Author:
Subject: Processors
Manufacturer: Intel

Specifications and Summary

As seems to be the trend for processor reviews as of late, today marks the second in a two-part reveal of Intel’s Coffee Lake consumer platform. We essentially know all there is to know about the new mainstream and DIY PC processors from Intel, including specifications, platform requirements, and even pricing; all that is missing is performance. That is the story we get to tell you today in our review of the Core i7-8700K and Core i5-8400.

Coffee Lake is the second spoke of Intel's “8th generation” wheel that began with the Kaby Lake-R release featuring quad-core 15-watt notebook processors for the thin and light market. Though today’s release of the Coffee Lake-S series (the S is the designation for consumer desktop) doesn’t share the same code name, it does share the same microarchitecture, same ring bus design (no mesh here), and same underlying technology. They are both built on the Intel 14nm process technology.

IMG_4888.JPG

And much like Kaby Lake-R in the notebook front, Coffee Lake is here to raise the core count and performance profile of the mainstream Intel CPU playbook. When AMD first launched the Ryzen 7 series of processors that brought 8-cores and 16-threads of compute, it fundamentally shook the mainstream consumer markets. Intel was still on top in terms of IPC and core clock speeds, giving it the edge in single and lightly threaded workloads, but AMD had released a part with double the core and thread count and was able to dominate in most multi-threaded workloads compared to similar Intel offerings.

Much like Skylake-X before it, Coffee Lake had been on Intel’s roadmap from the beginning, but new pressure from a revived AMD meant bringing that technology to the forefront sooner rather than later in an effort stem any potential shifts in market share and maybe more importantly, mind share among investors, gamers, and builders. Coffee Lake, and the Core i7, Core i5, and Core i3 processors that will be a part of this 8000-series release, increase the core count across the board, and generally raise clock speeds too. Intel is hoping that by bumping its top mainstream CPU to 6-cores, and coupling that with better IPC and higher clocks, it can alleviate the advantages that AMD has with Ryzen.

But does it?

That’s what we are here to find out today. If you need a refresher on the build up to this release, we have the specifications and slight changes in the platform and design summarized for you below. Otherwise, feel free to jump on over to the benchmarks!

Continue reading our review of the Intel Core i7-8700K and Core i5-8400!!

Intel Quad RAID-0 Optane Memory 32GB Bootable Without VROC Key!

Subject: Storage | October 4, 2017 - 09:24 PM |
Tagged: x299, VROC, skylake-x, RAID-0, Optane, Intel, bootable, boot

We've been playing around a bit with Intel VROC lately. This new tech lets you create a RAID of NVMe SSDs connected directly to newer Intel Skylake-X CPUs, without the assistance of any additional chipset or other RAID controlling hardware on the X299 platform. While the technology is not fully rolled out, we did manage to get it working and test a few different array types as a secondary volume. One of the pieces of conflicting info we had been trying to clear up was can you boot from a VROC array without the currently unobtanium VROC key...

VROC-booted-3.jpeg

Well, it seems that question has been answered with our own tinkering. While there was absolutely no indication in the BIOS that our Optane Memory quad RAID-0 was bootable (the array is configurable but does not appear in the bootable devices list), I'm sitting here looking at Windows installed directly to a VROC array!

Important relevant screenshots below:

VROC-booted-1-.png

VROC-booted-2.png

For the moment this will only work with Intel SSDs, but Intel's VROC FAQ states that 'selected third-party SSDs' will be supported, but is unclear if that includes bootability (future support changes would come as BIOS updates since they must be applied at the CPU level). We're still digging into VROC as well as AMD's RAID implementation. Much more to follow, so stay tuned!

Subject: Storage
Manufacturer: PC Perspective

Introduction

Introduction

We've been hearing about Intel's VROC (NVMe RAID) technology for a few months now. ASUS started slipping clues in with their X299 motherboard releases starting back in May. The idea was very exciting, as prior NVMe RAID implementations on Z170 and Z270 platforms were bottlenecked by the chipset's PCIe 3.0 x4 DMI link to the CPU, and they also had to trade away SATA ports for M.2 PCIe lanes in order to accomplish the feat. X99 motherboards supported SATA RAID and even sported four additional ports, but they were left out of NVMe bootable RAID altogether. It would be foolish of Intel to launch a successor to their higher end workstation-class platform without a feature available in two (soon to be three) generations of their consumer platform.

