ARM Partners with Xilinx to Accelerate Path to 7nm

Subject: Processors | December 8, 2016 - 02:00 PM |
Tagged: Xilinx, TSMC, standard cells, layout, FinFET, EDA, custom cell, arm, 7nm

Today ARM is announcing their partnership with Xilinx to deliver design solutions for their products on TSMC’s upcoming 7nm process node.  ARM has previously partnered with Xilinx on other nodes including 28, 20, and 16nm.  Their partnership extends into design considerations to improve the time to market of complex parts and to rapidly synthesize new designs for cutting edge process nodes.

Xilinx is licensing out the latest ARM Artisan Physical IP platform for TSMC’s 7nm.  Artisan Physical IP is a set of tools to help rapidly roll out complex designs as compared to what previous generations of products faced.  ARM has specialized libraries and tools to help implement these designs on a variety of processes and receive good results even on the shortest possible design times.

icon_arm.jpg

Design relies on two basic methodologies.  There is custom cell and then standard cell designs.  Custom cell design allows for a tremendous amount of flexibility in layout and electrical characteristics, but it requires a lot of man-hours to complete even the simplest logic.  Custom cell designs typically draw less power and provide higher clockspeeds than standard cell design.  Standard cells are like Legos in that the cells can be quickly laid out to create complex logic.  Software called EDA (Electronic Design Automation) can quickly place and route these cells.  GPUs lean heavily on standard cells and EDA software to get highly complex products out to market quickly.

These two basic methods have netted good results over the years, but during that time we have seen implementations of standard cells become more custom in how they behave.  While not achieving full custom performance, we have seen semi-custom type endeavors achieve appreciable gains without requiring the man hours to achieve fully custom.

In this particular case ARM is achieving a solid performance in power and speed through automated design that improves upon standard cells, but without the downsides of a fully custom part.  This provides positive power and speed benefits without the extra power draw of a traditional standard cell.  ARM further improves upon this with the ARM Artisan Power Grid Architect (PGA) which simplifies the development of a complex power grid that services a large and complex chip.

We have seen these types of advancements in the GPU world that NVIDIA and AMD enjoy talking about.  A better power grid allows the ASIC to perform at lower power envelopes due to less impedence.  The GPU guys have also utilized High Density Libraries to pack in the transistors as tight as possible to utilize less space and increase spatial efficiency.  A smaller chip, which requires less power is always a positive development over a larger chip of the same capabilities that requires more power.  ARM looks to be doing their own version of these technologies and are applying them to TSMC’s upcoming 7nm FinFET process.

TSMC is not releasing this process to mass production until at least 2018.  In 1H 2017 we will see some initial test and early production runs for a handful of partners.  Full blown production of 7nm will be in 2018.  Early runs and production are increasingly being used for companies working with low power devices.  We can look back at 20/16/14 nm processes and see that they were initially used by designs that do not require a lot of power and will run at moderate clockspeeds.  We have seen a shift in who uses these new processes with the introduction of sub-28nm process nodes.  The complexity of the design, process steps, materials, and libraries have pushed the higher performance and power hungry parts to a secondary position as the foundries attempt to get these next generation nodes up to speed.  It isn’t until after some many months of these low power parts are pushed through that we see adjustments and improvements in these next generation nodes to handle the higher power and clockspeed needs of products like desktop CPUs and GPUs.

Zynq-7015-module_large.jpg

ARM is certainly being much more aggressive in addressing next generation nodes and pushing their cutting edge products on them to allow for far more powerful mobile products that also exhibit improved battery life.  This step with 7nm and Xilinx will provide a lot of data to ARM and its partners downstream when the time comes to implement new designs.  Artisan will continue to evolve to allow partners to quickly and efficiently introduce new products on new nodes to the market at an accelerated rate as compared to years past.

Click to read the entire ARM post!

Source: ARM

Qualcomm and Microsoft bring full Windows 10 to Snapdragon devices

Subject: Mobile | December 8, 2016 - 03:00 AM |
Tagged: windows rt, windows 10, snapdragon, qualcomm, microsoft, arm

At the WinHEC developer conference in China today, Qualcomm and Microsoft have announced a partnership to enable a full Windows 10 computing environment on systems based on the next-generation of Snapdragon processors in the second half of 2017. The importance of this announcement can’t be overstated – it marks another attempt for Microsoft to enter the non-x86 market with mobile devices (think tablets and notebooks, less smartphones).

