects to compete at the highest level with its much larger and better funded competitor.  2017 could very well be a breakout year for the company with a return to solid profitability in both CPU and GPU markets.  I am not the only one who thinks this considering that AMD shares that traded around the $2 mark ten months ago are now sitting around $14.

 

AMD Through 1996

AMD became a force in the CPU industry due to IBM’s requirement to have a second source for its PC business.  Intel originally entered into a cross licensing agreement with AMD to allow it to produce x86 chips based on Intel designs.  AMD eventually started to produce their own versions of these parts and became a favorite in the PC clone market.  Eventually Intel tightened down on this agreement and then cancelled it, but through near endless litigation AMD ended up with a x86 license deal with Intel.

AMD produced their own Am286 chip that was the first real break from the second sourcing agreement with Intel.  Intel balked at sharing their 386 design with AMD and eventually forced the company to develop its own clean room version.  The Am386 was released in the early 90s, well after Intel had been producing those chips for years. AMD then developed their own version of the Am486 which then morphed into the Am5x86.  The company made some good inroads with these speedy parts and typically clocked them faster than their Intel counterparts (eg. Am486 40 MHz and 80 MHz vs. the Intel 486 DX33 and DX66).  AMD priced these points lower so users could achieve better performance per dollar using the same chipsets and motherboards.

zen_02.jpg

Intel released their first Pentium chips in 1993.  The initial version was hot and featured the infamous FDIV bug.  AMD made some inroads against these parts by introducing the faster Am486 and Am5x86 parts that would achieve clockspeeds from 133 MHz to 150 MHz at the very top end.  The 150 MHz part was very comparable in overall performance to the Pentium 75 MHz chip and we saw the introduction of the dreaded “P-rating” on processors.

There is no denying that Intel continued their dominance throughout this time by being the gold standard in x86 manufacturing and design.  AMD slowly chipped away at its larger rival and continued to profit off of the lucrative x86 market.  William Sanders III set the bar higher about where he wanted the company to go and he started on a much more aggressive path than many expected the company to take.

Click here to read the rest of the AMD processor editorial!

Flipped your lid and want to reattach it?

Subject: Processors | February 23, 2017 - 11:07 AM |
Tagged: Intel, Skylake, kaby lake, delidding, relidding

[H]ard|OCP have been spending a lot of time removing the integrated heatspreader on recent Intel chips to see what effect it has on temperatures under load.  Along the way we picked up tips on 3D printing a delidder and thankfully there was not much death along the way.  One of their findings from this testing was that it can be beneficial to reattach the lid after changing out the thermal interface material and they have published a guide on how to do so.   You will need a variety of tools, from Permatex Red RTV to razor blades, by way of isopropyl alcohol and syringes; as well as a steady hand.  You may have many of the items on hand already and none are exceptionally expensive.

1487134654mHmb7IfVSy_1_10_l.jpg

"So we have covered a lot about taking your shiny new Intel CPUs apart lately, affectionately known as "delidding." What we have found in our journey is that "relidding" the processor might be an important part of the process as well. But what if you do not have a fancy tool that will help you put Humpty back together again?"

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

Intel Details Optane Memory System Requirements

Subject: General Tech, Storage | February 21, 2017 - 07:14 PM |
Tagged: Optane, kaby lake, Intel, 3D XPoint

Intel has announced that its Optane memory will require an Intel Kaby Lake processor to function. While previous demonstrations of the technology used an Intel Skylake processor, it appears this configuration will not be possible on the consumer versions of the technology.

Intel Optane App Accelerator.jpg

Further, the consumer application accelerator drives will also require a 200-series chipset motherboard, and either a M.2 2280-S1-B-M or M.2 2242-S1-B-M connector with two or four PCI-E lanes. Motherboards will have to support NVMe v1.1 and Intel RST (Rapid Storage Technology) 15.5 or newer.