To get a grip on what VROC is all about, lets set up some context with a few slides:

slide-1.png

First, we have a slide laying out what the acronyms mean:

  • VROC = Virtual RAID on CPU
  • VMD = Volume Management Device

What's a VMD you say?

slide-2.png

...so the VMD is extra logic present on Intel Skylake-SP CPUs, which enables the processor to group up to 16 lanes of storage (4x4) into a single PCIe storage domain. There are three VMD controllers per CPU.

slide-3.png

VROC is the next logical step, and takes things a bit further. While boot support is restricted to within a single VMD, PCIe switches can be added downstream to create a bootable RAID possibly exceeding 4 SSDs. So long as the array need not be bootable, VROC enables spanning across multiple VMDs and even across CPUs!

Assembling the Missing Pieces

Unlike prior Intel storage technology launches, the VROC launch has been piecemeal at best and contradictory at worst. We initially heard that VROC would only support Intel SSDs, but Intel later published a FAQ that stated 'selected third-party SSDs' would also be supported. One thing they have remained steadfast on is the requirement for a hardware key to unlock RAID-1 and RAID-5 modes - a seemingly silly requirement given their consumer chipset supports bootable RAID-0,1,5 without any key requirement (and VROC only supports one additional SSD over Z170/Z270/Z370, which can boot from 3-drive arrays).

On the 'piecemeal' topic, we need three things for VROC to work:

  • BIOS support for enabling VMD Domains for select groups of PCIe lanes.
  • Hardware for connecting a group of NVMe SSDs to that group of PCIe lanes.
  • A driver for OS mounting and managing of the array.

Let's run down this list and see what is currently available:

BIOS support?

170927121509.png

Check. Hardware for connecting multiple drives to the configured set of lanes?

170927-165526.jpg

Check (960 PRO pic here). Note that the ASUS Hyper M.2 X16 Card will only work on motherboards supporting PCIe bifurcation, which allows the CPU to split PCIe lanes into subgroups without the need of a PLX chip. You can see two bifurcated modes in the above screenshot - one intended for VMD/VROC, while the other (data) selection enables bifurcation without enabling the VMD controller. This option presents the four SSDs to the OS without the need of any special driver.

With the above installed, and the slot configured for VROC in the BIOS, we are greeted by the expected disappointing result:

VROC-2.png

Now for that pesky driver. After a bit of digging around the dark corners of the internet:

VROC-11.png

Check! (well, that's what it looked like after I rapidly clicked my way through the array creation)

Don't even pretend like you won't read the rest of this review! (click here now!)

Podcast #469 - Marseille mCable, Core i9, Coffee Lake, Vega mGPU, and more!

Subject: General Tech | September 28, 2017 - 12:06 PM |
Tagged: Z370, video, Vega, skylake-x, shield, podcast, mGPU, mCable, marseille, Intel, gigabyte, Core i9-7980XE, Core i9-7960X, Core i9, coffee lake

PC Perspective Podcast #469 - 09/28/17

Join us for discussion on AMD Raven Ridge rumors,  Intel and Global Foundries new fabrication technology!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Jermey Hellstrom, Josh Walrath, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg

Program length: 1:27:57

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:16:00 Ryan: Silicon Zeroes game
    2. 1:22:10 Jeremy: Going out of style discount - GIGABYTE GA-Z270-GAMING K3
    3. 1:24:10  Allyn: DIY Oleophobic Coating
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Source:

Intel Core i9-7980XE Pushed to 6.1 GHz On All Cores Using Liquid Nitrogen

Subject: Processors | September 25, 2017 - 09:36 PM |
Tagged: skylake-x, overclocking, Intel Skylake-X, Intel, Cinebench, 7980xe, 3dmark, 14nm

Renowned overclocker der8auer got his hands on the new 18-core Intel Core i9-7980XE and managed to break a few records with more than a bit of LN2 and thermal paste. Following a delid, der8auer slathered the bare die and surrounding PCB with a polymer-based (Kryonaut) TIM and reattached the HIS to prepare for the extreme overclock. He even attempted to mill out the middle of the IHS to achieve a balance between direct die cooling and using the IHS to prevent bending the PCB and spread out the pressure from the LN2 cooler block, but ran into inconsistent results between runs and opted not to proceed with that method.

