Leaked Intel Roadmap Details Upcoming Optane XPoint SSDs and Storage Accelerators

Subject: Storage | June 13, 2016 - 03:46 AM |
Tagged: XPoint, tlc, Stony Beach, ssd, pcie, Optane, NVMe, mlc, Mansion Beach, M.2, kaby lake, Intel, imft, Brighton Beach, 3DNAND, 3d nand

A recent post over at benchlife.info included a slide of some significant interest to those who have been drooling over XPoint technology:


For those unaware, XPoint (spoken 'cross-point') is a new type of storage technology that is persistent like NAND Flash but with speeds closer to that of RAM. Intel's brand name for devices implementing XPoint are called Optane.

Starting at the bottom of the slide, we see a new 'System Acceleration' segment with a 'Stony Beach PCIe/NVMe m.2 System Accelerator'. This is likely a new take on Larson Creek, which was a 20GB SLC SSD launched in 2011. This small yet very fast SLC flash was tied into the storage subsystem via Intel's Rapid Storage Technology and acted as a caching tier for HDDs, which comprised most of the storage market at that time. Since Optane excels at random access, even a PCIe 3.0 x2 part could outmaneuver the fastest available NAND, meaning these new System Accelerators could act as a caching tier for Flash-based SSDs or even HDDs. These accelerators can also be good for boosting the performance of mobile products, potentially enabling the use of cheaper / lower performing Flash / HDD for bulk storage.


Skipping past the mainstream parts for now, enthusiasts can expect to see Brighton Beach and Mansion Beach, which are Optane SSDs linked via PCIe 3x2 or x4, respectively. Not just accelerators, these products should have considerably more storage capacity, which may bring costs fairly high unless either XPoint production is very efficient or if there is also NAND Flash present on those parts for bulk storage (think XPoint cache for NAND Flash all in one product).

We're not sure if or how the recent delays to Kaby Lake will impact the other blocks on the above slide, but we do know that many of the other blocks present are on-track. The SSD 540s and 5400s were in fact announced in Q2, and are Intel's first shipping products using IMFT 3D NAND. Parts not yet seen announced are the Pro 6000p and 600p, which are long overdue m.2 SSDs that may compete against Samsung's 950 Pro. Do note that those are marked as TLC products (purple), though I suspect they may actually be a hybrid TLC+SLC cache solution.


Going further out on the timeline we naturally see refreshes to all of the Optane parts, but we also see the first mention of second-generation IMFT 3DNAND. As I hinted at in an article back in February, second-gen 3D NAND will very likely *double* the per-die capacity to 512Gbit (64GB) for MLC and 768Gbit (96GB) for TLC. While die counts will be cut in half for a given total SSD capacity, speed reductions will be partially mitigated by this flash having at least four planes per die (most previous flash was double-plane). A plane is an effective partitioning of flash within the die, with each section having its own buffer. Each plane can perform erase/program/read operations independently, and for operations where the Flash is more limiting than the interface (writes), doubling the number of planes also doubles the throughput. In short, doubling planes roughly negates the speed drop caused by halving the die count on an SSD (until you reach the point where controller-to-NAND channels become the bottleneck, of course).


IMFT XPoint Die shot I caught at the Intel / Micron launch event.

Well, that's all I have for now. I'm excited to see that XPoint is making its way into consumer products (and Storage Accelerators) within the next year's time. I certainly look forward to testing these products, and I hope to show them running faster than they did back at that IDF demo...

James Reinders Leaving Intel and What It Means

Subject: Processors | June 8, 2016 - 08:17 AM |
Tagged: Xeon Phi, Intel, gpgpu

Intel's recent restructure had a much broader impact than I originally believed. Beyond the large number of employees who will lose their jobs, we're even seeing it affect other areas of the industry. Typically, ASUS releases their ZenPhone line with x86 processors, which I assumed was based on big subsidies from Intel to push their instruction set into new product categories. This year, ASUS chose the ARM-based Qualcomm Snapdragon, which seemed to me like Intel decided to stop the bleeding.


That brings us to today's news. After over 27 years at Intel, James Reinders accepted the company's early retirement offer, scheduled for his 10001st day with the company, and step down from his position as Intel's High Performance Computing Director. He worked on the Larabee and Xeon Phi initiatives, and published several books on parallelism.

According to his letter, it sounds like his retirement offer was part of a company-wide package, and not targeting his division specifically. That would sort-of make sense, because Intel is focusing on cloud and IoT. Xeon Phi is an area that Intel is battling NVIDIA for high-performance servers, and I would expect that it has potential for cloud-based applications. Then again, as I say that, AWS only has a handful of GPU instances, and they are running fairly old hardware at that, so maybe the demand isn't there yet.

