Computex 2017: ASUS Announces Prime and TUF Intel X299 Motherboards

Subject: Motherboards | May 30, 2017 - 08:00 AM |
Tagged: x299, VROC, skylake-x, raid, NVMe, LiveDash, kaby lake-x, Intel, HEDT, computex 2017, asus, 802.11ad

Alongside the announcement of Intel's Core i9 Skylake-X and Kaby Lake-X CPUs, ASUS has unveiled details of their X299 motherboards. While we've already taken a look updates to the Republic of Gamers line of products, ASUS also released details about their "Prime" and "TUF" X299 products.

Prime_x299_Deluxe_3D-3-AURA.jpg

ASUS PRIME

The Prime line of motherboards from ASUS are their entry-level options for any given platform. However just because they are the lowest cost boards doesn't mean that they are lacking in features.

All X299 Prime motherboards feature 3-way SLI thanks to the additional PCIe lanes available in the X299 platform (supported 44 lane CPUs are required). These available x16 slots are all reinforced with ASUS SafeSlot technology to help prevent heavy GPUs from damaging your motherboard.

The new Prime motherboards also feature the Realtek S1220A which we first saw on ASUS's Z270 products. ASUS claims that the S1220A paired with high-quality audio components on board help produce an onboard sound that rivals some dedicated sound cards.

Additionally, all X299 boards feature RGB LED headers with Aura Sync compatibility for maximum customizability. 

For the storage-focused, Intel VROC technology found on ASUS's X299 boards will allow for high-speed M.2 NVMe SSD RAIDs without being bottlenecked by chipset bandwidth, unlike on the Z270 platform.

Though the use of an add-in card users will be able to RAID multiple M.2 SSDs into a bootable array, utilizing full bandwidth from the available CPU PCIe lanes. ASUS even says that you can link multiple of these VROC cards together! 

In addition to these features, the Prime X299-Deluxe adds some very exciting features

Prime_x299_Deluxe_WiFI+MB-2.jpg

Wireless networking has seen an enhancement with the adoption of integrated 802.11ad Wi-Fi. This brand new wireless technology capable of 4.6Gbps transfer speeds uses spectrum in the 60Ghz range. While these high-speed radio waves cannot penetrate surfaces like walls, for applications like super fast file transfer between PCs in one room, or high-quality video streaming to wireless displays this should be ideal.

Along with Intel VROC support, the Prime X299-Deluxe has dual onboard M.2 Slots and a single U.2 Slot for high-speed storage options.

The new LiveDash display is a small OLED panel on the motherboard that allows you to display system statistics as well as custom animations and text for additional customization.

Prime_x299_Deluxe_TBEX3.jpg

In addition to the features on the motherboard, ASUS is including their ThunderboltEX 3 expansion card with the Prime X299-Deluxe so that owners can utilize Thunderbolt 3 technology with up to 40Gbps of bandwidth.

ASUS TUF X299

The TUF line has always been focused on ultimate reliability and durability. This is accomplished with high-quality components and more stringent testing standards than other products. 

TUF X299 MARK1_KV1_AURA.png

The ASUS TUF X299 Mark 1 is the all-new flagship motherboard for the TUF line. Redesigned Thermal Armor design helps to streamline airflow across the motherboard while also providing cooling to the onboard M.2 slot.

The Fortifier backplate uses a carefully shaped metal plate to stiffen the board to prevent warping. A removable GPU holder is also supplied to help support the weight of heavy graphics cards.

The new version of ASUS TUF Detective software allows users to perform diagnostics wirelessly over an included USB Bluetooth adapter rather than depending on a wired connection like the previous implementation.

