SK Hynix Launches Its 8Gb GDDR6 Memory Running at 14 Gbps

Subject: Graphics Cards, Memory | January 24, 2018 - 11:04 PM |
Tagged: SK Hynix, graphics memory, gddr6, 8gb, 14Gbps

SK Hynix recently updated its product catalog and announced the availability of its eight gigabit (8 Gb) GDDR6 graphics memory. The new chips come in two SKUs and three speed grades with the H56C8H24MJR-S2C parts operating at 14 Gbps and 12 Gbps and the H56C8H24MJR-S0C operating at 12 Gbps (but at higher voltage than the -S2C SKU) and 10 Gbps. Voltages range from 1.25V for 10 Gbps and either 1.25V or 1.35V for 12 Gbps to 1.35V for 14 Gbps. Each 8 Gb GDDR6 memory chip holds 1 GB of memory and can provide up to 56 GB/s of per-chip bandwidth.

SK Hynix logo.jpg

While SK Hynix has a long way to go before competing with Samsung’s 18 Gbps GDDR6, its new chips are significantly faster than even its latest GDDR5 chips with the company working on bringing 9 Gbps and 10 Gbps GDDR5 to market. As a point of comparison, its fastest 10 Gbps GDDR5 would have a per chip bandwidth of 40 GB/s versus its 14 Gbps GDDR6 at 56 GB/s. A theoretical 8GB graphics card with eight 8 Gb chips running at 10 Gbps on a 256-bit memory bus would have maximum bandwidth of 320 GB/s. Replacing the GDDR5 with 14 Gbps GDDR6 in the same eight chip 256-bit bus configuration, the graphics card would hit 448 GB/s of bandwidth. In the Samsung story I noted that the Titan XP runs 12 8 Gb GDDR5X memory chips at 11.4 Gbps on a 384-bit bus for bandwidth of 547 GB/s. Replacing the G5X with GDDR6 would ramp up the bandwidth to 672 GB/s if running the chips at 14 Gbps.

Theoretical Memory Bandwidth
Chip Pin Speed Per Chip Bandwidth 256-bit bus 384-bit bus 1024-bit (one package) 4096-bit (4 packages)
10 Gbps 40 GB/s 320 GB/s 480 GB/s    

12 Gbps

48 GB/s 384 GB/s 576 GB/s    
14 Gbps 56 GB/s 448 GB/s 672 GB/s    
16 Gbps 64 GB/s 512 GB/s 768 GB/s    
18 Gbps 72 GB/s 576 GB/s 864 GB/s    
HBM2 2 Gbps 256 GB/s     256 GB/s 1 TB/s

GDDR6 is still a far cry from High Bandwidth Memory levels of performance, but it is much cheaper and easier to produce. With SK Hynix ramping up production and Samsung besting the fastest 16 Gbps G5X, it is likely that the G5X stop-gap will be wholly replaced with GDDR6 and things like the upgraded 10 Gbps GDDR5 from SK Hynix will pick up the low end. As more competition enters the GDDR6 space, prices should continue to come down and adoption should ramp up for the new standard with the next generation GPUs, game consoles, network devices, ect. using GDDR6 for all but the highest tier prosumer and enterprise HPC markets.

Also read:

Samsung Begins Mass Production Of 18 Gbps 16-Gigabit GDDR6 Memory

Subject: Memory | January 18, 2018 - 12:34 AM |
Tagged: Samsung, graphics memory, graphics cards, gddr6, 19nm

Samsung is now mass producing new higher density GDDR6 memory built on its 10nm-class process technology that it claims offers twice the speed and density of its previous 20nm GDDR5. Samsung's new GDDR6 memory uses 16 Gb dies (2 GB) featuring pin speeds of 18 Gbps (gigabits-per-second) and is able to hit data transfer speeds of up to 72 GB/s per chip.

Samsung GDDR6_PhotoFs.png

According to Samsnug, its new GDDR6 uses a new circuit design which allows it to run on a mere 1.35 volts. Also good news for Samsung and for memory supply (and thus pricing and availability of products) is that the company is seeing a 30% gain in manufacturing productivity cranking out its 16Gb GDDR6 versus its 20nm GDDR5. 

