Report: AMD to Launch Radeon RX 500 Series GPUs in April

Subject: Graphics Cards | March 1, 2017 - 05:04 PM |
Tagged: video card, RX 580, RX 570, RX 560, RX 550, rx 480, rumor, report, rebrand, radeon, graphics, gpu, amd

According to a report from VideoCardz.com we can expect AMD Radeon RX 500-series graphics cards next month, with an April 4th launch of the RX 580 and RX 570, and subsequent RX 560/550 launch on April 11. The bad news? According to the report "all cards, except RX 550, are most likely rebranded from Radeon RX 400 series".

Polaris10.jpg

AMD Polaris 10 GPU (Image credit: Heise Online)

Until official confirmation on specs arrive, this is still speculative; however, if Vega is not ready for an April launch and AMD will indeed be refreshing their Radeon lineup, an R9 300-series speed bump/rebrand is not out of the realm of possibility. VideoCardz offers (unconfirmed, at this point) specs of the upcoming RX 500-series cards, with RX 400 numbers for comparison:

videocardz_chart_1.png

Chart credit: VideoCardz.com

The first graph shows the increased GPU boost clock speed of ~1340 MHz for the rumored RX 580, with the existing RX 480 clocked at 1266 MHz. Both would be Polaris 10 GPUs with otherwise identical specs. The same largely holds for the rumored specs on the RX 570, though this GPU would presumably be shipping with faster memory clocks as well. On the RX 560 side, however, the Polaris 11 powered replacement for the RX 460 might be based on the 1024-core variant we have seen from the Chinese market.

videocardz_chart_2.png

Chart credit: VideoCardz.com

No specifics on the RX 550 are yet known, which VideoCardz says "is most likely equipped with Polaris 12, a new low-end GPU". These rumors come via heise.de (German language), who state that those "hoping for Vega-card will be disappointed - the cards are intended to be rebrands with known GPUs". We will have to wait until next month to know for sure, but even if this is the case, expect faster clocks and better performance for the same money.

Source: VideoCardz

Linked Multi-GPU Arrives... for Developers

The Khronos Group has released the Vulkan 1.0.42.0 specification, which includes experimental (more on that in a couple of paragraphs) support for VR enhancements, sharing resources between processes, and linking similar GPUs. This spec was released alongside a LunarG SDK and NVIDIA drivers, which are intended for developers, not gamers, that fully implement these extensions.

I would expect that the most interesting feature is experimental support for linking similar GPUs together, similar to DirectX 12’s Explicit Linked Multiadapter, which Vulkan calls a “Device Group”. The idea is that the physical GPUs hidden behind this layer can do things like share resources, such as rendering a texture on one GPU and consuming it in another, without the host code being involved. I’m guessing that some studios, like maybe Oxide Games, will decide to not use this feature. While it’s not explicitly stated, I cannot see how this (or DirectX 12’s Explicit Linked mode) would be compatible in cross-vendor modes. Unless I’m mistaken, that would require AMD, NVIDIA, and/or Intel restructuring their drivers to inter-operate at this level. Still, the assumptions that could be made with grouped devices are apparently popular with enough developers for both the Khronos Group and Microsoft to bother.

microsoft-dx12-build15-linked.png

A slide from Microsoft's DirectX 12 reveal, long ago.

As for the “experimental” comment that I made in the introduction... I was expecting to see this news around SIGGRAPH, which occurs in late-July / early-August, alongside a minor version bump (to Vulkan 1.1).

I might still be right, though.

The major new features of Vulkan 1.0.42.0 are implemented as a new classification of extensions: KHX. In the past, vendors, like NVIDIA and AMD, would add new features as vendor-prefixed extensions. Games could query the graphics driver for these abilities, and enable them if available. If these features became popular enough for multiple vendors to have their own implementation of it, a committee would consider an EXT extension. This would behave the same across all implementations (give or take) but not be officially adopted by the Khronos Group. If they did take it under their wing, it would be given a KHR extension (or added as a required feature).

