Xilinx and AMD Break GoogLeNet AI Inference Record

Subject: General Tech | October 4, 2018 - 09:58 PM |
Tagged: Xilinx, FPGA, hardware acceleration, big data, HPC, neural network, ai inference, inference

During the Xilinx Developer Forum in San Jose earlier this week, Xilinx showed off a server built in partnership with AMD that uses FPGA-based hardware acceleration cards to break an inference record in GoogLeNet by hitting up to 30,000 images per second in total high-performance AI inference throughput. GoogLeNet is a 22 layer deep convolutional neural network (PDF) that was started as a project for the ImageNet Large Scale Visual Recognition Challenge in 2014.

Xilinx and AMD Epyc break GoogLeNet record for AI inference.jpg

Xilinx was able to achieve such high performance while maintaining low latency windows by using eight of its Alveo U250 acceleration add-in-cards that use FPGAs based on its 16nm UltraScale architecture. The cards are hosted by a dual socket AMD server motherboard with two Epyc 7551 processors and eight channels of DDR4 memory. The AMD-based system has two 32 core (64 threads) Zen architecture processors (180W) each clocked at 2 GHz (2.55 GHz all core turbo and 3 GHz maximum turbo) with 64 MB L3, memory controllers supporting up to 2TB per socket of DDR4 memory (341 GB/s of bandwidth in a two socket configuration), and 128 PCI-Express lanes. The Xilinx Alveo U250 cards offer up to 33.3 INT8 TOPs and feature 54MB SRAM (38TB/s) and 64GB of off-chip memory (77GB/s). Interfaces include the PCI-E 3.0 x16 connection as well as two QSFP28 (100GbE) connections. The cards are rated at 225W TDPs and cost a whopping $12,995 MSRP each. The FPGA cards alone push the system well into the six-figure range before including the Epyc server CPUs, all that system memory, and the other base components. It is not likely you will see this system in your next Tesla any time soon, but it is a nice proof of concept at what future technology generations may be able to achieve at much more economical price points and used for AI inference tasks in everyday life (driver assistance, medical imaging, big data analytics driving market research that influences consumer pricing, etc).

Xilinx Alveo FPGA.jpg

Interestingly, this system may hold the current record, but it is not likely to last very long even against Xilinx’s own hardware. Specifically, Xilinx’s Versal ACAP cards (set to release in the second half of next year) are slated to hit up to 150W TDPs (in the add-in-card models) while being up to eight times faster than Xilinx’s previous FPGAs. The Versal ACAPs will use TSMCs 7nm FinFET node and will combine scalar processing engines (ARM CPUs), adaptable hardware engines (FPGAs with a new full software stack and much faster on-the-fly dynamic reconfiguration), and AI engines (DSPs, SIMD vector cores, and dedicated fixed function units for inference tasks) with a Network on Chip (NoC) and customizable memory hierarchy. Xilinx also has fierce competition on its hands in this huge AI/machine learning/deep neural network market with Intel/Altera and its Stratix FPGAs, AMD and NVIDIA with their GPUs and new AI focused cores, and other specialty hardware accelerator manufacturers including Google with its TPUs. (There's also ARM's Project Trillium for mobile.) I am interested to see what the new AI inference performance bar will be set to by this time next year!

Source: TechPowerUp

AMD has the Instinct; if not the license, to kill

Subject: Graphics Cards | December 12, 2016 - 04:05 PM |
Tagged: vega 10, Vega, training, radeon, Polaris, machine learning, instinct, inference, Fiji, deep neural network, amd

Ryan was not the only one at AMD's Radeon Instinct briefing, covering their shot across NVIDIA's HPC products.  The Tech Report just released their coverage of the event and the tidbits which AMD provided about the MI25, MI8 and MI6; no relation to a certain British governmental department.   They focus a bit more on the technologies incorporated into GEMM and point out that AMD's top is not matched by an NVIDIA product, the GP100 GPU does not come as an add-in card.  Pop by to see what else they had to say.

dad_pierce_gbs_bullet.jpg

"Thus far, Nvidia has enjoyed a dominant position in the burgeoning world of machine learning with its Tesla accelerators and CUDA-powered software platforms. AMD thinks it can fight back with its open-source ROCm HPC platform, the MIOpen software libraries, and Radeon Instinct accelerators. We examine how these new pieces of AMD's machine-learning puzzle fit together."

Here are some more Graphics Card articles from around the web:

Graphics Cards

Author:
Manufacturer: AMD

AMD Enters Machine Learning Game with Radeon Instinct Products

NVIDIA has been diving in to the world of machine learning for quite a while, positioning themselves and their GPUs at the forefront on artificial intelligence and neural net development. Though the strategies are still filling out, I have seen products like the DIGITS DevBox place a stake in the ground of neural net training and platforms like Drive PX to perform inference tasks on those neural nets in self-driving cars. Until today AMD has remained mostly quiet on its plans to enter and address this growing and complex market, instead depending on the compute prowess of its latest Polaris and Fiji GPUs to make a general statement on their own.

instinct-18.jpg

The new Radeon Instinct brand of accelerators based on current and upcoming GPU architectures will combine with an open-source approach to software and present researchers and implementers with another option for machine learning tasks.

The statistics and requirements that come along with the machine learning evolution in the compute space are mind boggling. More than 2.5 quintillion bytes of data are generated daily and stored on phones, PCs and servers, both on-site and through a cloud infrastructure. That includes 500 million tweets, 4 million hours of YouTube video, 6 billion google searches and 205 billion emails.

instinct-6.jpg

Machine intelligence is going to allow software developers to address some of the most important areas of computing for the next decade. Automated cars depend on deep learning to train, medical fields can utilize this compute capability to more accurately and expeditiously diagnose and find cures to cancer, security systems can use neural nets to locate potential and current risk areas before they affect consumers; there are more uses for this kind of network and capability than we can imagine.

Continue reading our preview of the AMD Radeon Instinct machine learning processors!