Running at 18 Gbps, the new GDDR6 offers up quite a bit of bandwidth and will allow for graphics cards with much higher amounts of VRAM. Per package, Samsung's 16Gb GDDR6 offers 72 GB/s which is twice the density, pin speed, and bandwidth than that of its 8Gb GDDR5 running at 8Gbps and 1.5V with data transfers of 32 GB/s. (Note that SK Hynix has announced it plans to produce 9Gbps and 10Gbps dies which max out at 40 GB/s.) GDDR5X gets closer to this mark, and in theory is able to hit up to 16 Gbps per pin and 64 GB/s per die, but so far the G5X used in real world products has been much slower (the Titan XP runs at 11.4 Gbps for example). The Titan XP runs 12 8Gb (1GB) dies at 11.4 Gbps on a 384-bit memory bus for maximum memory bandwidth of 547 GB/s. Moving to GDDR6 would enable that same graphics card to have 24 GB of memory (with the same number of dies) with up to 864 GB/s of bandwidth which is approaching High Bandwidth Memory levels of performance (though it still falls short of newer HBM2 and in practice the graphics card would likely be more conservative on the memory speeds). Still, it's an impressive jump in memory performance that widens the gap between GDDR6 and GDDR5X. I am curious how the GPU memory market will shake out in 2018 and 2019 with GDDR5, GDDR5X, GDDR6, HBM, HBM2, and HBM3 all being readily available for use in graphics cards and where each memory type will land especially on the mid-range and high-end consumer cards (HBM2/3 still holds the performance crown and is ideal for the HPC market).

Samsung is aiming its new 18Gbps 16Gb memory at high performance graphics cards, game consoles, vehicles, and networking devices. Stay tuned for more information on GDDR6 as it develops!

Also read:

Source: Samsung

Podcast #478 - Windows on ARM, Intel 10nm rumors, and more!

Subject: General Tech | December 7, 2017 - 01:45 PM |
Tagged: podcast, xfx, Vega, Raspberry Pi, radeon, qualcomm, nicehash, Intel, IME, GTX 1070Ti, gddr6, evga, Elgato, dell, coolermaster, cluster, asus, arm, amd, AM4, Adrenalin Edition, 4k60, 10nm, video

PC Perspective Podcast #478 - 12/07/17

Join us for discussion on Windows on ARM, Intel 10nm rumors, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, Allyn Malventano, Jim Tanous

Peanut Gallery: Alex Lustenberg

Program length: 1:39:42

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Closing/outro

Source:

AMD Working on GDDR6 Memory Controller For Future Graphics Cards

Subject: General Tech, Graphics Cards | December 4, 2017 - 05:47 PM |
Tagged: navi, HBM2, hbm, gddr6, amd

WCCFTech reports that AMD is working on a GDDR6 memory controller for its upcoming graphics cards. Starting with an AMD Technical Engineer listing GDDR6 on his portfolio, the site claims to have verified through sources familiar with the matter that AMD is, in fact, supporting the new graphics memory standard and will be using their own controller to support it (rather than licensing one).

roadmap.jpg

AMD is not abandoning HBM2 memory though. The company is sticking to its previously released roadmaps and Navi will still utilize HBM2 memory – at least on the high-end SKUs. While AMD has so far only released RX Vega 64 and RX Vega 56 graphics cards, the company may well release lower-end Vega-based cards with GDDR5 at some point although for now the Polaris architecture is handling the lower end. AMD supporting GDDR6 is a good thing and should enable cheaper mid-range cards that are not limited by supply shortages of the more expensive (albeit much higher bandwidth) High Bandwidth Memory that have seemingly plagues both NVIDIA and AMD at various points in time. GDDR6 further offers several advantages over GDDR5 with almost twice the speed (9 Gbps versus 16 Gbps) at lower power (1.5V versus 1.35V) and more density and underlying technology optimizations than even GDDR5X. While the G5X memory is capable of hitting the same 16 Gbps launch speeds of GDDR6, the newer memory technology offers up to 32Gb dies* versus 16Gb and a two channel design (which ends up being a bit more efficient and easier to produce / for GPU manufacturers to wire up). GDDR6 will represent a nice speed bump for mid-range cards (very low end may well stick with GDDR5 save for mobile parts which could benefit from the lower power GDDR6) while letting AMD have a bit better profit margins on these lower end margin SKUs and being able to produce more cards to satisfy demand. HBM2 is nice to have but it is more well suited for the compute-oriented cards for workstation and data center usage rather than gaming right now and GDDR6 can offer more price-to-performance for the consumer gaming cards.

