Ryzen shine! It is time for your AMD roundup

Subject: Processors | March 2, 2017 - 03:08 PM |
Tagged: Ryzen 1700X, Zen, x370, video, ryzen, amd

Having started your journey with Ryan's quick overview of the performance of the 1800X and anxiously awaiting our further coverage now that we have both the parts and the time to test them you might want to take a peek at some other coverage. [H]ard|OCP tested the processor which many may be looking at due to the more affordable pricing, the Ryzen 1700X.  Their test system is based on a Gigabyte A370-Gaming 5 with 16GB of Corsair Vengeance DDR4-3600 which ran at 2933MHz during testing; Kyle reached out to vendors who assured him an update will make 3GHz reachable will arrive soon.  Part of their testing focused on VR performance, so make sure to check out the full article.

1488169187kcPgB2ioTd_1_2.jpg

"Saying that we have waited for a long time for a "real" CPU out of AMD would be a gross misunderstatement, but today AMD looks to remedy that. We are now offered up a new CPU that carries the branding name of Ryzen. Has AMD risen from the CPU graveyard? You be the judge after looking at the data."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP

AMD responds to 1080p gaming tests on Ryzen

Subject: Processors | March 2, 2017 - 11:29 AM |
Tagged: amd, ryzen, gaming, 1080p

By far one of the most interesting and concerning points about today's launch of the AMD Ryzen processor is gaming results. Many other reviewers have seen similar results to what I published in my article this morning: gaming at 1080p, even at "ultra" image quality settings, in many top games shows a deficit in performance compared to Intel Kaby Lake and Broadwell-E processors. 

I shared my testing result with AMD over a week ago, trying to get answers and hoping to find some instant fix (a BIOS setting, a bug in my firmware). As it turns out, that wasn't the case. To be clear, our testing was done on the ASUS Crosshair VI Hero motherboard with the 5704 BIOS and any reports you see claiming that the deficits only existed on ASUS products are incorrect.

hitman.png

AMD responded to the issues late last night with the following statement from John Taylor, CVP of Marketing:

“As we presented at Ryzen Tech Day, we are supporting 300+ developer kits with game development studios to optimize current and future game releases for the all-new Ryzen CPU. We are on track for 1000+ developer systems in 2017. For example, Bethesda at GDC yesterday announced its strategic relationship with AMD to optimize for Ryzen CPUs, primarily through Vulkan low-level API optimizations, for a new generation of games, DLC and VR experiences.

Oxide Games also provided a public statement today on the significant performance uplift observed when optimizing for the 8-core, 16-thread Ryzen 7 CPU design – optimizations not yet reflected in Ashes of the Singularity benchmarking. Creative Assembly, developers of the Total War series, made a similar statement today related to upcoming Ryzen optimizations.

CPU benchmarking deficits to the competition in certain games at 1080p resolution can be attributed to the development and optimization of the game uniquely to Intel platforms – until now. Even without optimizations in place, Ryzen delivers high, smooth frame rates on all “CPU-bound” games, as well as overall smooth frame rates and great experiences in GPU-bound gaming and VR. With developers taking advantage of Ryzen architecture and the extra cores and threads, we expect benchmarks to only get better, and enable Ryzen excel at next generation gaming experiences as well.

Game performance will be optimized for Ryzen and continue to improve from at-launch frame rate scores.” John Taylor, AMD

The statement begins with Taylor reiterating the momentum of AMD to support developers both from a GPU and a CPU technology angle. Getting hardware in the hands of programmers is the first and most important step to find and fixing any problem areas that Ryzen might have, so this is a great move to see taking place. Both Oxide Games and Creative Assembly, developers of Ashes of the Singularity and Total War respectively, have publicly stated their intent to demonstrate improved threading and performance on Ryzen platforms very soon.