The Khronos Group has added a new layer: KHX. This level of extension sits below KHR, and is not intended for production code. You might see where this is headed. The VR multiview, multi-GPU, and cross-process extensions are not supposed to be used in released video games until they leave KHX status. Unlike a vendor extension, the Khronos Group wants old KHX standards to drop out of existence at some point after they graduate to full KHR status. It’s not something that NVIDIA owns and will keep it around for 20 years after its usable lifespan just so old games can behave expectedly.

khronos-group-logo.png

How long will that take? No idea. I’ve already mentioned my logical but uneducated guess a few paragraphs ago, but I’m not going to repeat it; I have literally zero facts to base it on, and I don’t want our readers to think that I do. I don’t. It’s just based on what the Khronos Group typically announces at certain trade shows, and the length of time since their first announcement.

The benefit that KHX does bring us is that, whenever these features make it to public release, developers will have already been using it... internally... since around now. When it hits KHR, it’s done, and anyone can theoretically be ready for it when that time comes.

Overclockers Push Ryzen 7 1800X to 5.2 GHz On LN2, Break Cinebench Record

Subject: Processors | February 28, 2017 - 09:06 PM |
Tagged: Zen, Ryzen 1800X, ryzen, overclocking, LN2, Cinebench, amd

During AMD’s Ryzen launch event a team of professional overclockers took the stage to see just how far they could push the top Zen-based processor. Using a bit of LN2 (liquid nitrogen) and a lot of voltage, the overclocking team was able to hit an impressive 5.20 GHz with all eight cores (16 threads) enabled!

Ryzen Cinebench Benchmark Record.png

In addition to the exotic LN2 cooling, the Ryzen 7 1800X needed 1.875 volts to hit 5.20 GHz. That 5.20 GHz was achieved by setting the base clock at 137.78 MHz and the multiplier at 37.75. Using these settings, the chip was even stable enough to benchmark with a score of 2,363 on Cinebench R15’s multi-threaded test.

According to information from AMD, a stock Ryzen 7 1800X comes clocked at 3.6 GHz base and up to 4 GHz boost (XFR can go higher depending on HSF) and is able to score 1,619 in Cinebench. The 30% overclock to 5.20 GHz got the overclockers an approximately 45% higher CInebench score.

Further, later in the overclocking event, they managed to break a Cinebench world record of 2,445 points by achieving a score of 2,449 (it is not clear what clockspeed this was at). Not bad for a brand-new processor!

AMD Ryzen 1800X Overclocked On LN2 to 5GHz.jpg

The overclocking results are certainly impressive, and suggest that Ryzen may be a decent overclocker so long as you have the cooling setup to get it there (the amount of voltage needed is a bit worrying though heh). Interestingly, HWBot shows a Core i7 6900K (also 8C/16T) hitting 5.22 GHz and scoring 2,146 in CInebench R15. That Ryzen can hit similar numbers with all cores and threads turned on is promising.

I am looking forward to seeing what people are able to hit on air and water cooling and if XFR will work as intended and get most of the way to a manual overclock without the effort of manually overclocking. I am also curious how the power phases and overclocking performance will stack up on motherboards using the B350 versus X370 chipsets. With the eight core chips able to hit 5.2, I expect the upcoming six core Ryzen 5 and four core Ryzen 3 processors to clock even higher which would certainly help gaming performance for budget builds!

Austin Evans was able to get video of the overclocking event which you can watch here (Vimeo).

Also read:

Source: Hexus

AMD Unveils Next-Generation GPU Branding, Details - Radeon RX Vega

Subject: General Tech | February 28, 2017 - 05:46 PM |
Tagged: amd, Vega, radeon rx vega, radeon, gdc 2017, capsaicin, rtg, HBCC, FP16

Today at the AMD Capsaicin & Cream event at GDC 2017, Senior VP of the Radeon Technologies Group, Raja Koduri officially revealed the branding that AMD will use for their next generation GPU products.