If you remember the first attempt at Windows on ARM, Windows RT, it’s failure was a result of a split software base: some applications could work between Windows RT and Windows 8 while most could not. It likely helped in the demise of that initiative that Windows 8 was overall very poorly received and that the overzealous box-style interface just wasn’t a hit with users. Major players like NVIDIA, Qualcomm, Samsung and many different OEMs were all caught up in the mess, making it very unlikely that Microsoft would undertake this again without a surefire win.

chip_4.png

Though details are light today, the success of this depends on software compatibility. Microsoft and Qualcomm claim that Windows 10 on mobile devices will bring “the scale of the mobile ecosystem with an unparalleled pace of innovation to address consumers’ growing need to be always on and always connected.” Modems and high performance SoCs for mobile systems is the realm of Qualcomm and form factors using these components as the base could be a solid source of innovation. The press release states as much, saying this partnership will “enable hardware makers to develop new and improved consumer products including handsets, tablets, PCs, head mounted displays, and more.”

Software is the silver bullet though.

New Windows 10 devices powered by Snapdragon supports all aspects of Microsoft’s latest operating system including Microsoft Office, Microsoft Edge browser, Windows 10 gaming titles like Crysis 2 and World of Tanks, Windows Hello, and touchscreen features like Windows Pen. It also offers support for Universal Windows Platform (UWP) apps and Win32 apps through emulation, providing users with a wide selection of full featured applications.

Based on what I have learned, the native software experience will come with UWP applications. UWP is Microsoft’s attempt to merge the software base for different platforms, and though it has been slow, adoption by developers and users has been increasing. If it’s true that everything being sold in the Microsoft app store today will be compatible with the ARM architecture processors in the Snapdragon SoC, then I think this leaves the door open for a wider adoption by an otherwise discerning audience.

Windows_10_build_14393_(Redstone).png

Are you ready to hit that start button on your Snapdragon computer?

The emulation for ALL other Win32 (and x64) applications is critical as well. Being able to run the code you are used to running on an x86-based notebook will give users flexibility to migrate and the ability to depend on Qualcomm-based Windows 10 machine for work and for play. With emulation comes a performance hit – but how much of one has yet to be seen or discussed. The rumors have been circulating recently that ARM compatibility was coming to Windows 10 with the Redstone 3 update, and the timing of “late 2017” matches up perfectly with the announcement today.

While notebooks and convertibles are likely on the table for this platform, it’s the new form factors that should excite you. Microsoft’s Terry Myserson expects Qualcomm and Windows to bring “a range of thin, light, power-efficient and always-connected devices, powered by the Qualcomm Snapdragon platform, is the next step in delivering the innovations our customers love.” Cristiano Amon, President at Qualcomm Technologies thinks they can provide “advanced mobile computing features, including Gigabit LTE connectivity, advanced multimedia support, machine learning and superior hardware security features, all while supporting thin, fan-less designs and long battery life.”

This partnership will lead to more than just new consumer products though, reaching into the enterprise markets with the Qualcomm Snapdragon platform addressing markets ranging from “mobility to cloud computing.”

Full press release after the break!

Source: Qualcomm

Podcast #427 - Leaked Zen Prices, Kaby Lake Performance Leaks, GTX 1050 Ti Upgrades

Subject: Editorial | December 1, 2016 - 04:54 PM |
Tagged: Zen, video, Samsung, podcast, microsoft, megaprocessor, Lenovo, kaby lake, Intel, GTX 1050 Ti, arm, amd

PC Perspective Podcast #427 - 12/01/16

Join us this week as we discuss leaked Zen prices, Kaby Lake performance leaks, GTX 1050 Ti upgrades and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Ryan Shrout, Allyn Malventano, Josh Walrath, Jeremy Hellstrom

Program length: 1:20:41

  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
  4. Closing/outro

Subscribe to the PC Perspective YouTube Channel for more videos, reviews and podcasts!!

Rumor: Microsoft Working on x86 Emulation for ARM64

Subject: General Tech | November 25, 2016 - 12:01 PM |
Tagged: x86, windows 10, microsoft, arm

According to Mary Jo Foley at ZDNet, Microsoft is working on emulating the x86 instruction set on ARM64. Her sources further claim that this is intended to be a Windows 10 feature that is targeting Redstone 3, which is the feature update expected in late 2017 (after the upcoming Creators Update in early 2017). Of course, Microsoft will not comment on this rumor. Mary Jo Foley is quite good at holding out on publishing until she gets multiple, independent sources, though. Still, projects slip, pivot, and outright die all of the time, even if the information was true at one point.

windows-10-with-media-center.png

Media Center is still dead, though.

So, while keeping in mind that this might not be true, and, even if it is, it could change: let’s think.

The current speculation is that this might be aimed at enterprise customers, including a potential partnership with HP and Qualcomm. This makes sense for a few reasons, especially when you combine it with Microsoft and Samsung’s recent efforts to port .NET Core to ARM. Combining rumors like this might be akin to smashing two rocks together, but you never know if it’ll spark something. Anyway, you would expect these sorts of apps could jump architectures fairly well, because they’re probably not real-time, form-based applications. You might be able to get a comfortable enough user experience, even with the inherent overhead of translating individual instructions.

Another possibility is that Microsoft hasn’t given up on the Windows 8 / Windows RT vision.

Back in that era, the whole OS seemed designed to push users toward their new platform, Metro. The desktop was an app, and that app contained all of the Win32 bits, isolating them from the rest of the PC and surrounding that tile with everything WinRT. The new platform was seductive for Microsoft in a few ways. First, it was more secure, and people considered Windows the operating system that’s plagued with malware. Second, it let them assert control over their apps, like Apple does with their App Store. At the time, they even demanded that third-party web browsers be nothing more than re-skins of Internet Explorer. Firefox? Don’t even think about bringing Gecko in here. It’s Trident or bust.

Say what you like about those first two points, I know I have, and often disapprovingly from an art enthusiast standpoint, but there was a third one that also interested Microsoft:

Hardware independence.

The WinRT runtime, when it was first unveiled, was pretty much designed in a way that Microsoft could swap out everything underneath it if they wanted to jump ship and move to a new architecture. At the time, almost a decade ago, Intel wasn’t competitive against ARM in the mobile space. This kept Windows applications, and Microsoft, watching the rest of the world sail away.

But supporting both ARM and x86 isn’t good enough. What if IBM wins next time? Or a completely different instruction set? If everything calls an API that can be uprooted and transplanted elsewhere? There will never need to be this mobile concern again.

But then we have this whole decades of stuff that already exists problem. While I don’t like the frog boil analogy, it could be Microsoft’s attempt to uproot enough x86-locked content that people can accept UWP. I’m not sure that will work out, especially since we rely upon real-time software that is not accepting Windows Store, but it might be their goal.

What do you all think?

Source: ZDNet

WoW, Microsoft is back in the porting business again. x86 to ARM expected with Redstone 3

Subject: General Tech | November 22, 2016 - 05:34 PM |
Tagged: CHPE, arm, x86 emulator, x86, windows 10, redstone 3

We haven't seen Windows 10 Redstone 2 yet but already we have some news about Redstone 3 which hints at the coming of the Surface phone.  Microsoft is working on x86 emulation for ARM processors, allowing proper Windows programs and not just Universal Apps to work on ARM based machines.  They pulled this off in the past with the switch from 32bit to 64bit applications, with Windows on Windows emulation and porting x86 to ARM and vice versa has been a long term project at Microsoft. 

The possible issue that comes from this eventuality is the interface.  Just like in a game ported from a gaming platform to PC, moving from an ecosystem with a limited input device to a platform designed with a mouse and keyboard will cause issues.  The reverse tends to be worse, for instance Skyrim's abysmal inventory system exists specifically because it was planned to be released on consoles.  Now imagine Excel or file management software trimmed down and designed specifically to run on a phablet, as well as on a PC.  For more on this possible nightmare, check out The Inquirer.

shot-project-gantt-chart-wizard.jpg

"According to Mary-Jo Foley, the font of all knowledge Windows-wise, the company is looking at x86 emulation for ARM processors. It’s not a new idea, but it's looking likely for Redstone 3."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

NES Classic PCB Pictured Online

Subject: Systems, Mobile | November 6, 2016 - 12:00 PM |
Tagged: Nintendo, nes, Cortex A7, arm, Allwinner

It looks like Peter Brown, Senior Reviews Editor at GameSpot received an NES Classic and promptly disassembled it for a single photo. From there, users on Reddit searched the component model numbers and compiled specifications. According to their research, the system (unless Nintendo made multiple, interchangeable models) is based on an Allwinner R16 SoC, which has four ARM Cortex A7 cores and an ARM Mali 400 MP2 GPU. Attached to this is 256MB of DDR3 RAM and 512 MB of flash.

nintendo-2016-nesclassic-inside-peterbrowngamespot.jpg

Image Credit: Peter Brown

Thankfully, the packaging of each chip has quite large, mostly legible branding, so it's easy to verify.

In terms of modern phone technology, this is about the bottom of the barrel. The Allwinner R16 should be roughly comparable to the Raspberry Pi 2, only that system has about four times the RAM as Nintendo's. This is not a bad thing, of course, because its entire goal is to emulate a device that was first released in 1983 (in Japan) albeit at high resolution. Not all of the games will be free for them to include, either. Mega Man 2, PAC-MAN, Final Fantasy, Castlevania 1 and 2, Ninja Gaiden, Double Dragon II, Bubble Bobble, Tecmo Bowl, Super C, and Galaga are all from third-party publishers, who will probably need some cut of sales.

Users are claiming that it doesn't look like it could be updated. Counting the ports, it doesn't look like there's any way in, but I could be wrong. That said, I never expected it to be upgradeable so I guess that's that?

The NES Classic Edition goes on sale on November 11th for $59.99 USD MSRP.

ARM plans to mbed itself into the IoT, for better or worse

Subject: General Tech | October 26, 2016 - 05:08 PM |
Tagged: arm, Mbed OS, iot, security

Is a single point of failure more or less secure than multiple points?  That is the question IoT designers should make when considering ARM's new mbed OS, designed to rein in the fiasco which is the current state of security in the IoT market.  On the one hand this OS will run on just about any device you could want, even if you prefer your device remain on MIPS, Linux or another OS and regardless of your back end provider.  It will allow encrypted updates to be pushed out to devices software or firmware from a single source and the companies which use it will be charge on a pay per use scheme as opposed to a fixed cost.

On the sinister hand, this means that when someone manages to exploit an unforeseen vulnerability in mbed, the communications between ARM and the devices or the factory set private keys, they will be able to own every single mbed device out there.  That is unfortunately merely a matter of time and so we wait to hear from ARM as to how they plan to partition the devices which use mbed and other measures they will develop to prevent a worse DDoS than the Dyn DNS attack last week.  You can take a deeper look at mbed's structure as well as ARM's new Cortex-M33 and Cortex-M23 microcontrollers over at The Register.

index.png

"So ARM has come up with mbed Cloud, a software-as-a-service platform that securely communicates with firmware in devices to install fixes and feature updates. Product makers pay to remotely manage all their sold kit. Crucially, they pay for what they use – whether it's pushing updates, or connecting millions of units, and so on."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

Intel Launches Stratix 10 FPGA With ARM CPU and HBM2

Subject: Processors | October 10, 2016 - 06:25 AM |
Tagged: SoC, Intel, FPGA, Cortex A53, arm, Altera

 Intel and recently acquired Altera have launched a new FPGA product based on Intel’s 14nm Tri-Gate process featuring an ARM CPU, 5.5 million logic element FPGA, and HBM2 memory in a single package. The Stratix 10 is aimed at data center, networking, and radar/imaging customers.

The Stratix 10 is an Altera-designed FPGA (field programmable gate array) with 5.5 million logic elements and a new HyperFlex architecture that optimizes registers, pipeline, and critical pathing (feed-forward designs) to increase core performance and increase the logic density by five times that of previous products. Further, the upcoming FPGA SoC reportedly can run at twice the core performance of Stratix V or use up to 70% less power than its predecessor at the same performance level.

Intel Altera Stratix 10.jpg

The increases in logic density, clockspeed, and power efficiency are a combination of the improved architecture and Intel’s 14nm FinFET (Tri-Gate) manufacturing process.

Intel rates the FPGA at 10 TFLOPS of single precision floating point DSP performance and 80 GFLOPS/watt.

Interestingly, Intel is using an ARM processor to feed data to the FPGA chip rather than its own Quark or Atom processors. Specifically, the Stratix 10 uses an ARM CPU with four Cortex A53 cores as well as four stacks of on package HBM2 memory with 1TB/s of bandwidth to feed data to the FPGA. There is also a “secure device manager” to ensure data integrity and security.

The Stratix 10 is aimed at data centers and will be used with in specialized tasks that demand high throughput and low latency. According to Intel, the processor is a good candidate for co-processors to offload and accelerate encryption/decryption, compression/de-compression, or Hadoop tasks. It can also be used to power specialized storage controllers and networking equipment.

Intel has started sampling the new chip to potential customers.

Intel Altera Stratix 10 FPGA SoC.png

In general, FPGAs are great at highly parallelized workloads and are able to efficiently take huge amounts of inputs and process the data in parallel through custom programmed logic gates. An FPGA is essentially a program in hardware that can be rewired in the field (though depending on the chip it is not necessarily a “fast” process and it can take hours or longer to switch things up heh). These processors are used in medical and imaging devices, high frequency trading hardware, networking equipment, signal intelligence (cell towers, radar, guidance, ect), bitcoin mining (though ASICs stole the show a few years ago), and even password cracking. They can be almost anything you want which gives them an advantage over traditional CPUs and graphics cards though cost and increased coding complexity are prohibitive.

The Stratix 10 stood out as interesting to me because of its claimed 10 TFLOPS of single precision performance which is reportedly the important metric when it comes to training neural networks. In fact, Microsoft recently began deploying FPGAs across its Azure cloud computing platform and plans to build the “world’s fastest AI supercomputer. The Redmond-based company’s Project Catapult saw the company deploy Stratix V FPGAs to nearly all of its Azure datacenters and is using the programmable silicon as part of an “acceleration fabric” in its “configurable cloud” architecture that will be used initially to accelerate the company’s Bing search and AI research efforts and later by independent customers for their own applications.

It is interesting to see Microsoft going with FPGAs especially as efforts to use GPUs for GPGPU and neural network training and inferencing duties have increased so dramatically over the years (with NVIDIA being the one pushing the latter). It may well be a good call on Microsoft’s part as it could enable better performance and researchers would be able to code their AI accelerator platforms down to the gate level to really optimize things. Using higher level languages and cheaper hardware with GPUs does have a lower barrier to entry though. I suppose ti will depend on just how much Microsoft is going to charge customers to use the FPGA-powered instances.

FPGAs are in kind of a weird middle ground and while they are definitely not a new technology, they do continue to get more complex and powerful!

What are your thoughts on Intel's new FPGA SoC?

Also read:

Source: Intel

ARM's new security focused Cortex R-52 for IoT

Subject: General Tech | September 20, 2016 - 05:20 PM |
Tagged: arm, iot, cortex r52, r-52, cortex, security

ARM's new Cortex R-52 replaces the aging R-5 and they report that it will run 14 times faster than the model it replaces.  It is also the first ARMv8-R based product they have released, it supports hypervisor instructions as well as additional unspecified safety features.  They are aiming for medical applications as well as vehicles, markets which are currently plagued by insecure software and hardware.  In many cases the insecurity stems from companies using the default software settings in their products, often due to ignorance as opposed to malice and ARM intends their default settings to be far more secure than current SOCs.  Unfortunately this will not help with those who use default passwords and ports but it is a step in the right direction.  Pop over to The Inquirer for more information.

CortexR Launch Deck-17_575px.png

"The Cortex R-52 has been five years in development and is engineered to meet new safety standards as ARM takes aim at the growing market of large-scale smart devices, such as surgical robots and self-driving cars."

Here is some more Tech News from around the web:

Tech Talk

Source: The Inquirer

Podcast #413 - NVIDIA Pascal Mobile, ARM and Intel partner on 10nm, Flash Memory Summit and more!

Subject: Editorial | August 18, 2016 - 06:20 PM |
Tagged: video, podcast, pascal, nvidia, msi, mobile, Intel, idf, GTX 1080, gtx 1070, gtx 1060, gigabyte, FMS, Flash Memory Summit, asus, arm, 10nm

PC Perspective Podcast #413 - 08/18/2016

Join us this week as we discuss the new mobile GeForce GTX 10-series gaming notebooks, ARM and Intel partnering on 10nm, Flash Memory Summit and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts:  Allyn Malventano, Sebastian Peak, Josh Walrath and Jeremy Hellstrom

Program length: 1:29:39
  1. Week in Review:
  2. This episode of PC Perspective is brought to you by Casper!! Use code “PCPER”
  3. News items of interest:
    1. 0:42:05 Final news from FMS 2016
  4. Hardware/Software Picks of the Week
    1. Ryan: VR Demi Moore
  5. Closing/outro