Taylor then recognizes the performance concerns at 1080p with attribution to those deficits going to years of optimizations for Intel processors. It's difficult, if not impossible, to know for sure how much weight this argument has, but it would make some logical sense. Intel CPUs have been the automatic, defacto standard for gaming PCs for many years, and any kind of performance optimizations and development would have been made on those same Intel processors. So it seems plausible that simply by seeding Ryzen to developers and having them look at performance as development goes forward would result in a positive change for AMD's situation.

lisa-29.jpg

For buyers today that are gaming at 1080p, the situation is likely to remain as we have presented it going forward. Until games get patched or new games are released from developers that have had access and hands-on time with Ryzen, performance is unlikely to change from some single setting/feature that AMD or its motherboard partners can enable. 

The question I would love answered is why is this even happening? What architectural difference between Core and Zen is attributing to this delta? Is it fundamental to the pipeline built or to the caching structure or to how SMT is enabled? Does Windows 10 and its handling of kernel processes have something to do with it? There is a lot to try to figure out as testing moves forward.

If you want to see the statements from both Oxide and Creative Assembly, they are provided below.

“Oxide games is incredibly excited with what we are seeing from the Ryzen CPU. Using our Nitrous game engine, we are working to scale our existing and future game title performance to take full advantage of Ryzen and its 8-core, 16-thread architecture, and the results thus far are impressive. These optimizations are not yet available for Ryzen benchmarking. However, expect updates soon to enhance the performance of games like Ashes of the Singularity on Ryzen CPUs, as well as our future game releases.” - Brad Wardell, CEO Stardock and Oxide
 
"Creative Assembly is committed to reviewing and optimizing its games on the all-new Ryzen CPU. While current third-party testing doesn’t reflect this yet, our joint optimization program with AMD means that we are looking at options to deliver performance optimization updates in the future to provide better performance on Ryzen CPUs moving forward. " – Creative Assembly, Developers of the Multi-award Winning Total War Series

Source: AMD
Author:
Subject: Processors
Manufacturer: AMD

AMD Ryzen 7 Processor Specifications

It’s finally here and its finally time to talk about. The AMD Ryzen processor is being released onto the world and based on the buildup of excitement over the last week or so since pre-orders began, details on just how Ryzen performs relative to Intel’s mainstream and enthusiast processors are a hot commodity. While leaks have been surfacing for months and details seem to be streaming out from those not bound to the same restrictions we have been, I think you are going to find our analysis of the Ryzen 7 1800X processor to be quite interesting and maybe a little different as well.

Honestly, there isn’t much that has been left to the imagination about Ryzen, its chipsets, pricing, etc. with the slow trickle of information that AMD has been sending out since before CES in January. We know about the specifications, we know about the architecture, we know about the positioning; and while I will definitely recap most of that information here, the real focus is going to be on raw numbers. Benchmarks are what we are targeting with today’s story.

Let’s dive right in.

The Zen Architecture – Foundation for Ryzen

Actually, as it turns out, in typical Josh Walrath fashion, he wrote too much about the AMD Zen architecture to fit into this page. So, instead, you'll find his complete analysis of AMD's new baby right here: AMD Zen Architecture Overview: Focus on Ryzen

ccx.png

AMD Ryzen 7 Processor Specifications

Though we have already detailed the most important specifications for the new AMD Ryzen processors when the preorders went live, its worth touching on them again and reemphasizing the important ones.

  Ryzen 7 1800X Ryzen 7 1700X Ryzen 7 1700 Core i7-6900K Core i7-6800K Core i7-7700K Core i5-7600K Core i7-6700K
Architecture Zen Zen Zen Broadwell-E Broadwell-E Kaby Lake Kaby Lake Skylake
Process Tech 14nm 14nm 14nm 14nm 14nm 14nm+ 14nm+ 14nm
Cores/Threads 8/16 8/16 8/16 8/16 6/12 4/8 4/4 4/8
Base Clock 3.6 GHz 3.4 GHz 3.0 GHz 3.2 GHz 3.4 GHz 4.2 GHz 3.8 GHz 4.0 GHz
Turbo/Boost Clock 4.0 GHz 3.8  GHz 3.7 GHz 3.7 GHz 3.6 GHz 4.5 GHz 4.2 GHz 4.2 GHz
Cache 20MB 20MB 20MB 20MB 15MB 8MB 8MB 8MB
Memory Support DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Quad Channel
DDR4-2400
Quad Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
DDR4-2400
Dual Channel
TDP 95 watts 95 watts 65 watts 140 watts 140 watts 91 watts 91 watts 91 watts
Price $499 $399 $329 $1050 $450 $350 $239 $309