TUF X299 MARK2_2D_AURA.png

The TUF X299 Mark 2 removes the Thermal Armor and Fortifier, but retains all of the great reliability and durability aspects of the TUF Mark 2,

ASUS Prime X299-Deluxe, Prime X299-A and TUF X299 Mark 1 motherboards will be available at leading resellers in North America starting in late June

Source: ASUS
Author:
Manufacturer: Intel

An abundance of new processors

During its press conference at Computex 2017, Intel has officially announced the upcoming release of an entire new family of HEDT (high-end desktop) processors along with a new chipset and platform to power it. Though it has only been a year since Intel launched the Core i7-6950X, a Broadwell-E processor with 10-cores and 20-threads, it feels like it has been much longer than that. At the time Intel was accused of “sitting” on the market – offering only slight performance upgrades and raising prices on the segment with a flagship CPU cost of $1700. With can only be described as scathing press circuit, coupled with a revived and aggressive competitor in AMD and its Ryzen product line, Intel and its executive teams have decided it’s time to take enthusiasts and high end prosumer markets serious, once again.

slides-3.jpg

Though the company doesn’t want to admit to anything publicly, it seems obvious that Intel feels threatened by the release of the Ryzen 7 product line. The Ryzen 7 1800X was launched at $499 and offered 8 cores and 16 threads of processing, competing well in most tests against the likes of the Intel Core i7-6900X that sold for over $1000. Adding to the pressure was the announcement at AMD’s Financial Analyst Day that a new brand of processors called Threadripper would be coming this summer, offering up to 16 cores and 32 threads of processing for that same high-end consumer market. Even without pricing, clocks or availability timeframes, it was clear that AMD was going to come after this HEDT market with a brand shift of its EPYC server processors, just like Intel does with Xeon.

The New Processors

Normally I would jump into the new platform, technologies and features added to the processors, or something like that before giving you the goods on the CPU specifications, but that’s not the mood we are in. Instead, let’s start with the table of nine (9!!) new products and work backwards.

  Core i9-7980XE Core i9-7960X Core i9-7940X Core i9-7920X Core i9-7900X Core i7-7820X Core i7-7800X Core i7-7740X Core i5-7640X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Kaby Lake-X Kaby Lake-X
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 4/8 4/4
Base Clock ? ? ? ? 3.3 GHz 3.6 GHz 3.5 GHz 4.3 GHz 4.0 GHz
Turbo Boost 2.0 ? ? ? ? 4.3 GHz 4.3 GHz 4.0 GHz 4.5 GHz 4.2 GHz
Turbo Boost Max 3.0 ? ? ? ? 4.5 GHz 4.5 GHz N/A N/A N/A
Cache 16.5MB (?) 16.5MB (?) 16.5MB (?) 16.5MB (?) 13.75MB 11MB 8.25MB 8MB 6MB
Memory Support ? ? ? ? DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Dual Channel
DDR4-2666 Dual Channel
PCIe Lanes ? ? ? ? 44 28 28 16 16
TDP 165 watts (?) 165 watts (?) 165 watts (?) 165 watts (?) 140 watts 140 watts 140 watts 112 watts 112 watts
Socket 2066 2066 2066 2066 2066 2066 2066 2066 2066
Price $1999 $1699 $1399 $1199 $999 $599 $389 $339 $242

There is a lot to take in here. The most interesting points are that Intel plans to one-up AMD Threadripper by offering an 18-core processor but it also wants to change the perception of the X299-class platform by offering lower price, lower core count CPUs like the quad-core, non-HyperThreaded Core i5-7640X. We also see the first ever branding of Core i9.

Intel only provided detailed specifications up to the Core i9-7900X, a 10-core / 20-thread processor with a base clock of 3.3 GHz and a Turbo peak of 4.5 GHz using the new Turbo Boost Max Technology 3.0. It sports 13.75MB of cache thanks to an updated cache configuration, includes 44 lanes of PCIe 3.0, an increase of 4 lanes over Broadwell-E, quad-channel DDR4 memory up to 2666 MHz and a 140 watt TDP. The new LGA2066 socket will be utilized. Pricing for this CPU is set at $999, which is interesting for a couple of reasons. First, it is $700 less than the starting MSRP of the 10c/20t Core i7-6950X from one year ago; obviously a big plus. However, there is quite a ways UP the stack, with the 18c/36t Core i9-7980XE coming in at a cool $1999.

intel1.jpg

The next CPU down the stack is compelling as well. The Core i7-7820X is the new 8-core / 16-thread HEDT option from Intel, with similar clock speeds to the 10-core above it, save the higher base clock. It has 11MB of L3 cache, 28-lanes of PCI Express (4 higher than Broadwell-E) but has a $599 price tag. Compared to the 8-core 6900K, that is ~$400 lower, while the new Skylake-X part iteration includes a 700 MHz clock speed advantage. That’s huge, and is a direct attack on the AMD Ryzen 7 1800X that sells for $499 today and cut Intel off at the knees this March. In fact, the base clock of the Core i7-7820X is only 100 MHz lower than the maximum Turbo Boost clock of the Core i7-6900K!