It is not clear why Intel is locking Optane technology to Kaby Lake and whether it is due to technical limitations that they were not able to resolve to keep Skylake compatible or if it is just a matter of not wanting to support the older platform and focus on its new Kaby Lake processors. As such, Kaby Lake is now required if you want UHD Blu Ray playback and Optane 3D XPoint SSDs.

What are your thoughts on this latest bit of Optane news? Has Intel sweetened the pot enough to encourage upgrade hold outs?

Also Read: 

 

Source: Bit-Tech

Podcast #437 - EVGA iCX, Zen Architecture, Optane, and more!

Subject: Editorial | February 16, 2017 - 01:36 PM |
Tagged: Zen, Z170, webkit, webgpu, podcast, Optane, nvidia, Intel, icx, evga, ECS, crucial, Blender, anidees, amd

PC Perspective Podcast #437 - 02/16/17

Join us for EVGA iCX, Zen Architechure, Intel Optane, new NVIDIA and AMD driver releases, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Allyn Malventano, Ken Addison, Josh Walrath, Jermey Hellstrom

Program length: 1:32:21

Source:

Intel Quietly Launches Official Optane Memory Site

Subject: Storage | February 15, 2017 - 08:58 PM |
Tagged: XPoint, ssd, Optane, memory, Intel, cache

We've been hearing a lot about Intel's upcoming Optane memory over the past two years, but the information had all been in the form of press announcements and leaked roadmap slides.

optane-memory-marquee-16x9.png.rendition.intel_.web_.1072.603.png

We now have an actual Optane landing page on the Intel site that discusses the first iteration of 'Intel Optane Memory', which appears to be the 8000p Series that we covered last October and saw as an option on some upcoming Lenovo laptops. The site does not cover the upcoming enterprise parts like the 375GB P4800X, but instead, focuses on the far smaller 16GB and 32GB 'System Accelerator' M.2 modules.

intel-optane-memory-8000p.jpg

Despite using only two lanes of PCIe 3.0, these modules turn in some impressive performance, but the capacities when using only one or two (16GB each) XPoint dies preclude an OS install. Instead, these will be used, presumably in combination with a newer form of Intel's Rapid Storage Technology driver, as a caching layer meant as an HDD accelerator:

While the random write performance and endurance of these parts blow any NAND-based SSD out of the water, the 2-lane bottleneck holds them back compared to high-end NVMe NAND SSDs, so we will likely see this first consumer iteration of Intel Optane Memory in OEM systems equipped with hard disks as their primary storage. A very quick 32GB caching layer should help speed things up considerably for the majority of typical buyers of these types of mobile and desktop systems, while still keeping the total cost below that for a decent capacity NAND SSD as primary storage. Hey, if you can't get every vendor to switch to pure SSD, at least you can speed up that spinning rust a bit, right?

Source: Intel

Vulkan is not extinct, in fact it might be about to erupt

Subject: General Tech | February 15, 2017 - 01:29 PM |
Tagged: vulkan, Intel, Intel Skylake, kaby lake

The open source API, Vulkan, just received a big birthday present from Intel as they added official support on their Skylake and Kaby Lake CPUs under Windows 10.  We have seen adoption of this API from a number of game engine designers, Unreal Engine and Unity have both embraced it, the latest DOOM release was updated to support Vulkan and there is even a Nintendo 64 renderer which runs on it.  Ars Technica points out that both AMD and NVIDIA have been supporting this API for a while and that we can expect to see Android implementations of this close to the metal solution in the near future.

khronos-2016-vulkanlogo2.png

"After months in beta, Intel's latest driver for its integrated GPUs (version 15.45.14.4590) adds support for the low-overhead Vulkan API for recent GPUs running in Windows 10. The driver supports HD and Iris 500- and 600-series GPUs, the ones that ship with 6th- and 7th-generation Skylake and Kaby Lake processors."

Here is some more Tech News from around the web:

Tech Talk

Source: Ars Technica