While we usually see final product branding deviate from their architectural code names (e.g. Polaris becoming the Radeon RX 460, 470 and 480), AMD this time has decided to embrace the code name for the retail naming scheme for upcoming graphics cards featuring the new GPU – Radeon RX Vega.

RadeonRXVega.jpg

However, we didn't just get a name for Vega-based GPUs. Raja also went into some further detail and showed some examples of technologies found in Vega.

First off is the High-Bandwidth Cache Controller found in Vega products. We covered this technology during our Vega architecture preview last month at CES, but today we finally saw a demo of this technology in action.

Vega-HBCCslide.jpg

Essentially, the High-Bandwidth Cache Controller (HBCC) allows Vega GPUs to address all available memory in the system (including things like NVMe SSDs, system DRAM and network storage.) AMD claims that by using the already fast memory you have available on your PC to augment onboard GPU memory (such as HBM2) they will be able to offer less expensive graphics cards that ultimately offer access to much more memory than current graphics cards.

Vega-HBCC.jpg

The demo that they showed on stage featured Deus Ex: Mankind Divided running on a system with a Vega GPU running with 2GB of VRAM, and Ryzen CPU. By turning HBCC on, they were able to show a 50% increase in average FPS, and a 100% increase in minimum FPS.

While we probably won't actually see a Vega product with such a small VRAM implementation, it was impressive to see how HBCC was able to dramatically improve the playability of a 2GB GPU on a game that has no special optimizations to take advantage of the High-Bandwidth Cache.

The other impressive demo running on Vega at the Capsaicin & Cream event centered around what AMD is calling Rapid Pack Math.

Rapid Pack Math is an implementation of something we have been hearing and theorizing a lot about lately, the use of FP16 shaders for some graphic effects in games. By using half-precision FP16 shaders instead of the current standard FP32 shaders, developers are able to get more performance out of the same GPU cores. In specific, Rapid Pack Math allows developers to run half-precision FP16 shaders at exactly 2X the speed of traditional standard-precision FP32 shaders.

TressFX-FP16.jpg

While the lower precision of FP16 shaders won't be appropriate for all GPU effects, AMD was showing a comparison of their TressFX hair rendering technology running on both standard and half-precision shaders. As you might expect, AMD was able to render twice the amount of hair strands per second, making for a much more fluid experience.

Vega-shirt.jpg

Just like we saw with the lead up to the Polaris GPU launch, AMD seems to be releasing a steady stream of information on Vega. Now that we have the official branding for Vega, we eagerly await getting our hands on these new High-end GPUs from AMD.

 

Author:
Subject: Editorial
Manufacturer: AMD

Zen vs. 40 Years of CPU Development

Zen is nearly upon us.  AMD is releasing its next generation CPU architecture to the world this week and we saw CPU demonstrations and upcoming AM4 motherboards at CES in early January.  We have been shown tantalizing glimpses of the performance and capabilities of the “Ryzen” products that will presumably fill the desktop markets from $150 to $499.  I have yet to be briefed on the product stack that AMD will be offering, but we know enough to start to think how positioning and placement will be addressed by these new products.

zen_01.jpg

To get a better understanding of how Ryzen will stack up, we should probably take a look back at what AMD has accomplished in the past and how Intel has responded to some of the stronger products.  AMD has been in business for 47 years now and has been a major player in semiconductors for most of that time.  It really has only been since the 90s where AMD started to battle Intel head to head that people have become passionate about the company and their products.

The industry is a complex and ever-shifting one.  AMD and Intel have been two stalwarts over the years.  Even though AMD has had more than a few challenging years over the past decade, it still moves forward and expects to compete at the highest level with its much larger and better funded competitor.  2017 could very well be a breakout year for the company with a return to solid profitability in both CPU and GPU markets.  I am not the only one who thinks this considering that AMD shares that traded around the $2 mark ten months ago are now sitting around $14.

 

AMD Through 1996

AMD became a force in the CPU industry due to IBM’s requirement to have a second source for its PC business.  Intel originally entered into a cross licensing agreement with AMD to allow it to produce x86 chips based on Intel designs.  AMD eventually started to produce their own versions of these parts and became a favorite in the PC clone market.  Eventually Intel tightened down on this agreement and then cancelled it, but through near endless litigation AMD ended up with a x86 license deal with Intel.

AMD produced their own Am286 chip that was the first real break from the second sourcing agreement with Intel.  Intel balked at sharing their 386 design with AMD and eventually forced the company to develop its own clean room version.  The Am386 was released in the early 90s, well after Intel had been producing those chips for years. AMD then developed their own version of the Am486 which then morphed into the Am5x86.  The company made some good inroads with these speedy parts and typically clocked them faster than their Intel counterparts (eg. Am486 40 MHz and 80 MHz vs. the Intel 486 DX33 and DX66).  AMD priced these points lower so users could achieve better performance per dollar using the same chipsets and motherboards.

zen_02.jpg

Intel released their first Pentium chips in 1993.  The initial version was hot and featured the infamous FDIV bug.  AMD made some inroads against these parts by introducing the faster Am486 and Am5x86 parts that would achieve clockspeeds from 133 MHz to 150 MHz at the very top end.  The 150 MHz part was very comparable in overall performance to the Pentium 75 MHz chip and we saw the introduction of the dreaded “P-rating” on processors.

There is no denying that Intel continued their dominance throughout this time by being the gold standard in x86 manufacturing and design.  AMD slowly chipped away at its larger rival and continued to profit off of the lucrative x86 market.  William Sanders III set the bar higher about where he wanted the company to go and he started on a much more aggressive path than many expected the company to take.

Click here to read the rest of the AMD processor editorial!

AMD Supports CrossFire On B350 and X370 Chipsets, However SLI Limited to X370

Subject: Motherboards | February 26, 2017 - 01:29 AM |
Tagged: x370, sli, ryzen, PCI-E 3.0, gaming, crossfire, b350, amd

Computerbase.de recently published an update (translated) to an article outlining the differences between AMD’s AM4 motherboard chipsets. As it stands, the X370 and B350 chipsets are set to be the most popular chipsets for desktop PCs (with X300 catering to the small form factor crowd) especially among enthusiasts. One key differentiator between the two chipsets was initially support for multi-GPU configurations with X370. Now that motherboards have been revealed and are up for pre-order now, it turns out that the multi-GPU lines have been blurred a bit. As it stands, both B350 and X370 will support AMD’s CrossFire multi-GPU technology and the X370 alone will also have support for NVIDIA’s SLI technology.

The AM4 motherboards equipped with the B350 and X370 chipsets that feature two PCI-E x16 expansion slots will run as x8 in each slot in a dual GPU setup. (In a single GPU setup, the top slot can run at full x16 speeds.) Which is to say that the slots behave the same across both chipsets. Where the chipsets differ is in support for specific GPU technologies where NVIDIA’s SLI is locked to X370. TechPowerUp speculates that the decision to lock SLI to its top-end chipset is due, at least in part, to licensing costs. This is not a bad thing as B350 was originally not going to support any dual x16 slot multi-GPU configurations, but now motherboard manufacturers are being allowed to enable it by including a second slot and AMD will reportedly permit CrossFire usage (which costs AMD nothing in licensing). Meanwhile the most expensive X370 chipset will support SLI for those serious gamers that demand and can afford it. Had B350 supported SLI and carried the SLI branding, they likely would have been ever so slightly more expensive than they are now. Of course, DirectX 12's multi-adapter will work on either chipset so long as the game supports it.

  X370 B350 A320 X300 / B300 / A300 Ryzen CPU Bristol Ridge APU
PCI-E 3.0 0 0 0 4 20 (18 w/ 2 SATA) 10
PCI-E 2.0 8 6 4 0 0 0
USB 3.1 Gen 2 2 2 1 1 0 0
USB 3.1 Gen 1 6 2 2 2 4 4
USB 2.0 6 6 6 6 0 0
SATA 6 Gbps 4 2 2 2 2 2
SATA RAID 0/1/10 0/1/10 0/1/10 0/1    
Overclocking Capable? Yes Yes No Yes (X300 only)    
SLI Yes No No No    
CrossFire Yes Yes No No    

Multi-GPU is not the only differentiator though. Moving up from B350 to X370 will get you 6 USB 3.1 Gen 1 (USB 3.0) ports versus 2 on B350/A30/X300, two more PCI-E 2.0 lanes (8 versus 6), and two more SATA ports (6 total usable; 4 versus 2 coming from the chipset).

Note that X370, B350, and X300 all support CPU overclocking. Hopefully this helps you when trying to decide which AM4 motherboard to pair with your Ryzen CPU once the independent benchmarks are out. In short, if you must have SLI you are stuck ponying up for X370, but if you plan to only ever run a single GPU or tend to stick with AMD GPUs and CrossFire, B350 gets you most of the way to a X370 for a lot less money! You do not even have to give up any USB 3.1 Gen 2 ports though you limit your SATA drive options (it’s all about M.2 these days anyway heh).

For those curious, looking around on Newegg I notice that most of the B350 motherboards have that second PCI-E 3.0 x16 slot and CrossFire support listed in their specifications and seem to average around $99.  Meanwhile X370 starts at $140 and rockets up from there (up to $299!) depending on how much bling you are looking for!

Are you going for a motherboard with the B350 or X370 chipset? Will you be rocking multiple graphics cards?

Also read:

AMD Launching Ryzen 5 Six Core Processors Soon (Q2 2017)

Subject: Processors | February 24, 2017 - 02:17 AM |
Tagged: Zen, six core, ryzen 5, ryzen, hexacore, gaming, amd

While AMD's Ryzen lineup and pricing has leaked out, only the top three Ryzen 7 processors are available for pre-order (with availability on March 2nd). Starting at $329 for the eight core sixteen thread Ryzen 7 1700, these processors are aimed squarely at enthusiasts craving top-end performance. It seems that enthusiasts looking for cheaper and better price/performance options for budget gaming and work machines will have to wait a bit for Ryzen 5 and Ryzen 3 which will reportedly launch in the second quarter and second half of 2017 respectively. Two six core Ryzen 5 processors will launch somewhere between April and June with the Ryzen 3 quad cores (along with mobile and "Raven Ridge" APU parts) following in the summer to end-of-year timeframe hopefully hitting that back-to-school and holiday shopping launch windows respectively.

AMD Ryzen Die Shot_six core.jpg

Image via reddit (user noiserr). Guru3d has another die shot. Six cores will be created by disabling one core from each CCX.

Thanks to leaks, the two six core Ryzen 5 CPUs are the Ryzen 5 1600X at $259 and Ryzen 5 1500 at $229. The Ryzen 5 1600X is a 95W TDP CPU with six cores and twelve threads at 3.6 GHz base to 4.0 GHz boost with 16MB of L3 cache. AMD is pitting this chip against the Intel Core i5 7600K which is a $240 quad core Kaby Lake part sans Hyper-Threading. Meanwhile, the Ryzen 5 1500 is a 65W processor clocked at 3.2 GHz base and 3.5 GHz boost with 16 MB of L3 cache.

Note that the Ryzen 5 1600X features AMD's XFR (extreme frequency) technology which the Ryzen 5 1500 lacks. Both processors are unlocked and can be overclocked, however. 