As for the question of why AMD would want to design their own GDDR6 memory controller rather than license one, I think that comes down to AMD thinking long-term. It will be more expensive up front to design their own controller, but AMD will be able to more fully integrate it and tune it to work with their graphics cards such that it can be more power efficient. Also, having their own GDDR6 memory controller means they can use it in other areas such as their APUs and SoCs offered through their Semi Custom Business Unit (e.g. the SoCs used in gaming consoles). Being able to offer that controller to other companies in their semi-custom SoCs free of third party licensing fees is a good thing for AMD.

Micron GDDR5X.png

With GDDR6 becoming readily available early next year, there is a good chance AMD will be ready to use the new memory technology as soon as Navi but likely not until closer to the end of 2018 or early 2019 when AMD launches new lower and mid-range gaming cards (consumer-level) based on Navi and/or Vega.

*At launch it appears that GDDR6 from the big three (Micron, Samsung, and SK Hynix) will use 16Gb dies, but the standard allows for up to 32Gb dies. The G5X standard allows for up to 16Gb dies.

Also read:

Source: WCCFTech

Micron Pushes GDDR5X To 16Gbps, Expects To Launch GDDR6 In Early 2018

Subject: Memory | June 7, 2017 - 01:02 AM |
Tagged: micron, gddr6, gddr5x

JEDEC made the GDDR5X memory standard official almost a year and a half ago where it launched at 10 Gbps and quickly hit 12 Gbps. Set to bridge the gap between GDDR5 and the upcoming GDDR6, the “G5X” standard is quickly catching up to and matching the speeds that GDDR6 will run at.

Specifically, Micron’s Graphics Design Team in Munich was able to achieve an impressive 16 Gbps in their high speed test environment. The team was able to hit 16 Gbps on a “meaningful sampling” of its mass production GDDR5X silicon which makes the feat much more impressive as it means these higher speeds are moving closer to reality than theory. Micron measured a PRBS11 (psuedorandom binary sequence) pattern read at 16 Gbps using an oscilloscope and also showed off a chart that compared the stable data rate timing margin versus data rate from 10 Gbps to 16 Gbps.

Micron GDDR5X.png

In addition to teasing the 16 Gbps memory speed (it will be awhile yet before we see products like graphics cards running memory at those speeds), Micron announced that it expects to being mass productions of GDDR6 chips in early 2018. GDDR6 will see a new (larger) FBGA1180 package, faster base sort speeds (GDDR6 will start at 12Gbps vs G5X's 10Gbps), and moving to a dual channel approach with channels that will have half as many I/O links (GDDR5X is x16/x32 while GDDR6 will be x8/16 per channel). It will be interesting to see how this move will stack up to G5X, but in theory Micron will be able to push clocks even higher (maybe even higher than 16 Gbps) by having more but simpler channels (and it may be easier for graphics card manufacturers to wire up their cards to the memory chips.

SK Hynix, who showed off its first GDDR6 chip at GTC, appears to be following the same I/O design as Micron with two channel memory at x8 or x16 per channel.

Are you ready for faster GDDR5X? Hopefully these new faster G5X chips come out soon to give AMD and NVIDIA a more appealing alternative to HBM and HBM2 for mid-range and high end consumer graphics cards since High Bandwidth Memory seems to still be suffering from limited supply and is holding the GPU guys back on being able to crank up the production lines!

