Podcast #413 - NVIDIA Pascal Mobile, ARM and Intel partner on 10nm, Flash Memory Summit and more!

Subject: Editorial | August 18, 2016 - 02:20 PM |
Tagged: video, podcast, pascal, nvidia, msi, mobile, Intel, idf, GTX 1080, gtx 1070, gtx 1060, gigabyte, FMS, Flash Memory Summit, asus, arm, 10nm

PC Perspective Podcast #413 - 08/18/2016

Join us this week as we discuss the new mobile GeForce GTX 10-series gaming notebooks, ARM and Intel partnering on 10nm, Flash Memory Summit and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Allyn Malventano, Sebastian Peak, Josh Walrath and Jeremy Hellstrom

Program length: 1:29:39
  1. Week in Review:
  2. This episode of PC Perspective is brought to you by Casper!! Use code “PCPER”
  3. News items of interest:
    1. 0:42:05 Final news from FMS 2016
  4. Hardware/Software Picks of the Week
    1. Ryan: VR Demi Moore
  5. Closing/outro

Gigabyte BRIX Gaming UHD Combines 2.6L Chassis with Discrete GPU

Subject: Systems | August 17, 2016 - 04:37 PM |
Tagged: UHD, SFF, IDF 2016, idf, gigabyte, gaming, brix

While wandering around the exhibit area at this year’s Intel Developers Forum, I ran into our friends at Gigabyte a brand new BRIX small form factor PC. The BRIX Gaming UHD takes the now-standard NUC/BRIX block shape and literally raises it up, extending the design vertically to allow for higher performance components and the added cooling capability to integrate them.


The design of the BRIX Gaming UHD combines a brushed aluminum housing with a rubber base and bordering plastic sections to create a particularly stunning design that is both simple and interesting. Up top is a fan that pulls air through the entire chassis, running over the heatsink for the CPU and GPU. This is similar in function to the Mac Pro, though this is a much more compact device with a very different price point and performance target.


Around the back you’ll find all the connections that the BRIX Gaming UHD supplies: three (!!) mini DisplayPort connections, a full size HDMI output, four USB 3.0 ports, a USB 3.1 connection, two wireless antennae ports, Gigabit Ethernet and audio input and output. That is a HUGE amount of connectivity options and is more than many consumer’s current large-scale desktops.


The internals of the system are impressive and required some very custom design for cooling and layout.


The discrete NVIDIA graphics chip (in this case the GTX 950) is on the left chamber while the Core i7-6500HQ Skylake processor is on the left side along with the memory slot and wireless card.


Gigabyte measures the size of the BRIX Gaming UHD at 2.6 liters. Because of that compact space there is no room for hard drives: you get access to two M.2 2280 slots for storage instead. There are two SO-DIMM slots for DDR4 memory up to 2133 MHz, integrated 802.11ac support and support for quad displays.

Availability and pricing are still up in the air, though early reports are that starting cost will be $1300. Gigabyte updated me and tells me that the BRIX Gaming UHD will be available in October and that an accurage MSRP has not been set. It would not surprise me if this model never actually saw the light of day and instead Gigabyte waited for NVIDIA’s next low powered Pascal based GPU, likely dubbed the GTX 1050. We’ll keep an eye on the BRIX Gaming UHD from Gigabyte to see what else transpires, but it seems the trend of small form factor PCs that sacrifice less in terms of true gaming potential continues.

IDF 2016: ScaleMP Merges Software-Defined Memory With Storage-Class Memory, Makes Optane Work Like RAM

Subject: Storage | August 16, 2016 - 04:05 PM |
Tagged: Virtual SMP, SMP, SDM-S, SDM-F, ScaleMP, IDF 2016, idf

ScaleMP has an exciting announcement at IDF today, but before we get into it, I need to do some explaining. Most IT specialists know how to employ virtualization to run multiple virtual environments within the same server, but what happens when you want to go the other way around?


You might not have known it, but virtualization can go both ways. ScaleMP make such a solution, and it enables some amazing combinations of hardware all thrown at a single virtualized machine. Imagine what could be done with a system containing 32,768 CPUs and 2048TB (2PB) of RAM. Such a demand is actually more common than you might think:


List of companies / applications of ScaleMP.


ScaleMP's tech can fit into a bunch of different usage scenarios. You can choose to share memory, CPU cores, IO, or all three across multiple physical machines, all combined into a single beast of a virtualized OS, but with the launch of 3D XPoint there's one more thing that might come in handy as a sharable resource, as there is a fairly wide latency gap between NAND and RAM:

NAND RAM gap.png

Alright, now that we've explained the cool technology and the gap to be filled, onto the news of the day, which is that ScaleMP has announced that their Software Defined Memory tech has been optimized for Intel Optane SSDs. This means that ScaleMP / Optane customers will be able to combine banks of XPoint installed across multiple systems all into a single VM. Another key to this announcement is that due to the way ScaleMP virtualizes the hardware, the currently developing storage-class (NVMe) XPoint/Optane solutions can be mounted as if they were system memory, which should prove to be a nice stopgap until we see second generation 3D XPoint in DIMM form.

More to follow from IDF 2016. ScaleMP's press blast appears after the break.

IDF 2016: Intel To Demo Optane XPoint, Announces Optane Testbed for Enterprise Customers

Subject: Storage | August 16, 2016 - 02:00 PM |
Tagged: XPoint, Testbed, Optane, Intel, IDF 2016, idf

IDF 2016 is up and running, and Intel will no doubt be announcing and presenting on a few items of interest. Of note for this Storage Editor are multiple announcements pertaining to upcoming Intel Optane technology products.


Optane is Intel’s branding of their joint XPoint venture with Micron. Intel launched this branding at last year's IDF, and while the base technology is as high as 1000x faster than NAND flash memory, full solutions wrapped around an NVMe capable controller have shown to sit at roughly a 10x improvement over NAND. That’s still nothing to sneeze at, and XPoint settles nicely into the performance gap seen between NAND and DRAM.


Since modern M.2 NVMe SSDs are encroaching on the point of diminishing returns for consumer products, Intel’s initial Optane push will be into the enterprise sector. There are plenty of use cases for a persistent storage tier faster than NAND, but most enterprise software is not currently equipped to take full advantage of the gains seen from such a disruptive technology.


XPoint die. 128Gbit of storage at a ~20nm process.

In an effort to accelerate the development and adoption of 3D XPoint optimized software, Intel will be offering enterprise customers access to an Optane Testbed. This will allow for performance testing and tuning of customers’ software and applications ahead of the shipment of Optane hardware.


I did note something interesting in Micron's FMS 2016 presentation. QD=1 random performance appears to start at ~320,000 IOPS, while the Intel demo from a year ago (first photo in this post) showed a prototype running at only 76,600 IOPS. Using that QD=1 example, it appears that as controller technology improves to handle the large performance gains of raw XPoint, so does performance. Given a NAND-based SSD only turns in 10-20k IOPS at that same queue depth, we're seeing something more along the lines of 16-32x performance gains with the Micron prototype. Those with a realistic understanding of how queues work will realize that the type of gains seen at such low queue depths will have a significant impact in real-world performance of these products.

future NVM.PNG

The speed of 3D XPoint immediately shifts the bottleneck back to the controller, PCIe bus, and OS/software. True 1000x performance gains will not be realized until second generation XPoint DIMMs are directly linked to the CPU.

The raw die 1000x performance gains simply can't be fully realized when there is a storage stack in place (even an NVMe one). That's not to say XPoint will be slow, and based on what I've seen so far, I suspect XPoint haters will still end up burying their heads in the sand once we get a look at the performance results of production parts.


Leaked roadmap including upcoming Optane products

Intel is expected to show a demo of their own more recent Optane prototype, and we suspect similar performance gains there as their controller tech has likely matured. We'll keep an eye out and fill you in once we've seen Intel's newer Optane goodness it in action!

Podcast #396 - MSI Gaming Notebooks, Intel Layoffs, the PlayStation Neo and more!

Subject: General Tech | April 21, 2016 - 01:37 PM |
Tagged: podcast, video, msi, Intel, Playstation, ps4, neo, ps4k, phanteks, idf, Optane, XPoint, western digital, nvidia, GTX 1080

PC Perspective Podcast #396 - 04/21/2016

Join us this week as we discuss MSI Gaming Notebooks, Intel Layoffs, the PlayStation Neo and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

This episode of the PC Perspective Podcast is sponsored by Lenovo!

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

IDF Shenzhen: Intel Demos 3D XPoint Optane File Copy at 2 GB/s

Subject: Storage | April 14, 2016 - 03:56 PM |
Tagged: Optane, NVMe, Intel, idf

At IDF Shenzhen, Intel talked more about 3D XPoint (spoken cross-point). Initially launched in July of last year, 3D XPoint is essentially a form of phase change memory which has speeds closer to that of DRAM.


It can be addressed at the byte level, unlike flash which transfers in pages (~8KB) and erases in blocks (~6MB). There have been a few demos since the initial launch, and this morning there was another:

Optane demo.png

It is great to see XPoint / Optane technology being demonstrated again, but as far as demos go, this was not the best / fairest example that Intel could have put together. First of all, the 'NAND SSD' they are using is a Thunderbolt 3 connected external, which was clearly bottlenecked badly somewhere else in the chain (when was the last time you saw a 6 Gbit SATA SSD limited to only 283 MB/s?). Also, using SATA for the NAND example while using PCIe x4 NVMe for the Optane example seems a bit extreme to me.

The Optane side of the demo is seen going 1.94 GB/s. That is an impressive figure for sure, but it is important to note that a faster Intel 'NAND SSD' product has already been shipping for over a year:


Yes, the P3700 (reviewed by us here), can reach the speeds seen in this demo, as evidenced by this ATTO run on one of our 1.6TB samples:

Intel DC3700 800GB - atto-4 (driver)--.png

Looking at the P3700 specs, we can see that the 2TB model performs even better and would likely beat the Optane SSD used in today's demo:

P3700 spec.png

Further, in the IDF 2015 demo (where they launched the Optane brand), Intel showed off Optane's random IO performance:


This demo showed 464,300 4K random IOPS, and if you do the math, that works out to 1.9 GB/s *worth of random IO*, which is far more impressive than sequentials that basically match that of the current generation NVMe product of the same form factor and interface.

I'm still happy to see these demos happen, as it means we are absolutely going to see 3D XPoint in our hands sooner than later. That said, I'd also like to see demos that better demonstrate the strengths of the technology, because if today's demo was comparing apples to apples, it would have shown a P3700 matching the speed of Optane, which does not make the previously stated 1000x speed improvement nearly as obvious as it should be presented.

Manufacturer: Intel

Core and Interconnect

The Skylake architecture is Intel’s first to get a full release on the desktop in more than two years. While that might not seem like a long time in the grand scheme of technology, for our readers and viewers that is a noticeable change and shift from recent history that Intel has created with the tick-tock model of releases. Yes, Broadwell was released last year and was solid product, but Intel focused almost exclusively on the mobile platforms (notebooks and tablets) with it. Skylake will be much more ubiquitous and much more quickly than even Haswell.

Skylake represents Intel’s most scalable architecture to date. I don’t mean only frequency scaling, though that is an important part of this design, but rather in terms of market segment scaling. Thanks to brilliant engineering and design from Intel’s Israeli group Intel will be launching Skylake designs ranging from 4.5 watt TDP Core M solutions all the way up to the 91 watt desktop processors that we have already reviewed in the Core i7-6700K. That’s a range that we really haven’t seen before and in the past Intel has depended on the Atom architecture to make up ground on the lowest power platforms. While I don’t know for sure if Atom is finally trending towards the dodo once Skylake’s reign is fully implemented, it does make me wonder how much life is left there.


Scalability also refers to the package size – something that ensures that the designs the engineers created can actually be built and run in the platform segments they are targeting. Starting with the desktop designs for LGA platforms (DIY market) that fits on a 1400 mm2 design on the 91 watt TDP implementation Intel is scaling all the way down to 330 mm2 in a BGA1515 package for the 4.5 watt TDP designs. Only with a total product size like that can you hope to get Skylake in a form factor like the Compute Stick – which is exactly what Intel is doing. And note that the smaller packages require the inclusion of the platform IO chip as well, something that H- and S-series CPUs can depend on the motherboard to integrate.

Finally, scalability will also include performance scaling. Clearly the 4.5 watt part will not offer the user the same performance with the same goals as the 91 watt Core i7-6700K. The screen resolution, attached accessories and target applications allow Intel to be selective about how much power they require for each series of Skylake CPUs.

Core Microarchitecture

The fundamental design theory in Skylake is very similar to what exists today in Broadwell and Haswell with a handful of significant and hundreds of minor change that make Skylake a large step ahead of previous designs.


This slide from Julius Mandelblat, Intel Senior Principle Engineer, shows a higher level overview of the entirety of the consumer integration of Skylake. You can see that Intel’s goals included a bigger and wider core design, higher frequency, improved right architecture and fabric design and more options for eDRAM integration. Readers of PC Perspective will already know that Skylake supports both DDR3L and DDR4 memory technologies but the inclusion of the camera ISP is new information for us.

Continue reading our overview of the Intel Skylake microarchitecture!!

Podcast #318 - GTX 980 and R9 390X Rumors, Storage News from IDF, ADATA SP610 SSDs and more!

Subject: General Tech | September 18, 2014 - 01:59 PM |
Tagged: windows 9, video, TSV, supernova, raptr, r9 390x, podcast, p3700, nvidia, Intel, idf, GTX 980, evga, ECS, ddr4, amd

PC Perspective Podcast #318 - 09/18/2014

Join us this week as we discuss GTX 980 and R9 390X Rumors, Storage News from IDF, ADATA SP610 SSDs and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

  • iTunes - Subscribe to the podcast directly through the iTunes Store
  • RSS - Subscribe through your regular RSS reader
  • MP3 - Direct download link to the MP3 file

Hosts: Ryan Shrout, Jeremy Hellstrom, Josh Walrath, and Allyn Malventano

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!


IDF 2014 Storage Roundup - RAM and NVMe and IOPS! Oh my!

Subject: Storage, Shows and Expos | September 16, 2014 - 12:49 PM |
Tagged: ram, NVMe, IOPS, idf 2014, idf, ddr4, DDR

The Intel Developer Forum was last week, and there were many things to be seen for sure. Mixed in with all of the wearable and miniature technology news, there was a sprinkling of storage goodness. Kicking off the show, we saw new cold storage announcements from both HGST and Western Digital, but that was about it for HDD news, as the growing trend these days is with solid state storage technologies. I'll start with RAM:

First up was ADATA, who were showing off 64GB DDR3 (!) DIMMs:


Next up were various manufacturers pushing DDR4 technology quite far. First was SK Hynix's TSV 128GB DIMMs (covered in much greater depth last week):


Next up is Kingston, who were showing a server chassis equipped with 256GB of DDR4:


If you look closer at the stats, you'll note there is more RAM in this system than flash:


Next up is IDT, who were showing off their LRDIMM technology:


This technology adds special data buffers to the DIMM modules, enabling significantly higher amounts of installed RAM into a single system, with a 1-2 step de-rating of clock speeds as you take capacities to the far extremes. The above server has 768GB of DDR4 installed and running!:


Moving onto flash memory type stuff, Scott covered Intel's new 40 Gbit Ethernet technology last week. At IDF, Intel had a demo showing off some of the potential of these new faster links:


This demo used a custom network stack that allowed a P3700 in a local system to be matched in IOPS by an identical P3700 *being accessed over the network*. Both local and networked storage turned in the same 450k IOPS, with the remote link adding only 8ms of latency. Here's a close-up of one of the SFF-8639 (2.5" PCIe 3.0 x4) SSDs and the 40 Gbit network card above it (low speed fans were installed in these demo systems to keep some air flowing across the cards):


Stepping up the IOPS a bit further, Microsoft was showing off the capabilities of their 'Inbox AHCI driver', shown here driving a pair of P3700's at a total of 1.5 million IOPS:


...for those who want to get their hands on this 'Inbox driver', guess what? You already have it! "Inbox" is Microsoft's way of saying the driver is 'in the box', meaning it comes with Windows 8. Bear in bind you may get better performance with manufacturer specific drivers, but it's still a decent showing for a default driver.

Now for even more IOPS:


Yes, you are reading that correctly. That screen is showing a system running over 11 million IOPS. Think it's RAM? Wrong. This is flash memory pulling those numbers. Remember the 2.5" P3700 from a few pics back? How about 24 of them:


The above photo shows three 2U systems (bottom), which are all connected to a single 2U flash memory chassis (top). The top chassis supports three submodules, each with eight SFF-8639 SSDs. The system, assembled by Newisys, demonstrates just how much high speed flash you can fit within an 8U space. The main reason for connecting three systems to one flash chassis is because it takes those three systems to process the full IOPS capability of 24 low latency NVMe SSDs (that's 96 total lanes of PCIe 3.0!)!

So there you have it, IDF storage tech in a nutshell. More to come as we follow these emerging technologies to their maturity.

Intel Loves Exponential Trends: Shrinking Mini-PCs

Subject: General Tech, Cases and Cooling, Systems, Shows and Expos | September 12, 2014 - 02:20 PM |
Tagged: idf, idf 2014, nuc, Intel, SFF, small form factor

A few years ago, Intel introduced the NUC line of small form factor PCs. At this year's IDF, they have announced plans to make even smaller, and cheaper, specifications that are intended for OEMs to install Windows, Linux, Android, and Chrome OS on. This initiative is not yet named, but will consist of mostly soldered components, leaving basically just the wireless adapters user-replaceable, rather than the more user-serviceable NUC.


Image Credit: Liliputing

Being the owner of Moore's Law, they just couldn't help but fit it to some type of exponential curve. While it is with respect to generation, not time, Intel expects the new, currently unnamed form factor to halve both the volume (size) and bill of material (BOM) cost of the NUC. They then said that another generation after ("Future SFF") will halve the BOM cost again, to a quarter of the NUC.

What do our readers think? Would you be willing to give up socketed components for smaller and cheaper devices in this category or does this just become indistinguishable from mobile devices (which we already know can be cheap and packed into small spaces)?

Source: Liliputing