Core i9-7980xe LN2 overclock.png

Using an Asus Rampage VI Apex X299 motherboard and the Core i9-7980XE at an Asus ROG event in Taiwan der8auer used liquid nitrogen to push all eighteen cores (plus Hyper-Threading) to 6.1 GHz for a CPU-Z validation. To get those clockspeeds he needed to crank up the voltage to 1.55V (1.8V VCCIN) which is a lot for the 14nm Skylake X processor. Der8auer noted that overclocking was temperature limited beyond this point as at 6.1 GHz he was seeing positive temperatures on the CPU cores despite the surface of the LN2 block being as low as -100 °C! Perhaps even more incredible is the power draw of the processor as it runs at these clockspeeds with the system drawing as much as 1,000 watts (~83 amps) on the +12V rail with the CPU being responsible for almost all of that number! That is a lot of power running through the motherboard VRMs and the on-processor FIVR!

For comparison, at 5.5 GHz he measured 70 amps on the +12V rail (840W) with the chip using 1.45V vcore under load.

7980xe CPU-Z overclock 6GHz.png

For Cinebench R15, the extreme overclocker opted for a tamer 5.7 GHz where the i9-7980XE achieved a multithreaded score of 5,635 points. He compared that to his AMD Threadripper overclock of 5.4 GHz where he achieved a Cinebench score of 4,514 (granted the Intel part was using four more threads and clocked higher).

To push things (especially his power supply heh) further, the overclocker added a LN2 cooled NVIDIA Titan Xp to the mix and managed to overclock the graphics card to 2455 MHz at 1.4V. With the 3840 Pascal cores at 2.455 GHz he managed to break three single card world records by scoring 45,705 in 3DMark 11, 35,782 in 3DMark Fire Strike, and 120,425 in 3DMark Vantage!

Der8auer also made a couple interesting statements regarding overclocking at these levels including the issues of cold bugs not allowing the CPU and/or GPU to boot up if the cooler plate is too cold. On the other side of things, once the chip is running the power consumption can jump drastically with more voltage and higher clocks such that even LN2 can’t maintain sub-zero core temperatures! The massive temperature delta can also create condensation issues that need to be dealt with. He mentions that while for 24/7 overclocking liquid metal TIMs are popular choices, when extreme overclocking the alloy actually works against them because the sub-zero temperatures reduce the effectiveness and thermal conductivity of the interface material which is why polymer-based TIMs are used when cooling with liquid nitrogen, liquid helium, or TECs. Also, while most people apply a thin layer of thermal paste to the direct die or HIS, when extreme overclocking he “drowns” the processor die and PCB in the TIM to get as much contact as possible with the cooler as every bit of heat transfer helps even the small amount he can transfer through the PCB. Further, FIVR has advantages such as per-core voltage fine tuning, but it also can hold back further overclocking from cold bugs that will see the processor shut down past -100 to -110 °C temperature limiting overclocks whereas with an external VRM setup they could possibly push the processor further.

For the full scoop, check out his overclocking video. Interesting stuff!

Also read:

Source: der8auer

Double the price; not so much performance though ... Skylake-X versus ThreadRipper

Subject: Processors | September 25, 2017 - 03:19 PM |
Tagged: skylake-x, Skylake, Intel, Core i9, 7980xe, 7960x

You cannot really talk about the new Skylake-X parts from Intel without bringing up AMD's Threadripper as that is the i9-7980XE and i9-7960X's direct competition.   From a financial standpoint, AMD is the winner, with a price tag either $700 or $1000 less than Intel's new flagship processors.  As Ryan pointed out in his review, for those whom expense is not a consideration it makes sense to chose Intel's new parts as they are slightly faster and the Xtreme Edition does offer two more cores.  For those who look at performance per dollar the obvious processor of choice is ThreadRipper; for as Ars sums up in their review AMD offers more PCIe lanes, better heat management and performance that is extremely close to Intel's best.

DSC02984.jpg

"Ultimately, the i9-7960X raises the same question as the i9-7900X: Are you willing to pay for the best performing silicon on the market? Or is Threadripper, which offers most of the performance at a fraction of the price, good enough?"