Interestingly, Antony Leather over at Forbes managed to acquire some information on how AMD is making these six core parts. According to his source, AMD is disabling one core (and its accompanying L2 cache) from each four core Core Complex (CCX). Doing this this way (rather than taking two cores from one CCX) should keep things balanced. It also allows AMD to keep all of the processors 16MB of L3 cache enabled and each of the remaining three cores of each complex will be able to access the L3 cache as normal. Previous rumors had suggested that the CCXes were "indivisible" and six cores were not possible, but it appears that AMD is able to safely disable at least one core of a complex without compromising the whole thing. I doubt we will be seeing any odd number core count CPUs from AMD though (like their old try at selling tri-core parts that later were potentially able to be unlocked). I am glad that AMD was able to create six core parts while leaving the entire L3 cache intact.

What is still not clear is whether these six core Ryzen 5 parts are made by physically disabling the core from the complex or if the cores are simply disabled/locked out in the micro code or BIOS/UEFI. It would be awesome if, in the future when yields are to the point where binning is more for product segmentation than because of actual defects, those six core processors could be unlocked! 

The top end Ryzen 7 processors are looking to be great performers and a huge leap over Excavator while at least competing with Intel's latest at multi-threaded performance (I will wait for independent benchmarks for single threaded where even from AMD the benchmark scores are close although these benchmark runs look promising). These parts are relatively expensive though, and the cheaper Ryzen 5 and Ryzen 3 (and Raven Ridge APUs) are where AMD will see the most potential sales due to a much bigger market. I am looking forward to seeing more information on the lower end chips and how they will stack up against Intel and its attempts to shift into high gear with moves like enabling Hyper-Threading on lower end Kaby Lake Pentiums and possibly on new Core i5s (that's still merely a rumor though). Intel certainly seems to be taking notice of Ryzen and the reignited competition in the desktop processor space is very promising for consumers!

Are you holding out for a six core or quad core Ryzen CPU or are you considering a jump to the high-end Ryzen 7s?

Source: TechPowerUp

AMD Ryzen Pre-order Starts Today, Specs and Performance Revealed

Subject: Processors | February 22, 2017 - 09:00 AM |
Tagged: Zen, ryzen, preorder, pre-order, handbrake, Cinebench, amd

I know that many of you have been waiting months and years to put your money down for the Zen architecture and Ryzen processors from AMD. Well that day is finally here: AMD is opening pre-orders for Ryzen 7 1800X, Ryzen 7 1700X and Ryzen 7 1700 processors.

That’s the good news. The bad news? You’ll be doing it without the guidance of independent reviews.

For some of you, that won’t matter. And I can respect that! Getting your hands on Ryzen and supporting the disruption that it offers is something not only AMD fans have been preparing for, but tens of thousands of un-upgraded enthusiasts as well.

slides1wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Proudly announced at our meeting with AMD this week, Zen not only met the 40% IPC goals it announced more than a year ago, but exceeded it! AMD claims more than a 52% increase in instructions per clock over Excavator and that is a conservative metric based on side conversations. This does a couple of things for the CPU market immediately: first it resets performance expectations for what Ryzen will offer when reviews do go live and second, it may actually put some worry into Intel.

AMD is allowing us to share baseline specifications of the processors, including clock speeds and core counts, as well as some selected benchmarks that show the Ryzen CPUs in an (obviously) favorable light.

  Ryzen R7 1800X Ryzen R7 1700X Ryzen R7 1700 Core i7-6900K Core i7-6800K Core i7-7700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts
Price $499 $399 $329 $1050 $450 $350

AMD is being extremely aggressive with these prices and with the direct comparisons. The flagship Ryzen 7 1800X will run you just $499, the 1700X at $399 and the 1700 at $329. For AMD’s own comparisons, they pitted the Ryzen 7 1800X against the Core i7-6900K from Intel, selling for more than 2x the cost. Both CPUs have 8 cores and 16 threads, the AMD Ryzen part has higher clock speeds as well. If IPC is equivalent (or close), then it makes sense that the 1800X would be a noticeably faster part. If you care about performance per dollar even more…you should be impressed.