All three of the currently announced Ryzen processors are 8-core, 16-thread designs, matching the Core i7-6900K from Intel in that regard. Though Intel does have a 10-core part branded for consumers, it comes in at a significantly higher price point (over $1500 still). The clock speeds of Ryzen are competitive with the Broadwell-E platform options though are clearly behind the curve when it comes the clock capabilities of Kaby Lake and Skylake. With admittedly lower IPC than Kaby Lake, Zen will struggle in any purely single threaded workload with as much as 500 MHz deficit in clock rate.

One interesting deviation from Intel's designs that Ryzen gets is a more granular boost capability. AMD Ryzen CPUs will be able move between processor states in 25 MHz increments while Intel is currently limited to 100 MHz. If implemented correctly and effectively through SenseMI, this allows Ryzen to get 25-75 MHz of additional performance in a scenario where it was too thermally constrainted to hit the next 100 MHz step. 

DSC02636.jpg

XFR (Extended Frequency Range), supported on the Ryzen 7 1800X and 1700X (hence the "X"), "lifts the maximum Precision Boost frequency beyond ordinary limits in the presence of premium systems and processor cooling." The story goes, that if you have better than average cooling, the 1800X will be able to scale up to 4.1 GHz in some instances for some undetermined amount of time. The better the cooling, the longer it can operate in XFR. While this was originally pitched to us as a game-changing feature that bring extreme advantages to water cooling enthusiasts, it seems it was scaled back for the initial release. Only getting 100 MHz performance increase, in the best case result, seems a bit more like technology for technology's sake rather than offering new capabilities for consumers.

cpu2.jpg

Ryzen integrates a dual channel DDR4 memory controller with speeds up to 2400 MHz, matching what Intel can do on Kaby Lake. Broadwell-E has the advantage with a quad-channel controller but how useful that ends of being will be interesting to see as we step through our performance testing.

One area of interest is the TDP ratings. AMD and Intel have very different views on how this is calculated. Intel has made this the maximum power draw of the processor while AMD sees it as a target for thermal dissipation over time. This means that under stock settings the Core i7-7700K will not draw more than 91 watts and the Core i7-6900K will not draw more than 140 watts. And in our testing, they are well under those ratings most of the time, whenever AVX code is not being operated. AMD’s 95-watt rating on the Ryzen 1800X though will very often be exceed, and our power testing proves that out. The logic is that a cooler with a 95-watt rating and the behavior of thermal propagation give the cooling system time to catch up. (Interestingly, this is the philosophy Intel has taken with its Kaby Lake mobile processors.)

lisa-29.jpg

Obviously the most important line here for many of you is the price. The Core i7-6900K is the lowest priced 8C/16T option from Intel for consumers at $1050. The Ryzen R7 1800X has a sticker price less than half of that, at $499. The R7 1700X vs Core i7-6800K match is interesting as well, where the AMD CPU will sell for $399 versus $450 for the 6800K. However, the 6800K only has 6-cores and 12-threads, giving the Ryzen part an instead 25% boost in multi-threaded performance. The 7700K and R7 1700 battle will be interesting as well, with a 4-core difference in capability and a $30 price advantage to AMD.

Continue reading our review of the new AMD Ryzen 7 1800X processor!!

Author:
Subject: Processors
Manufacturer: AMD

What Makes Ryzen Tick

We have been exposed to details about the Zen architecture for the past several Hot Chips conventions as well as other points of information directly from AMD.  Zen was a clean sheet design that borrowed some of the best features from the Bulldozer and Jaguar architectures, as well as integrating many new ideas that had not been executed in AMD processors before.  The fusion of ideas from higher performance cores, lower power cores, and experience gained in APU/GPU design have all come together in a very impressive package that is the Ryzen CPU.

zen_01.jpg

It is well known that AMD brought back Jim Keller to head the CPU group after the slow downward spiral that AMD entered in CPU design.  While the Athlon 64 was a tremendous part for the time, the subsequent CPUs being offered by the company did not retain that leadership position.  The original Phenom had problems right off the bat and could not compete well with Intel’s latest dual and quad cores.  The Phenom II shored up their position a bit, but in the end could not keep pace with the products that Intel continued to introduce with their newly minted “tic-toc” cycle.  Bulldozer had issues  out of the gate and did not have performance numbers that were significantly greater than the previous generation “Thuban” 6 core Phenom II product, much less the latest Intel Sandy Bridge and Ivy Bridge products that it would compete with.

AMD attempted to stop the bleeding by iterating and evolving the Bulldozer architecture with Piledriver, Steamroller, and Excavator.  The final products based on this design arc seemed to do fine for the markets they were aimed at, but certainly did not regain any marketshare with AMD’s shrinking desktop numbers.  No matter what AMD did, the base architecture just could not overcome some of the basic properties that impeded strong IPC performance.

52_perc_design_opt.png

The primary goal of this new architecture is to increase IPC to a level consistent to what Intel has to offer.  AMD aimed to increase IPC per clock by at least 40% over the previous Excavator core.  This is a pretty aggressive goal considering where AMD was with the Bulldozer architecture that was focused on good multi-threaded performance and high clock speeds.  AMD claims that it has in fact increased IPC by an impressive 54% from the previous Excavator based core.  Not only has AMD seemingly hit its performance goals, but it exceeded them.  AMD also plans on using the Zen architecture to power products from mobile products to the highest TDP parts offered.

 

The Zen Core

The basis for Ryzen are the CCX modules.  These modules contain four Zen cores along with 8 MB of shared L3 cache.  Each core has 64 KB of L1 I-cache and 32 KB of D-cache.  There is a total of 512 KB of L2 cache.  These caches are inclusive.  The L3 cache acts as a victim cache which partially copies what is in L1 and L2 caches.  AMD has improved the performance of their caches to a very large degree as compared to previous architectures.  The arrangement here allows the individual cores to quickly snoop any changes in the caches of the others for shared workloads.  So if a cache line is changed on one core, other cores requiring that data can quickly snoop into the shared L3 and read it.  Doing this allows the CPU doing the actual work to not be interrupted by cache read requests from other cores.

ccx.png

l2_cache.png

l3_cache.png

Each core can handle two threads, but unlike Bulldozer has a single integer core.  Bulldozer modules featured two integer units and a shared FPU/SIMD.  Zen gets rid of CMT for good and we have a single integer and FPU units for each core.  The core can address two threads by utilizing AMD’s version of SMT (symmetric multi-threading).  There is a primary thread that gets higher priority while the second thread has to wait until resources are freed up.  This works far better in the real world than in how I explained it as resources are constantly being shuffled about and the primary thread will not monopolize all resources within the core.

Click here to read more about AMD's Zen architecture in Ryzen!

Delidded Ryzen 7 1700 Confirms AMD Is Using Solder With IHS On Ryzen Processors

Subject: Processors | March 1, 2017 - 09:17 PM |
Tagged: solder, Ryzen 1700, ryzen, overclocking, IHS, delid, amd

Professional extreme overclocker Roman "der8auer" Hartung from Germany recently managed to successfully de-lid his AMD Ryzen 7 1700 processor and confirmed that AMD is, in fact, using solder as its thermal interface material of choice between the Ryzen die and IHS (integrated heat spreader). The confirmation that AMD is using solder is promising news for enthusiasts eager to overclock the new processors and see just how far they are able to push them on air and water cooling.