Here are some more Processor articles from around the web:

Processors

Source: Ars Technica
Author:
Subject: Processors
Manufacturer: Intel

Specifications and Architecture

It has been an interesting 2017 for Intel. Though still the dominant market share leader in consumer processors of all shapes and sizes, from DIY PCs to notebooks to servers, it has come under attack with pressure from AMD unlike any it has felt in nearly a decade. It started with the release of AMD Ryzen 7 and a family of processors aimed at the mainstream user and enthusiast markets. That followed by the EPYC processor release moving in on Intel’s turf of the enterprise markets. And most recently, Ryzen Threadripper took a swing (and hit) at the HEDT (high-end desktop) market that Intel had created and held its own since the days of the Nehalem-based Core i7-920 CPU.

pic1.jpg

Between the time Threadripper was announced and when it shipped, Intel made an interesting move. It decided to launch and announce its updated family of HEDT processors dubbed Skylake-X. Only available in a 10-core model at first, the Core i9-7900X was the fastest tested processor in our labs, at the time. But it was rather quickly overtaken by the likes of the Threadripper 1950X that ran with 16-cores and 32-threads of processing. Intel had already revealed that its HEDT lineup would go to 18-core options, though availability and exact clock speeds remained in hiding until recently.

  i9-7980XE i9-7960X i9-7940X i9-7920X i9-7900X  i7-7820X i7-7800X TR 1950X TR 1920X TR 1900X
Architecture Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Skylake-X Zen Zen Zen
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm 14nm 14nm
Cores/Threads 18/36 16/32 14/28 12/24 10/20 8/16 6/12 16/32 12/24 8/16
Base Clock 2.6 GHz 2.8 GHz 3.1 GHz 2.9 GHz 3.3 GHz 3.6 GHz 3.5 GHz 3.4 GHz 3.5 GHz 3.8 GHz
Turbo Boost 2.0 4.2 GHz 4.2 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.3 GHz 4.0 GHz 4.0 GHz 4.0 GHz 4.0 GHz
Turbo Boost Max 3.0 4.4 GHz 4.4 GHz 4.4 GHz 4.4 GHz 4.5 GHz 4.5 GHz N/A N/A N/A N/A
Cache 24.75MB 22MB 19.25MB 16.5MB 13.75MB 11MB 8.25MB 40MB 38MB ?
Memory Support DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666 Quad Channel DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666
Quad Channel
DDR4-2666 Quad Channel DDR4-2666 Quad Channel
PCIe Lanes 44 44 44 44 44 28 28 64 64 64
TDP 165 watts 165 watts 165 watts 140 watts 140 watts 140 watts 140 watts 180 watts 180 watts 180 watts?
Socket 2066 2066 2066 2066 2066 2066 2066 TR4 TR4 TR4
Price $1999 $1699 $1399 $1199 $999 $599 $389 $999 $799 $549

Today we are now looking at both the Intel Core i9-7980XE and the Core i9-7960X, 18-core and 16-core processors, respectively. The goal from Intel is clear with the release: retake the crown as the highest performing consumer processor on the market. It will do that, but it does so at $700-1000 over the price of the Threadripper 1950X.

Continue reading our review of the Intel Core i9-7980XE and Core i9-7960X!

Intel Announces 8th Gen Core Architecture, Coffee Lake

Subject: Processors, Chipsets | September 24, 2017 - 11:03 PM |
Tagged: Z370, Intel, coffee lake

The official press deck for Coffee Lake-S was leaked to the public, so Intel gave us the go-ahead to discuss the product line-up in detail (minus benchmarks). While the chips are still manufactured on the 14nm process that Kaby Lake, Skylake, and Broadwell were produced on, there’s more on them. The line-up is as follows: Core i3 gets quad-core without HyperThreading and no turbo boosting, Core i5 gets six-core without HyperThreading but with Turbo boosting, and Core i7 gets six-core with HyperThreading and Turbo boosting.

intel-2017-coffeelake-news-04.jpg

While the slide deck claims that the CPU still has 16 PCIe 3.0 lanes, the whole platform supports up to 40. They specifically state “up to” over and over again, so I’m not sure whether that means “for Z370 boards” or if there will be some variation between individual boards. Keep in mind that only 16 lane of this are from the processor itself, the rest are simply a part of the chipset. This unchanged from Z270.