For the other comparisons, AMD is pitting the Ryzen 7 1700X with 8 cores and 16 threads against the Core i7-6800K, with 6 cores and 12 threads. Finally, the Ryzen 7 1700, still with an 8C/16T setup, goes against the Core i7-7700K with just 4 cores and 8 threads.

Here is a summary of the performance comparisons AMD is allowing to be showed.

perf1-wm.jpg

perf2-wm.jpg

Though it's only a couple of benchmarks, and the results are highly siloed to show Ryzen in the best light, the results are incredibly impressive. In Cinebench R15, the Ryzen 1800X is 9% faster than the Core i7-6900K but at half the price; even the Ryzen R7 1700X is beating it. The 1700X is 34% faster than the Core i7-6800K, and the 1700 is 31% faster than the quad-core Core i7-7700K. The only single threaded result AMD gave us shows matching performance from the Core i7-6900K based on the Intel Broadwell architecture and the new Ryzen R7 1800X. This might suppress some questions about single threaded performance of Ryzen before reviews, but Broadwell is a couple generations old in Intel’s lineup, so we should expect Kaby Lake to surpass it.

The Handbrake benchmark results only included Core i7-7700K and the Ryzen R7 1700, with the huge advantage going to AMD. Not unexpected considering the 2x delta in core and thread count.

perf3-wm.jpg

Finally, the performance per dollar conversion on the Cinebench scores is a substantially impactful visual. With a more than 2x improvement from the Ryzen 7 1800X to the Core i7-6900K, power-hungry users on a budget will have a lot to think about.

slides2wm.jpg

Sorry...AMD doesn't trust with slides it seems.

Clearly, AMD is very proud of the Ryzen processor and the Zen architecture, and they should be. This is a giant leap forward for the company compared to previous desktop parts. If you want to buy in today and pre-order, we have links below. If you’d rather wait for a full review from PC Perspective (or other outlets), you only have to wait until March 2nd.

Update Feb 22 @ 4:27am: An official Intel spokesman did respond to today's AMD news with the following: 

“We take any competition seriously but as we’ve learned, consumers usually take a ‘wait and see’ approach on performance claims for untested products. 7th Gen Intel® Core™ delivers the best experiences, and with 8th Gen Intel Core and new technologies like Intel® Optane™ memory coming soon, Intel will not stop raising the bar.” ­

While nothing drastic, the Intel comment is interesting in a couple of ways. First, the fact that Intel is responding at all means that they are rattled to some degree. Second, mention of the 8th Gen Core processor series indicates that they want potential buyers to know that something beyond Kaby Lake is coming down the pipe, a break from Intel's normally stoic demeanor.

Source: AMD

AMD Ryzen CPUs Will Be Available With New Stock Coolers

Subject: Cases and Cooling | February 22, 2017 - 01:04 AM |
Tagged: Wraith, ryzen, hsf, AMD Wraith, amd

Information recently leaked online detailing how AMD will package its retail Ryzen offerings. In addition to the usual processor-only trays for OEMs and system integrators, AMD will offer retail boxed Ryzen processors with a basic HSF (heatsink-fan), circular 95W Wraith Spire cooler, 140W Wraith Max HSF depending on the processor as well as CPU-only boxes of the X-series (e.g. Ryzen 7 1700X) processors for enthusiasts looking to choose their own air or liquid cooler.

AMD Ryzen Cooling Solutions.jpg

Image via Informtica Cero.

TechPowerUp is reporting that a basic cooler similar to AMD’s pre-Wraith style of heatsinks will be packaged with the lower end Ryzen 3 and Ryzen 5 chips – mainly the 65W models. Moving up the processor lineup, the non-X Ryzen 5 and Ryzen 7 processors (up to Ryzen 7 1700) will be bundled with a new “Wraith Spire” cooler that sports a circular design with curved aluminum fins and an (approximately) 80mm fan. This new HSF is rated at 95W and measures 109mm x 103mm x 54mm and is allegedly engineered to be a low noise cooling solution.