Delidded Ryzen 7 1700 Die.JPG

Image credit: Roman Hartung. Additional high resolution photos are available here.

In a video on his YouTube channel, der8auer ("The Farmer") shows the steps involved in delidding the Ryzen 7 1700 which involve using razor blades, a heating element to get the IHS heated to a temperature high enough to melt the indium (~170°C on the block with the indium melting around 157°C), and a whole lot of courage. After using the razor blades to cut the glue around the edges, he heated up the IHS enough to start melting the solder and after a cringe-worthy cracking sound he was able to lift the package away from the IHS with the die and on-package components intact!

He does note that the Ryzen using PGA rather than the LGA method Intel has moved to makes the CPU a bit harder to handle as the pins are on the CPU rather than the socket and are easily bent. Compared to the delidding process and possibility of cracking the die or ripping off some components and killing the $329 CPU though, bent pins are nothing and can usually be bent back heh. He reportedly went through two previous Ryzen CPUs before getting a successful de-lid on the third attempt after all.

It seems that AMD is using two small pads of Indium solder along with some gold plating on the inside of the IHS to facilitate heat transfer and allow the solder to mate with the IHS. Because AMD is using what seems to be high quality solder TIM, delidding and replacing the TIM does not seem to be necessary at all; however, Roman "der8auer" Hartung speculates that direct die cooling could work out very well for those enthusiasts brave enough to try it since the cooler does not need to put high amounts of pressure onto the CPU to hold it into place unlike an LGA socket. 

If you are interested in seeing the overclocking benefits of de-lidding and direct die cooling a Ryzen CPU, keep an eye on his YouTube channel for a video over the weekend detailing his testing using a Ryzen 7 1800X.

I am really looking forward to seeing how far enthusiasts are able to push Ryzen (especially on water), and maybe we can convince Morry to de-lid a Ryzen CPU!

Happy Overclocking!

Also read:

Source: der8auer

Report: AMD to Launch Radeon RX 500 Series GPUs in April

Subject: Graphics Cards | March 1, 2017 - 05:04 PM |
Tagged: video card, RX 580, RX 570, RX 560, RX 550, rx 480, rumor, report, rebrand, radeon, graphics, gpu, amd

According to a report from VideoCardz.com we can expect AMD Radeon RX 500-series graphics cards next month, with an April 4th launch of the RX 580 and RX 570, and subsequent RX 560/550 launch on April 11. The bad news? According to the report "all cards, except RX 550, are most likely rebranded from Radeon RX 400 series".

Polaris10.jpg

AMD Polaris 10 GPU (Image credit: Heise Online)

Until official confirmation on specs arrive, this is still speculative; however, if Vega is not ready for an April launch and AMD will indeed be refreshing their Radeon lineup, an R9 300-series speed bump/rebrand is not out of the realm of possibility. VideoCardz offers (unconfirmed, at this point) specs of the upcoming RX 500-series cards, with RX 400 numbers for comparison:

videocardz_chart_1.png

Chart credit: VideoCardz.com

The first graph shows the increased GPU boost clock speed of ~1340 MHz for the rumored RX 580, with the existing RX 480 clocked at 1266 MHz. Both would be Polaris 10 GPUs with otherwise identical specs. The same largely holds for the rumored specs on the RX 570, though this GPU would presumably be shipping with faster memory clocks as well. On the RX 560 side, however, the Polaris 11 powered replacement for the RX 460 might be based on the 1024-core variant we have seen from the Chinese market.

videocardz_chart_2.png

Chart credit: VideoCardz.com

No specifics on the RX 550 are yet known, which VideoCardz says "is most likely equipped with Polaris 12, a new low-end GPU". These rumors come via heise.de (German language), who state that those "hoping for Vega-card will be disappointed - the cards are intended to be rebrands with known GPUs". We will have to wait until next month to know for sure, but even if this is the case, expect faster clocks and better performance for the same money.

Source: VideoCardz

Linked Multi-GPU Arrives... for Developers

The Khronos Group has released the Vulkan 1.0.42.0 specification, which includes experimental (more on that in a couple of paragraphs) support for VR enhancements, sharing resources between processes, and linking similar GPUs. This spec was released alongside a LunarG SDK and NVIDIA drivers, which are intended for developers, not gamers, that fully implement these extensions.

I would expect that the most interesting feature is experimental support for linking similar GPUs together, similar to DirectX 12’s Explicit Linked Multiadapter, which Vulkan calls a “Device Group”. The idea is that the physical GPUs hidden behind this layer can do things like share resources, such as rendering a texture on one GPU and consuming it in another, without the host code being involved. I’m guessing that some studios, like maybe Oxide Games, will decide to not use this feature. While it’s not explicitly stated, I cannot see how this (or DirectX 12’s Explicit Linked mode) would be compatible in cross-vendor modes. Unless I’m mistaken, that would require AMD, NVIDIA, and/or Intel restructuring their drivers to inter-operate at this level. Still, the assumptions that could be made with grouped devices are apparently popular with enough developers for both the Khronos Group and Microsoft to bother.

microsoft-dx12-build15-linked.png

A slide from Microsoft's DirectX 12 reveal, long ago.

As for the “experimental” comment that I made in the introduction... I was expecting to see this news around SIGGRAPH, which occurs in late-July / early-August, alongside a minor version bump (to Vulkan 1.1).

I might still be right, though.

The major new features of Vulkan 1.0.42.0 are implemented as a new classification of extensions: KHX. In the past, vendors, like NVIDIA and AMD, would add new features as vendor-prefixed extensions. Games could query the graphics driver for these abilities, and enable them if available. If these features became popular enough for multiple vendors to have their own implementation of it, a committee would consider an EXT extension. This would behave the same across all implementations (give or take) but not be officially adopted by the Khronos Group. If they did take it under their wing, it would be given a KHR extension (or added as a required feature).

The Khronos Group has added a new layer: KHX. This level of extension sits below KHR, and is not intended for production code. You might see where this is headed. The VR multiview, multi-GPU, and cross-process extensions are not supposed to be used in released video games until they leave KHX status. Unlike a vendor extension, the Khronos Group wants old KHX standards to drop out of existence at some point after they graduate to full KHR status. It’s not something that NVIDIA owns and will keep it around for 20 years after its usable lifespan just so old games can behave expectedly.

khronos-group-logo.png

How long will that take? No idea. I’ve already mentioned my logical but uneducated guess a few paragraphs ago, but I’m not going to repeat it; I have literally zero facts to base it on, and I don’t want our readers to think that I do. I don’t. It’s just based on what the Khronos Group typically announces at certain trade shows, and the length of time since their first announcement.

The benefit that KHX does bring us is that, whenever these features make it to public release, developers will have already been using it... internally... since around now. When it hits KHR, it’s done, and anyone can theoretically be ready for it when that time comes.

Overclockers Push Ryzen 7 1800X to 5.2 GHz On LN2, Break Cinebench Record

Subject: Processors | February 28, 2017 - 09:06 PM |
Tagged: Zen, Ryzen 1800X, ryzen, overclocking, LN2, Cinebench, amd

During AMD’s Ryzen launch event a team of professional overclockers took the stage to see just how far they could push the top Zen-based processor. Using a bit of LN2 (liquid nitrogen) and a lot of voltage, the overclocking team was able to hit an impressive 5.20 GHz with all eight cores (16 threads) enabled!

Ryzen Cinebench Benchmark Record.png

In addition to the exotic LN2 cooling, the Ryzen 7 1800X needed 1.875 volts to hit 5.20 GHz. That 5.20 GHz was achieved by setting the base clock at 137.78 MHz and the multiplier at 37.75. Using these settings, the chip was even stable enough to benchmark with a score of 2,363 on Cinebench R15’s multi-threaded test.

According to information from AMD, a stock Ryzen 7 1800X comes clocked at 3.6 GHz base and up to 4 GHz boost (XFR can go higher depending on HSF) and is able to score 1,619 in Cinebench. The 30% overclock to 5.20 GHz got the overclockers an approximately 45% higher CInebench score.

Further, later in the overclocking event, they managed to break a Cinebench world record of 2,445 points by achieving a score of 2,449 (it is not clear what clockspeed this was at). Not bad for a brand-new processor!

AMD Ryzen 1800X Overclocked On LN2 to 5GHz.jpg

The overclocking results are certainly impressive, and suggest that Ryzen may be a decent overclocker so long as you have the cooling setup to get it there (the amount of voltage needed is a bit worrying though heh). Interestingly, HWBot shows a Core i7 6900K (also 8C/16T) hitting 5.22 GHz and scoring 2,146 in CInebench R15. That Ryzen can hit similar numbers with all cores and threads turned on is promising.

I am looking forward to seeing what people are able to hit on air and water cooling and if XFR will work as intended and get most of the way to a manual overclock without the effort of manually overclocking. I am also curious how the power phases and overclocking performance will stack up on motherboards using the B350 versus X370 chipsets. With the eight core chips able to hit 5.2, I expect the upcoming six core Ryzen 5 and four core Ryzen 3 processors to clock even higher which would certainly help gaming performance for budget builds!

Austin Evans was able to get video of the overclocking event which you can watch here (Vimeo).

Also read:

Source: Hexus

AMD Unveils Next-Generation GPU Branding, Details - Radeon RX Vega

Subject: General Tech | February 28, 2017 - 05:46 PM |
Tagged: amd, Vega, radeon rx vega, radeon, gdc 2017, capsaicin, rtg, HBCC, FP16

Today at the AMD Capsaicin & Cream event at GDC 2017, Senior VP of the Radeon Technologies Group, Raja Koduri officially revealed the branding that AMD will use for their next generation GPU products.

While we usually see final product branding deviate from their architectural code names (e.g. Polaris becoming the Radeon RX 460, 470 and 480), AMD this time has decided to embrace the code name for the retail naming scheme for upcoming graphics cards featuring the new GPU – Radeon RX Vega.

RadeonRXVega.jpg

However, we didn't just get a name for Vega-based GPUs. Raja also went into some further detail and showed some examples of technologies found in Vega.

First off is the High-Bandwidth Cache Controller found in Vega products. We covered this technology during our Vega architecture preview last month at CES, but today we finally saw a demo of this technology in action.

Vega-HBCCslide.jpg

Essentially, the High-Bandwidth Cache Controller (HBCC) allows Vega GPUs to address all available memory in the system (including things like NVMe SSDs, system DRAM and network storage.) AMD claims that by using the already fast memory you have available on your PC to augment onboard GPU memory (such as HBM2) they will be able to offer less expensive graphics cards that ultimately offer access to much more memory than current graphics cards.

Vega-HBCC.jpg

The demo that they showed on stage featured Deus Ex: Mankind Divided running on a system with a Vega GPU running with 2GB of VRAM, and Ryzen CPU. By turning HBCC on, they were able to show a 50% increase in average FPS, and a 100% increase in minimum FPS.

While we probably won't actually see a Vega product with such a small VRAM implementation, it was impressive to see how HBCC was able to dramatically improve the playability of a 2GB GPU on a game that has no special optimizations to take advantage of the High-Bandwidth Cache.

The other impressive demo running on Vega at the Capsaicin & Cream event centered around what AMD is calling Rapid Pack Math.

Rapid Pack Math is an implementation of something we have been hearing and theorizing a lot about lately, the use of FP16 shaders for some graphic effects in games. By using half-precision FP16 shaders instead of the current standard FP32 shaders, developers are able to get more performance out of the same GPU cores. In specific, Rapid Pack Math allows developers to run half-precision FP16 shaders at exactly 2X the speed of traditional standard-precision FP32 shaders.

TressFX-FP16.jpg

While the lower precision of FP16 shaders won't be appropriate for all GPU effects, AMD was showing a comparison of their TressFX hair rendering technology running on both standard and half-precision shaders. As you might expect, AMD was able to render twice the amount of hair strands per second, making for a much more fluid experience.

Vega-shirt.jpg

Just like we saw with the lead up to the Polaris GPU launch, AMD seems to be releasing a steady stream of information on Vega. Now that we have the official branding for Vega, we eagerly await getting our hands on these new High-end GPUs from AMD.

 

Author:
Subject: Editorial
Manufacturer: AMD

Zen vs. 40 Years of CPU Development

Zen is nearly upon us.  AMD is releasing its next generation CPU architecture to the world this week and we saw CPU demonstrations and upcoming AM4 motherboards at CES in early January.  We have been shown tantalizing glimpses of the performance and capabilities of the “Ryzen” products that will presumably fill the desktop markets from $150 to $499.  I have yet to be briefed on the product stack that AMD will be offering, but we know enough to start to think how positioning and placement will be addressed by these new products.

zen_01.jpg

To get a better understanding of how Ryzen will stack up, we should probably take a look back at what AMD has accomplished in the past and how Intel has responded to some of the stronger products.  AMD has been in business for 47 years now and has been a major player in semiconductors for most of that time.  It really has only been since the 90s where AMD started to battle Intel head to head that people have become passionate about the company and their products.

The industry is a complex and ever-shifting one.  AMD and Intel have been two stalwarts over the years.  Even though AMD has had more than a few challenging years over the past decade, it still moves forward and expects to compete at the highest level with its much larger and better funded competitor.  2017 could very well be a breakout year for the company with a return to solid profitability in both CPU and GPU markets.  I am not the only one who thinks this considering that AMD shares that traded around the $2 mark ten months ago are now sitting around $14.

 

AMD Through 1996

AMD became a force in the CPU industry due to IBM’s requirement to have a second source for its PC business.  Intel originally entered into a cross licensing agreement with AMD to allow it to produce x86 chips based on Intel designs.  AMD eventually started to produce their own versions of these parts and became a favorite in the PC clone market.  Eventually Intel tightened down on this agreement and then cancelled it, but through near endless litigation AMD ended up with a x86 license deal with Intel.

AMD produced their own Am286 chip that was the first real break from the second sourcing agreement with Intel.  Intel balked at sharing their 386 design with AMD and eventually forced the company to develop its own clean room version.  The Am386 was released in the early 90s, well after Intel had been producing those chips for years. AMD then developed their own version of the Am486 which then morphed into the Am5x86.  The company made some good inroads with these speedy parts and typically clocked them faster than their Intel counterparts (eg. Am486 40 MHz and 80 MHz vs. the Intel 486 DX33 and DX66).  AMD priced these points lower so users could achieve better performance per dollar using the same chipsets and motherboards.

zen_02.jpg

Intel released their first Pentium chips in 1993.  The initial version was hot and featured the infamous FDIV bug.  AMD made some inroads against these parts by introducing the faster Am486 and Am5x86 parts that would achieve clockspeeds from 133 MHz to 150 MHz at the very top end.  The 150 MHz part was very comparable in overall performance to the Pentium 75 MHz chip and we saw the introduction of the dreaded “P-rating” on processors.

There is no denying that Intel continued their dominance throughout this time by being the gold standard in x86 manufacturing and design.  AMD slowly chipped away at its larger rival and continued to profit off of the lucrative x86 market.  William Sanders III set the bar higher about where he wanted the company to go and he started on a much more aggressive path than many expected the company to take.

Click here to read the rest of the AMD processor editorial!