Video Perspective: Intel Giving Away 6950X + SSD 750 Systems at PAX Prime

Subject: Processors | June 7, 2016 - 03:29 PM |
Tagged: Intel, video, PAX, pax prime, i7-6950X, taser

Intel is partnering with 12 of their top system builders to build amazing PCs around the Core i7-6950X 10-core Extreme Edition processor and the SSD 750 Series drives. Intel will be raffling off 7 of these systems at PAX Prime in September. You can find out more details on the competition and how you can enter at http://inte.ly/rigchallenge. 

As for us, we got a taser.

Looking for a new CPU? You will be waiting until January at the earliest

Subject: Processors | June 7, 2016 - 02:45 PM |
Tagged: Zen, kaby lake, Intel, delayed, amd

Bad news upgraders, neither AMD nor Intel will be launching their new CPUs until the beginning of next year.  Both AMD's Zen and Intel's Kaby Lake have now been delayed instead of launching in Q4 and Q3 of this year respectively.  DigiTimes did not delve into the reasons behind the delay in AMD's 14nm GLOBALFOUNDRIES (and Samsung) sourced Zen but unfortunately the reasons beind Intel's delay are all too clear.  With large stockpiles of  Skylake and Haswell processors and systems based around them sitting in the channel, AMD's delay creates an opportunity for Intel and retailers to move that stock.  Once Kaby Lake arrives the systems will no longer be attractive to consumers and the prices will plummet.

Here is to hoping AMD's delay does not imply anything serious, though the lack of a new product release at a time which traditionally sees sales increase is certainly going to hurt their bottom line for 2016.


"With the delays, the PC supply chain will not be able to begin mass production for the next-generation products until November or December and PC demand is also unlikely to pick up until the first quarter of 2017."

Here are some more Processor articles from around the web:



Source: DigiTimes

Intel Adds M.2 Adapter Option to SSD 750 Series

Subject: Storage | June 7, 2016 - 02:42 PM |
Tagged: SSD 750, M.2 2280, M.2, Intel, Adatper

Back when Intel launched their SSD 750 Series product line, their hope was that the motherboard industry would adopt the U.2 PCIe connector and add those ports to all motherboards. Well, it's over a year later, and we've only seen U.2 appear on a very small fraction of currently shipping motherboards. It's far more likely to see motherboard manufacturers simply tossing in a U.2 to M.2 adapter than to incorporate both onto the board itself. Since things have panned out the way that they have, Intel has recently let us know they will be introducing a new SKU of the SSD 750 products:

Photo Jun 07, 14 09 50.jpg

Instead of the bundled U.2 cable (seen above next to an ASUS Hyper Kit), the alternate will include a U.2 to M.2 cable, eliminating the need for an adapter for consumers who have no native U.2 port on their systems.

For now, the only available products on the market have the U.2 cable, so don't worry about getting the wrong one. Once the new SKU hits the to market, we should see product descriptions indicating which cable is included. Those purchasing starting this summer should be aware that in the future there will be an additional product with the alternate cable, and be careful to purchase the desired product/cable.

Intel Launches Xeon E7 v4 Processors

Subject: Processors | June 7, 2016 - 09:39 AM |
Tagged: xeon e7 v4, xeon e7, xeon, Intel, broadwell-ex, Broadwell

Yesterday, Intel launched eleven SKUs of Xeon processors that are based on Broadwell-EX. While I don't follow this product segment too closely, it's a bit surprising that Intel launched them so close to consumer-level Broadwell-E. Maybe I shouldn't be surprised, though.


These processors scale from four cores up to twenty-four of them, with HyperThreading. They are also available in cache sizes from 20MB up to 60MB. With Intel's Xeon naming scheme, the leading number immediately after the E7 in the product name denotes the number of CPUs that can be installed in a multi-socket system. The E7-8XXX line can be run in an eight-socket motherboard, while the E7-4XXX models are limited to four sockets per system. TDPs range between 115W and 165W, which is pretty high, but to be expected for a giant chip that runs at a fairly high frequency.

Intel Xeon E7 v4 launched on June 6th with listed prices between $1223 to $7174 per CPU.

Source: Intel

Rounding up the i7-6950X reviews

Subject: Processors | June 3, 2016 - 04:55 PM |
Tagged: X99, video, Intel, i7-6950X, core i7, Core, Broadwell-E, Broadwell

You have seen our take on the impressively powerful and extremely expensive i7-6950X but of course we were not the only ones to test out Intel's new top of the line processor.  Hardware Canucks focused on the difference between the  ~$1700 i7-6950X and the ~$1100 i7-6900K.  From synthetic benchmarks such as AIDA through gaming at 720p and 1080p, they tested the two processors against each other to see when it would make sense to spend the extra money on the new Broadwell-E chip.  Check out what they thought of the chip overall as well as the scenarios where they felt it would be full utilized.


"10 cores, 20 threads, over $1700; Intel's Broadwell-E i7-6950X delivers obscene performance at an eye-watering price. Then there's the i7-6900K which boasts all the same niceties in a more affordable package."

Here are some more Processor articles from around the web:


Subject: Processors
Manufacturer: AMD

Bristol Ridge Takes on Mobile: E2 Through FX

It is no secret that AMD has faced an uphill battle since the release of the original Core 2 processors from Intel.  While stayed mostly competitive through the Phenom II years, they hit some major performance issues when moving to the Bulldozer architecture.  While on paper the idea of Chip Multi-Threading sounded fantastic, AMD was never able to get the per thread performance up to expectations.  While their CPUs performed well in heavily multi-threaded applications, they just were never seen in as positive of a light as the competing Intel products.


The other part of the performance equation that has hammered AMD is the lack of a new process node that would allow it to more adequately compete with Intel.  When AMD was at 32 nm PD-SOI, Intel had introduced its 22nm TriGate/FinFET.  AMD then transitioned to a 28nm HKMG planar process that was more size optimized than 32nm, but did not drastically improve upon power and transistor switching performance.

So AMD had a double whammy on their hands with an underperforming architecture and limitted to no access to advanced process nodes that would actually improve their power and speed situation.  They could not force their foundry partners to spend billions on a crash course in FinFET technology to bring that to market faster, so they had to iterate and innovate on their designs.


Bristol Ridge is the fruit of that particular labor.  It is also the end point to the architecture that was introduced with Bulldozer way back in 2011.

Click here to read the entire introduction of AMD's Bristol Ridge lineup!

Subject: Processors
Manufacturer: Intel

Broadwell-E Platform

It has been nearly two years since the release of the Haswell-E platform, which began with the launch of the Core i7-5960X processor. Back then, the introduction of an 8-core consumer processor was the primary selling point; along with the new X99 chipset and DDR4 memory support. At the time, I heralded the processor as “easily the fastest consumer processor we have ever had in our hands” and “nearly impossible to beat.” So what has changed over the course of 24 months?


Today Intel is launching Broadwell-E, the follow up to Haswell-E, and things look very much the same as they did before. There are definitely a couple of changes worth noting and discussing, including the move to a 10-core processor option as well as Turbo Boost Max Technology 3.0, which is significantly more interesting than its marketing name implies. Intel is sticking with the X99 platform (good for users that might want to upgrade), though the cost of these new processors is more than slightly disappointing based on trends elsewhere in the market.

This review of the new Core i7-6950X 10-core Broadwell-E processor is going to be quick, and to the point: what changes, what is the performance, how does it overclock, and what will it cost you?


Continue reading our review of the new Core i7-6950X 10-core processor!!

Simply FUD or a message from the Forced Upgrade Department?

Subject: General Tech | May 18, 2016 - 12:44 PM |
Tagged: Intel, microsoft, fud

DigiTimes has a doozy of a post title, stating that Intel plans to limit OS support on future processors starting with Kaby Lake and Apollo Lake CPUs.  Now this sounds horrible but you may be taking the word support out of context as it refers to the support that major customers require which leads to the so called errata (pdf example), not that the processors will be incapable of running any OS but Windows 10.  This may not matter so much to the average consumer but for industries and the scientific community this could result in huge costs as they would no longer be able to get fixes from Intel, unless they have upgraded to Windows 10.   That upgrade comes with its own costs, the monstrous amount of time it will take for compatibility testing, application updating and implementation; not to mention licensing fees.

AMD should take note of this, focus on continued legacy support and most importantly advertising that fact.  The price difference between choosing AMD over Intel could become even more compelling for these large customers and help refill AMD's coffers.


"With Intel planning to have its next-generation processors support only Windows 10, industrial PC (IPC) players are concerned that the move will dramatically increase their costs and affect market demand, according to sources from IPC players."

Here is some more Tech News from around the web:

Tech Talk

Source: DigiTimes