Continue reading about the Intel Core i9 series announcement!

Computex 2017: Intel 8th Gen Core Processors 30% Faster than 7th Gen

Subject: Processors | May 30, 2017 - 03:00 AM |
Tagged: Intel, computex 2017, computex, coffee lake, 8th generation core

During it's keynote at Computex today, Intel announced the high performane Skylake-X and Kaby Lake-X platforms with CPU core counts as high as 18 (!!) but also gave a brief mention of its upcoming Coffee Lake product, the 8th Generation Core product family.

To quote directly from the Intel press information:

"As we move toward the next generation of computing, Intel also shared its commitment to deliver 8th generational Intel® Core™ processor-based devices by the holiday season, boasting more than 30 percent improvement in performance versus the 7th Gen Intel® Core™ processor."

That is quite the claim, but let's dive into the details.

Based on SYSmark* 2014 v1.5 (Windows Desktop Application Performance). Comparing 7th Gen i7-7500U, PL1=15W TDP, 2C4T, Turbo up to 3.5GHz, Memory: 2x4GB DDR4-2133, vs. Estimates for 8th Gen Core i7: PL1=15W TDP, 4C8T, Turbo up to 4 GHz, Memory: 2x4GB DDR4-2400, Storage: Intel® SSD, Windows* 10 RS2. Power policy assumptions: AC mode. Note: Kaby Lake U42 performance estimates are Pre-Silicon and are subject to change. Pre-Si projections have +/- 7% margin of error.

In a more readable format:

  8th Gen
Core i7
7th Gen
Core i7-7500U
Code name Coffee Lake Kaby Lake
Process Tech 14nm Double Plus Good 14nm+
Cores/Threads 4/8 2/4
Base Clock ? 2.7 GHz
Turbo Clock 4.0 GHz 3.5 GHz
TDP 15 watt 15 watt
Memory 8GB 8GB
Memory Clock 2400 MHz 2133 MHz

The 30% performance claim comes from both a doubling of core and thread count (2- to 4-cores) but also a 500 MHz higher peak Turbo Clock, going from Kaby Lake to Coffee Lake. The testing was done using SYSmark 2014 v1.5, a benchmark that is very burst-centric and is comparable to common productivity tasks. Even with a 15% increase in peak clock speed and a 2x core/thread count, Intel is still able to maintain a 15 watt TDP with this CPU.

intelcoffeelake.jpg

While we might at first expect much larger performance gains with those clock and core count differences, keep in mind that SYSmark as a test has never scaled in such a way. We don't yet know what other considerations might be in place for the 8th Generation Core processor platforms, and how they might affect performance for single of multi-threaded applications.

Intel has given us very little information today on the Coffee Lake designs, but it seems we'll know all about this platform before the end of the year.

Source: Intel

Computex 2017: Dell Updates XPS 27 AIO with RX 570 for VR

Subject: Systems | May 29, 2017 - 07:01 AM |
Tagged: RX 570, kaby lake, Intel, dell, AIO, amd

Dell has refreshed their XPS 27 All-in-one with two new models. Both of these have their GPU upgraded to the AMD RX 570 and their CPU refreshed to the Core i7-7700, which Dell highlights for its VR readiness. The difference between the two is that the lower-end model, $1999.99 USD, has a non-touch screen and a 2TB hard drive backed by 32GB of M.2 SATA SSD cache; the higher-end model, $2649.99 USD, has a touch screen and a 512GB, PCIe SSD, which makes it a quarter of the storage, but much faster. Both are loaded with 16GB of RAM, but they can be configured up to 64GB.

dell-2017-xps27aoi.jpg

About two weeks ago, Kyle Wiggers of Digital Trends had some hands-on time with the refreshed all-in-one. He liked the vibrant, 4K panel that was apparently calibrated to AdobeRGB (although I can’t find any listing for how much it covers). The purpose of that color space is to overlap with both non-HDR video and with the gamut of commercial printers, which is useful for multiple types of publishers.