Also read:

Source: Micron

Podcast #436 - ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

Subject: Editorial | February 9, 2017 - 10:50 AM |
Tagged: podcast, Zen, Windows 10 Game Mode, webcam, ryzen, quadro, Optane, nvidia, mini-stx, humble bundle, gddr6, evga, ECS, atom, amd, 4k

PC Perspective Podcast #436 - 02/09/17

Join us for ECS Mini-STX, NVIDIA Quadro, AMD Zen Arch, Optane, GDDR6 and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Allyn Malventano, Ken Addison, Josh Walrath, Jermey Hellstrom

Program length: 1:32:21

Podcast topics of discussion:

  1. Week in Review:
  2. News items of interest:
    1. 1:14:00 Zen Price Points Leaked
  3. Hardware/Software Picks of the Week
  4. Closing/outro
 
 

Source:

Micron Planning To Launch GDDR6 Graphics Memory In 2017

Subject: Graphics Cards | February 4, 2017 - 03:29 PM |
Tagged: micron, graphics memory, gddr6

This year is shaping up to be a good year for memory with the promise of 3D XPoint (Intel/Micron), HBM2 (SK Hynix and Samsung), and now GDDR6 graphics memory from Micron launching this year. While GDDR6 was originally planned to be launched next year, Micron recently announced its intentions to start producing the memory chips by the later half of 2017 which would put it much earlier than previously expected.

Micron Logo.png

Computer World reports that Micron is citing the rise of e-sports and gaming driving the computer market that now sees three year upgrade cycles rather than five year cycles (I am not sure how accurate that is, however as it seems like PCs are actually lasting longer between upgrade as far as relevance but i digress) as the primary reason for shifting GDDR6 production into high gear and moving up the launch window. The company expects the e-sports market to grow to 500 million fans by 2020, and it is a growing market that Micron wants to stay relevant in.

If you missed our previous coverage, GDDR6 is the successor to GDDR5 and offers twice the bandwidth at 16 Gb/s (gigabits per second) per die. It is also faster than GDDR5X (12 Gb/s) and uses 20% less power which the gaming laptop market will appreciate. HBM2 still holds the bandwidth crown though as it offers 256 GB/s per stack and up to 1TB/s with four stacks connected to a GPU on package.

As such, High Bandwidth Memory (HBM2 and then HBM3) will power the high end gaming and professional graphics cards while GDDR6 will become the memory used for mid range cards and GDDR5X (which is actually capable of going faster but will likely not be pushed much past 12 Gbps after all if GDDR6 does come out this soon) will replace GDDR5 on most if not all of the lower end products.

I am not sure if Micron’s reasoning of e-sports, faster upgrade cycles, and VR being the motivating factor(s) to ramping up production early is sound or not, but I will certainly take the faster memory coming out sooner rather than later! Depending on exactly when in 2017 the chips start rolling off the fabs, we could see graphics cards using the new memory technology as soon as early 2018 (just in time for CES announcements? oh boy I can see the PR flooding in already! hehe).

Will Samsung change course as well and try for a 2017 release for its GDDR6 memory as well?

Are you ready for GDDR6?

GDDR6's timing will be a little slower than we had hoped

Subject: General Tech | August 26, 2016 - 01:04 PM |
Tagged: gddr6, Samsung, delay

The Inquirer offered some sad news for anyone hoping to see GDDR6 next year as Samsung is now aiming to deliver in 2018.  The specifications remain the same, internal bandwidth topping out at 16Gbps, compared to GDDR5X at 12Gbps.  That will translate to a maximum of 512GBps on a 256-bit memory bus, 786GBps on a 384-bit bus.  Mobile devices will also appreciate the new standard as it should use around 20% less power, good news for those who buy gaming laptops.

Samsung-Logos-HD.gif

"SAMSUNG HAS ANNOUNCED that GDDR6 memory interface technology will be introduced in 2018, not 2017 as was previously expected."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer