Running Intel HD 530 graphics under Linux

Subject: Processors | November 12, 2015 - 01:22 PM |
Tagged: linux, Skylake, Intel, i5-6600K, hd 530, Ubuntu 15.10

A great way to shave money off of a minimalist system is to skip buying a GPU and using the one present on modern processors, as well as installing Linux instead of buying a Windows license.  The problem with doing so is that playing demanding games is going to be beyond your computers ability, at least without turning off most of the features that make the game look good.  To help you figure out what your machine would be capable of is this article from Phoronix.  Their tests show that Windows 10 currently has a very large performance lead compared to the same hardware running on Ubuntu as the Windows OpenGL driver is superior to the open-source Linux driver.  This may change sooner rather than later but you should be aware that for now you will not get the most out of your Skylakes GPU on Linux at this time.

index.jpg

"As it's been a while since my last Windows vs. Linux graphics comparison and haven't yet done such a comparison for Intel's latest-generation Skylake HD Graphics, the past few days I was running Windows 10 Pro x64 versus Ubuntu 15.10 graphics benchmarks with a Core i5 6600K sporting HD Graphics 530."

Here are some more Processor articles from around the web:

Processors

 

Source: Phoronix
Author:
Manufacturer: Intel

It comes after 8, but before 10

As the week of Intel’s Developer Forum (IDF) begins, you can expect to see a lot of information about Intel’s 6th Generation Core architecture, codenamed Skylake, finally revealed. When I posted my review of the Core i7-6700K, the first product based on that architecture to be released in any capacity, I was surprised that Intel was willing to ship product without the normal amount of background information for media and developers. Rather than give us the details and then ship product, which has happened for essentially every consumer product release I have been a part of, Intel did the reverse: ship a consumer friendly CPU and then promise to tell us how it all works later in the month at IDF.

Today I came across a document posted on Intel’s website that dives into very specific detail on the new Gen9 graphics and compute architecture of Skylake. Details on the Core architecture changes are not present, and instead we are given details on how the traditional GPU portion of the SoC has changed. To be clear: I haven’t had any formal briefing from Intel on this topic or anything surrounding the architecture of Skylake or the new Gen9 graphics system but I wanted to share the details we found available. I am sure we’ll learn more this week as IDF progresses so I will update this story where necessary.

What Intel calls Processor Graphics is what we used to call simply integrated graphics for the longest time. The purpose and role of processor graphics has changed drastically over the years and it is now not only responsible for 3D graphics rendering but compute, media and display capabilities of the Intel Skylake SoC (when discrete add-in graphics is not used). The architecture document used to source this story focuses on Gen9 graphics, the compute architecture utilized in the latest Skylake CPUs. The Intel HD Graphics 530 on the Core i7-6700K / Core i5-6600K is the first product released and announced using Gen9 graphics and is also the first to adopt Intel’s new 3-digit naming scheme.

skylakegen9-4.jpg

This die shot of the Core i7-6700K shows the increased size and prominence of the Gen9 graphics in the overall SoC design. Containing four traditional x86 CPU cores and 1 “slice” implementation of Gen9 graphics (with three visible sub-slices we’ll describe below), this is not likely to be the highest performing iteration of the latest Intel HD Graphics technology.

skylakegen9-4.2.jpg

Like the Intel processors before it, the Skylake design utilizes a ring bus architecture to connect the different components of the SoC. This bi-directional interconnect has a 32-byte wide data bus and connects to multiple “agents” on the CPU. Each individual CPU core is considered its own agent while the Gen9 compute architecture is considered one complete agent. The system agent bundles the DRAM memory, the display controller, PCI Express and other I/O interface that communicate with the rest of the PC. Any off-chip memory requests and transactions occur through this bus while on-chip data transfers tend to be handled differently.

Continue reading our look at the new Gen9 graphics and compute architecture on Skylake!!