The Dell XPS 27 All-in-one is available now.

Source: Dell

Intel Persistent Memory Using 3D XPoint DIMMs Expected Next Year

Subject: General Tech, Memory, Storage | May 26, 2017 - 10:14 PM |
Tagged: XPoint, Intel, HPC, DIMM, 3D XPoint

Intel recently teased a bit of new information on its 3D XPoint DIMMs and launched its first public demonstration of the technology at the SAP Sapphire conference where SAP’s HANA in-memory data analytics software was shown working with the new “Intel persistent memory.” Slated to arrive in 2018, the new Intel DIMMs based on the 3D XPoint technology developed by Intel and Micron will work in systems alongside traditional DRAM to provide a pool of fast, low latency, and high density nonvolatile storage that is a middle ground between expensive DDR4 and cheaper NVMe SSDs and hard drives. When looking at the storage stack, the storage density increases along with latency as it gets further away from the CPU. The opposite is also true, as storage and memory gets closer to the processor, bandwidth increases, latency decreases, and costs increase per unit of storage. Intel is hoping to bridge the gap between system DRAM and PCI-E and SATA storage.

Intel persistent memory DIMM.jpg

According to Intel, system RAM offers up 10 GB/s per channel and approximately 100 nanoseconds of latency. 3D XPoint DIMMs will offer 6 GB/s per channel and about 250 nanoseconds of latency. Below that is the 3D XPoint-based NVMe SSDs (e.g. Optane) on a PCI-E x4 bus where they max out the bandwidth of the bus at ~3.2 GB/s and 10 microseconds of latency. Intel claims that non XPoint NVMe NAND solid state drives have around 100 microsecomds of latency, and of course, it gets worse from there when you go to NAND-based SSDs or even hard drives hanging of the SATA bus.

Intel’s new XPoint DIMMs have persistent storage and will offer more capacity that will be possible and/or cost effective with DDR4 DRAM. In giving up some bandwidth and latency, enterprise users will be able to have a large pool of very fast storage for storing their databases and other latency and bandwidth sensitive workloads. Intel does note that there are security concerns with the XPoint DIMMs being nonvolatile in that an attacker with physical access could easily pull the DIMM and walk away with the data (it is at least theoretically possible to grab some data from RAM as well, but it will be much easier to grab the data from the XPoint sticks. Encryption and other security measures will need to be implemented to secure the data, both in use and at rest.

Intel Slide XPoint Info.jpg

Interestingly, Intel is not positioning the XPoint DIMMs as a replacement for RAM, but instead as a supplement. RAM and XPoint DIMMs will be installed in different slots of the same system and the DDR4 RAM will be used for the OS and system critical applications while the XPoint pool of storage will be used for storing data that applications will work on much like a traditional RAM disk but without needing to load and save the data to a different medium for persistent storage and offering a lot more GBs for the money.

While XPoint is set to arrive next year along with Cascade Lake Xeons, it will likely be a couple of years before the technology takes off. Supporting it is going to require hardware and software support for the workstations and servers as well as developers willing to take advantage of it when writing their specialized applications. Fortunately, Intel started shipping the memory modules to its partners for testing earlier this year. It is an interesting technology and the DIMM solution and direct CPU interface will really let the 3D XPoint memory shine and reach its full potential. It will primarily be useful for the enterprise, scientific, and financial industries where there is a huge need for faster and lower latency storage that can accommodate massive (multiple terabyte+) data sets that continue to get larger and more complex. It is a technology that likely will not trickle down to consumers for a long time, but I will be ready when it does. In the meantime, I am eager to see what kinds of things it will enable the big data companies and researchers to do! Intel claims it will not only be useful at supporting massive in-memory databases and accelerating HPC workloads but for things like virtualization, private clouds, and software defined storage.

What are your thoughts on this new memory tier and the future of XPoint?

Also read:

Source: Intel

New AI products will Crest Computex

Subject: General Tech | May 25, 2017 - 12:19 PM |
Tagged: nvidia, Intel, Lake Crest, Knights Crest

DigiTimes have heard about Intel's plans to reveal their next hardware devoted to AI functionality at Computex.  Lake Crest is their deep learning hardware to support a new generation of neural network based computing and Knights Crest is the result of Intel's $350m purchase of the deep learning company Nervana which will be based on the familiar Xeon and Xeon Phi families of processor. 

Jen-Hsun Huang, will deliver a keynote about NVIDIA's current AI projects along with their advancements in autonomous driving and deep learning, but we have not heard any juicy rumours about hardware announcements yet.  Love him or hate him, Jen-Hsun's keynotes are never a waste of time to listen to.

nvidia_ceo_tattoo.jpg

"Nvidia and Intel are expected to unveil their latest plans on hardware platforms for artificial intelligence (AI) applications at Computex 2017, according to sources from the upstream supply chain."

Here is some more Tech News from around the web:

Tech Talk

Source: DigiTimes

MSI's Z270 Krait Gaming shows off its stripes

Subject: Motherboards | May 24, 2017 - 03:45 PM |
Tagged: msi, Z270 Krait Gaming, intel z270, Intel

For around $150 the MSI Krait Gaming motherboard is a decent deal for anyone building a computer around an LGA 1151 Intel processor.  With three PCIe 3.0 x16 slots and an additional three PCIe 3.0 1x slots you have a lot of space to install additional cards.  The storage is equally expansive with six SATA 6Gbps ports as well as two M.2 slots for newer generation SSDs and there are a total of 16 USB ports split between 3.0 and 2.0 including a Type-C port.  The overclocking potential is also impressive, [H]ard|OCP easily configured  their i7-7600K to run at 5.1GHz with memory at 3600MHz.  Overall the board is a great mix of price and features and well worth considering.

600.png

"While it is generally the flagship motherboards that grab the most attention, it's the midrange offerings that see the most sales. MSI's Z270 Krait Gaming motherboard is one of those bread and butter type offerings. It has everything the gamer needs without the unnecessary and expensive fluff."

Here are some more Motherboard articles from around the web:

Motherboards

Source: [H]ard|OCP

Shrout Research: Chromebook Platform Impacts Android App Performance

Subject: Mobile | May 23, 2017 - 12:25 PM |
Tagged: shrout research, play store, Intel, Chromebook, arm, Android

Please excuse the bit of self-promotion here. Oh, and disclaimer: Shrout Research and PC Perspective share management and ownership.

Based on testing done by Shrout Research and published in a paper this week, the introduction of Android applications on Chromebooks directly though the Play Store has added a new wrinkle into the platform selection decision. Android applications, unlike Chromebook native apps, have a heavy weight towards the Android phone and tablet ecosystem, with "defacto" optimization for the ARM-based processors and platforms that represent 98%+ of that market. As a result, there are some noticeable and noteworthy differences when running Android apps on Chromebooks powered by an ARM SoC and an Intel x86 SoC.

With that market dominance as common knowledge, all Android applications are developed targeting ARM hardware, for ARM processors. Compilers and performance profiling software has been built and perfected to improve the experience and efficiency of apps to run on ARMv7 (32-bit) and ARMv8 (64-bit) architectures. This brings to the consumer an improved overall experience, including better application compatibility and better performance.

Using a pair of Acer Chromebooks, the R11 based on the Intel Celeron N3060 and the R13 based on the MediaTek MT8173C, testing was done to compare the performance, loading times, and overall stability of various Android Play Store applications. A range of application categories were addressed including games, social, and productivity.

table.jpg

Through 19 tested Android apps we found that the ARM-powered R13 Chromebook performed better than the Intel-powered R11 Chromebook in 9 of them. In 8 of the apps tested, both platforms performed equally well. In 2 of the test applications, the Intel-powered system performed better (Snapchat and Google Maps).

The paper also touches on power consumption, and between these two systems, the ARM-based MediaTek SoC was using 11.5% less power to accomplish the same tasks.

Our testing indicates the Acer R13, using the ARM-powered processor, uses 11.5% less power on average in our 150 minutes of use through our education simulation. This is a significant margin and would indicate that with two systems equally configured, one with the MediaTek ARM processor and another with the Intel Celeron processor, the ARM-powered platform would get 11.5% additional usage time before requiring a charge. Based on typical Chromebook battery life (11 hours), the ARM system would see an additional 75 minutes of usability.

power.jpg

There is a lot more detail in the white paper on ShroutResearch.com, including a discussion about the impact that the addition of Android applications on Chromebooks might have for the market as whole:

...bringing a vast library of applications from the smart phone market to the Chromebook would create a combination of capabilities that would turn the computing spectrum sideways. This move alleviates the sustained notion that Chromebooks are connected-only devices and gives an instant collection of usable offline applications and tools to the market.

You can download the full white paper here.

Dating Intel and AMD in 2017, we're going out for chips

Subject: General Tech | May 17, 2017 - 12:30 PM |
Tagged: Intel, amd, rumour, release dates, ryzen, skylake-x, kaby lake x, Threadripper, X399, coffee lake

DigiTimes has posted an article covering the probable launch dates of AMD's new CPUs and GPUs as well as Intel's reaction to the release.  Not all of these dates are confirmed but it is worth noting as these rumours are often close to those eventually announced.  Naples will be the first, with the server chips launching at the end of June but that is just the start. July is the big month for AMD, with the lower end Ryzen 3 chips hitting the market as well as the newly announced 16 core Threadrippers and the X399 chipset.  That will also be the month we see Vega's Founders Frontier Edition graphics cards arrive.

Intel's Basin Falls platform; Skylake-X and Kaby Lake-X along with the associated X299 chipset are still scheduled for Computex reveal and a late June or early August release.  Coffee Lake is getting pushed ahead however, it's launch has been moved up to late August instead of the beginning of next year. 

Even with Intel's counters, AMD's balance sheet is likely to be looking better and better as the year goes on which is great news for everyone ... except perhaps Intel and NVIDIA.

Vega FE Slide.png

"Demand for AMD's Ryzen 7- and Ryzen 5-series CPU products has continued rising, which may allow the chipmaker to narrow its losses to below US$50 million for the second quarter of 2017. With Intel also rumored to pay licensing fees to AMD for its GPUs, some market watchers believe AMD may turn profitable in the second quarter or in the third."

Here is some more Tech News from around the web:

Tech Talk

 

Source: DigiTimes

AMD Compares 1x 32-Core EPYC to 2x 12-Core Xeon E5s

Subject: Processors | May 17, 2017 - 04:05 AM |
Tagged: amd, EPYC, 32 core, 64 thread, Intel, Broadwell-E, xeon

AMD has formally announced their EPYC CPUs. While Sebastian covered the product specifications, AMD has also released performance claims against a pair of Intel’s Broadwell-E Xeons. While Intel’s E5-2650 v4 processors have an MSRP of around $1170 USD, each, we don’t know how that price will compare to AMD’s offering. At first glance, pitting thirty two cores against two twelve-core chips seems a bit unfair, although it could end up being a very fair comparison if the prices align.

amd-2017-epyc-ubuntucompile.jpg

Image Credit: Patrick Moorhead

Patrick Moorhead, who was at the event, tweeted out photos of a benchmark where Ubuntu was compiled over GCC. It looks like EPYC completed in just 33.7s while the Broadwell-E chip took 37.2s (making AMD’s part ~9.5% faster). While this, again, stems from having a third more cores, this depends on how much AMD is going to charge you for them, versus Intel’s current pricing structure.

amd-2017-epyc-threads.jpg

Image Credit: Patrick Moorhead

This one chip also has 128 PCIe lanes, rather than Intel’s 80 total lanes spread across two chips.