Stepping things up a notch, the “Wraith Max” is a tweaked FX-era Wraith cooler (horizontal boxed design with a single fan) that can handle up to 140W processors and has been designed with noise levels in mind while not sacrificing too much performance. It measures 105mm x 108mm x 85mm so it is a fair bit taller than the Wraith Spire. This cooler will come with the higher end eight core Ryzen chips such as the Ryzen 7 1700X and 1800X.

The X variants will also be available in WOF (without fan-heatsink) packages that come in retail boxes but without any heatsink. These WOF packages should come in a bit cheaper than the processor+HSF multipacks and will be ideal for users wanting to use liquid cooling or a higher end air cooler for overclocking.

Thanks to previous leaks that have revealed the box art, AMD will be clearly marking the retail packages to show which cooler is coming with which processor. Further, XFastest has posted images of the basic Ryzen (non-Wraith) heatsink, and you can see (albeit tiny) images of the Wraith Spire and Wraith Max in the leaked table (above, from Informatica Cero).

Sebastian seemed to be very impressed by the original Wraith cooler where he found it to be a significant improvement over AMD’s previous OEM designs and able to match the Hyper 212 Evo in cooling performance (though the Wraith couldn’t quite match it in noise levels due to its smaller fan). So long as AMD maintains quality control and builds on the previous Wraith’s strengths (and hopefully larger fans, at least on the Max), they should be good little coolers. I am interested to see the new Wraith coolers in detail and how well they perform. I suspect many readers will be opting for the CPU-only packages, but for those readers that just want a simple bundled cooling solution I hope the Wraith Spire and Wraith Max turn out to be good deals.

Also read:

Source: TechPowerUp

Report: Leaked AMD Ryzen 7 1700X Benchmarks Show Strong Performance

Subject: Processors | February 21, 2017 - 10:54 AM |
Tagged: ryzen, rumor, report, R7, processor, leak, IPC, cpu, Cinebench, benchmark, amd, 1700X

VideoCardz.com, continuing their CPU coverage of the upcoming Ryzen launch, has posted images from XFASTEST depicting the R7 1700X processor and some very promising benchmark screenshots.

AMD-Ryzen-7-1700X.jpg

(Ryzen 7 1700X on the right) Image credit XFASTEST via VideoCardz

The Ryzen 7 1700X is reportedly an 8-core/16-thread processor with a base clock speed of 3.40 GHz, and while overall performance from the leaked benchmarks looks very impressive, it is the single-threaded score from the Cinebench R15 run pictured which really makes this CPU look like major competition for Intel with IPC.

AMD-Ryzen-7-1700X-Cinebench.jpg

Image credit XFASTEST via VideoCardz

An overall score of 1537 is outstanding, placing the CPU almost even with the i7-6900K at 1547 based on results from AnandTech:

AnandTech_Benchmarks.png

Image credit AnandTech

And the single-threaded performance score of the reported Ryzen 7 1700X is 154, which places it above the i7-6900K's score of 153. (It is worth noting that Cinebench R15 shows a clock speed of 3.40 GHz for this CPU, which is the base, while CPU-Z is displaying 3.50 GHz - likely indicating a boost clock, which can reportedly surpass 3.80 GHz with this CPU.)

Other results from the reported leak include 3DMark Fire Strike, with a physics score of 17,916 with Ryzen 7 1700X clocking in at ~3.90 GHz:

AMD-Ryzen-7-1700X-Fire-Strike-Physics.png

Image credit XFASTEST via VideoCardz

We will know soon enough where this and other Ryzen processors stand relative to Intel's current offerings, and if Intel will respond to the (rumored) price/performance double whammy of Ryzen. An i7-6900K retails for $1099 and currently sells for $1049 on Newegg.com, and the rumored pricing (taken from Wccftech), if correct, gives AMD a big win here. Competition is very, very good!

wccftech_chart.PNG

Chart credit Wccftech.com

Source: VideoCardz