intel-2017-coffeelake-news-01.png

Moving on, Intel has been branding this as “Intel’s Best Gaming Desktop Processor” all throughout their presentation. The reasoning is probably two-fold. First, this is the category of processors that high-end, mainstream, but still enthusiast PC gamers target. Second, gaming, especially at super-high frame rates, is an area that AMD has been struggling with on their Ryzen platform.

intel-2017-coffeelake-news-02-dieshot.png

Speaking of performance, the clock rate choice is quite interesting compared to Kaby Lake. In all cases, the base clock had a little dip from the previous generation, but the Turbo clock, if one exists, has a little bump. For instance, going from the Core i7-7700k to the Core i7-8700k, your base clock drops from 4.2 GHz to just 3.7 GHz, but the turbo jumps up from 4.5 GHz to 4.7 GHz. You also have a little more TDP to work with (95W vs 91W) with the 8700k. I’m not sure what this increase variance between low and high clock rates will mean, but it’s interesting to see Intel making some sort of trade-off on the back end.

(Editor's note: the base clock is only going to be a concern when running all cores for a long period of time. I fully expect performance to be higher for CFL-S parts than KBL-S parts in all workloads.)

intel-2017-coffeelake-news-03.png

The last thing that I’ll mention is that, of the two i3s, the two i5s, and the two i7s, one is locked (and lower TDP) and one is unlocked. In other words, Intel has an unlocked solution in all three classifications, even the i3. Even though it doesn’t have a turbo clock setting, you can still overclock it by hand if you desire.

Prices range from $117 to $359 USD, as seen in the slide, above. They launch on October 5th.

Apparently Kaby Lake Is Incompatible with Z370 Chipsets

Subject: Processors, Chipsets | September 23, 2017 - 06:52 PM |
Tagged: Z370, z270, kaby lake, Intel, coffee lake

According to the Netherlands arm of Hardware.info, while Kaby Lake-based processors will physically fit into the LGA-1151 socket of Z370 motherboards, they will fail to boot. Since their post, Guru3D asked around to various motherboard manufacturers, and they claim that Intel is only going to support 8th Generation processors with that chipset via, again, allegedly, a firmware lock-out.

intel-2017-chocolatelake-theredlist.jpg

Thankfully, it's not Chocolate Lake.
Image credit: The Red List

If this is true, then it might be possible for Intel to allow board vendors to release a new BIOS that supports these older processors. Guru3D even goes one step further and suggests that, just maybe, motherboard vendors might have been able to support Coffee Lake on Z270 as well, if Intel would let them. I’m... skeptical about that last part in particular, but, regardless, it looks like you won’t have an upgrade path, even though the socket is identical.

It’s also interesting to think about the issue that Hardware.info experienced: the boot failed on the GPU step. The prevailing interpretation is that everything up to that point is close enough that the BIOS didn’t even think to fail.

My interpretation of the step that booting failed, however, is wondering whether there’s something odd about the new graphics setup that made Intel pull support for Z270. Also, Intel usually supports two CPU generations with each chipset, so we had no real reason to believe that Skylake and Kaby Lake would carry over except for the stalling of process tech keeping us on 14nm so long.

Still, if older CPUs are incompatible with Z370, and for purely artificial reasons, then that’s kind-of pathetic. Maybe I’m odd, but I tend to buy a new motherboard with new CPUs anyway, but I can’t envision the number of people who flash BIOSes with their old CPU before upgrading to a new one is all that high, so it seems a little petty to nickel and dime the few that do, especially at a time that AMD can legitimately call them out for it.

There has to be a reason, right?

Source: Guru3D

Podcast #468 - AMD Raven Ridge rumors, Intel and Global Foundries new fabrication technology!

Subject: General Tech | September 21, 2017 - 12:43 PM |
Tagged: z270, windows 10, WD, video, toshiba, ShadowPlay, ryzen, podcast, nvidia, nuc, msi, max-q, Intel, gs63vr, GLOBALFOUNDRIES, gigabyte, EPYC, ansel, 2500U, 12TB

PC Perspective Podcast #468 - 09/21/17

Join us for discussion on AMD Raven Ridge rumors,  Intel and Global Foundries new fabrication technology!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Josh Walrath, Sebastion Peak, Allyn Malventano

Peanut Gallery: Ken Addison, Alex Lustenberg

Program length: 1:39:59

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Source: