Subject: Processors
Manufacturer: AMD

** UPDATE 3/13 5 PM **

AMD has posted a follow-up statement that officially clears up much of the conjecture this article was attempting to clarify. Relevant points from their post that relate to this article as well as many of the requests for additional testing we have seen since its posting (emphasis mine):

  • "We have investigated reports alleging incorrect thread scheduling on the AMD Ryzen™ processor. Based on our findings, AMD believes that the Windows® 10 thread scheduler is operating properly for “Zen,” and we do not presently believe there is an issue with the scheduler adversely utilizing the logical and physical configurations of the architecture."

  • "Finally, we have reviewed the limited available evidence concerning performance deltas between Windows® 7 and Windows® 10 on the AMD Ryzen™ CPU. We do not believe there is an issue with scheduling differences between the two versions of Windows.  Any differences in performance can be more likely attributed to software architecture differences between these OSes."

So there you have it, straight from the horse's mouth. AMD does not believe the problem lies within the Windows thread scheduler. SMT performance in gaming workloads was also addressed:

  • "Finally, we have investigated reports of instances where SMT is producing reduced performance in a handful of games. Based on our characterization of game workloads, it is our expectation that gaming applications should generally see a neutral/positive benefit from SMT. We see this neutral/positive behavior in a wide range of titles, including: Arma® 3, Battlefield™ 1, Mafia™ III, Watch Dogs™ 2, Sid Meier’s Civilization® VI, For Honor™, Hitman™, Mirror’s Edge™ Catalyst and The Division™. Independent 3rd-party analyses have corroborated these findings.

    For the remaining outliers, AMD again sees multiple opportunities within the codebases of specific applications to improve how this software addresses the “Zen” architecture. We have already identified some simple changes that can improve a game’s understanding of the "Zen" core/cache topology, and we intend to provide a status update to the community when they are ready."

We are still digging into the observed differences of toggling SMT compared with disabling the second CCX, but it is good to see AMD issue a clarifying statement here for all of those out there observing and reporting on SMT-related performance deltas.

** END UPDATE **

Editor's Note: The testing you see here was a response to many days of comments and questions to our team on how and why AMD Ryzen processors are seeing performance gaps in 1080p gaming (and other scenarios) in comparison to Intel Core processors. Several outlets have posted that the culprit is the Windows 10 scheduler and its inability to properly allocate work across the logical vs. physical cores of the Zen architecture. As it turns out, we can prove that isn't the case at all. -Ryan Shrout

Initial reviews of AMD’s Ryzen CPU revealed a few inefficiencies in some situations particularly in gaming workloads running at the more common resolutions like 1080p, where the CPU comprises more of a bottleneck when coupled with modern GPUs. Lots of folks have theorized about what could possibly be causing these issues, and most recent attention appears to have been directed at the Windows 10 scheduler and its supposed inability to properly place threads on the Ryzen cores for the most efficient processing. 

I typically have Task Manager open while running storage tests (they are boring to watch otherwise), and I naturally had it open during Ryzen platform storage testing. I’m accustomed to how the IO workers are distributed across reported threads, and in the case of SMT capable CPUs, distributed across cores. There is a clear difference when viewing our custom storage workloads with SMT on vs. off, and it was dead obvious to me that core loading was working as expected while I was testing Ryzen. I went back and pulled the actual thread/core loading data from my testing results to confirm:

SMT on usage.png

The Windows scheduler has a habit of bouncing processes across available processor threads. This naturally happens as other processes share time with a particular core, with the heavier process not necessarily switching back to the same core. As you can see above, the single IO handler thread was spread across the first four cores during its run, but the Windows scheduler was always hitting just one of the two available SMT threads on any single core at one time.

My testing for Ryan’s Ryzen review consisted of only single threaded workloads, but we can make things a bit clearer by loading down half of the CPU while toggling SMT off. We do this by increasing the worker count (4) to be half of the available threads on the Ryzen processor, which is 8 with SMT disabled in the motherboard BIOS.

smtoff4workers.png

SMT OFF, 8 cores, 4 workers

With SMT off, the scheduler is clearly not giving priority to any particular core and the work is spread throughout the physical cores in a fairly even fashion.

Now let’s try with SMT turned back on and doubling the number of IO workers to 8 to keep the CPU half loaded:

smton8workers.png

SMT ON, 16 (logical) cores, 8 workers

With SMT on, we see a very different result. The scheduler is clearly loading only one thread per core. This could only be possible if Windows was aware of the 2-way SMT (two threads per core) configuration of the Ryzen processor. Do note that sometimes the workload will toggle around every few seconds, but the total loading on each physical core will still remain at ~%50. I chose a workload that saturated its thread just enough for Windows to not shift it around as it ran, making the above result even clearer.

Synthetic Testing Procedure

While the storage testing methods above provide a real-world example of the Windows 10 scheduler working as expected, we do have another workload that can help demonstrate core balancing with Intel Core and AMD Ryzen processors. A quick and simple custom-built C++ application can be used to generate generic worker threads and monitor for core collisions and resolutions.

This test app has a very straight forward workflow. Every few seconds it generates a new thread, capping at N/2 threads total, where N is equal to the reported number of logical cores. If the OS scheduler is working as expected, it should load 8 threads across 8 physical cores, though the division between the specific logical core per physical core will be based on very minute parameters and conditions going on in the OS background.

By monitoring the APIC_ID through the CPUID instruction, the first application thread monitors all threads and detects and reports on collisions - when a thread from our app is running on the same core as another thread from our app. That thread also reports when those collisions have been cleared. In an ideal and expected environment where Windows 10 knows the boundaries of physical and logical cores, you should never see more than one thread of a core loaded at the same time.

app01.png

Click to Enlarge

This screenshot shows our app working on the left and the Windows Task Manager on the right with logical cores labeled. While it may look like all logical cores are being utilized at the same time, in fact they are not. At any given point, only LCore 0 or LCore 1 are actively processing a thread. Need proof? Check out the modified view of the task manager where I copy the graph of LCore 1/5/9/13 over the graph of LCore 0/4/8/12 with inverted colors to aid viewability.

app02-2.png

If you look closely, by overlapping the graphs in this way, you can see that the threads migrate from LCore 0 to LCore 1, LCore 4 to LCore 5, and so on. The graphs intersect and fill in to consume ~100% of the physical core. This pattern is repeated for the other 8 logical cores on the right two columns as well. 

Running the same application on a Core i7-5960X Haswell-E 8-core processor shows a very similar behavior.

app03.png

Click to Enlarge

Each pair of logical cores shares a single thread and when thread transitions occur away from LCore N, they migrate perfectly to LCore N+1. It does appear that in this scenario the Intel system is showing a more stable threaded distribution than the Ryzen system. While that may in fact incur some performance advantage for the 5960X configuration, the penalty for intra-core thread migration is expected to be very minute.

The fact that Windows 10 is balancing the 8 thread load specifically between matching logical core pairs indicates that the operating system is perfectly aware of the processor topology and is selecting distinct cores first to complete the work.

Information from this custom application, along with the storage performance tool example above, clearly show that Windows 10 is attempting to balance work on Ryzen between cores in the same manner that we have experienced with Intel and its HyperThreaded processors for many years.

Continue reading our look at AMD Ryzen and Windows 10 scheduling!

MSI's new Z270 GAMING M6 AC, look closely and you might even find a kitchen sink

Subject: Motherboards | March 10, 2017 - 02:22 PM |
Tagged: Z270 GAMING M6 AC, z270, ryzen, msi, amd

The new MSI Z270 GAMING M6 AC has a huge selection of features, up to and including a free Phanteks RGB LED strip for those who suffer from chronic RGBitis

MSI270.jpg

The add-in card you see on the side is an Intel Wi-Fi/Bluetooth card which supports MU-MIMO.  The onboard audio is powered by Nahimic, which MSI refers to as Audio Boost 4 and it is isolated from the other components on the motherboard to prevent noise.  There is a U.2 slot and two M.2 slots with a removable heatsink they call M.2 Shield.  They fully isolated the memory circuit design and as you can see below The Witcher 3 seems to like the DDR4 Boost design.

benches.jpg

Check out the PR below for a closer look at the features included, including the special USB slot for your VR headset and the One-Click to VR option.

MSI, world leading in gaming hardware innovation, is proud to announce a brand new Enthusiast GAMING motherboard, the Z270 GAMING M6 AC with its incredibly versatile and complete foundation for a high-end gaming system. Inspired from a futuristic armored spaceship, the Z270 GAMING M6 AC design with multilayer plating, wings and armaments emphasize an ultramodern style. Erupting from the core, the entire color spectrum flows through illuminated lines. The complete motherboard and heatsink design offers a strong look and feel and uses heavy quality components to deliver the best performance and stability as the base of any gaming rig. Added features such as Audio Boost 4 with Nahimic 2, Twin Turbo M.2 with M.2 Shield, VR Boost, Killer LAN & Intel WIFI AC, and the option to fully customize the RGB LEDs to any color using Mystic light, makes the Z270 GAMING M6 AC one of the most high-end and desirable Z270 motherboards to build a gaming rig with.

DDR4 Boost
Through fully isolating the memory circuit design, the DDR4 Boost ensures maximum performance and stability. The technical enhancements of DDR4 Boost allow for more stability at higher memory speeds compared to other brands.DDR4 Boost benchmark based on The Witcher 3 Enjoy the additional boost in gaming performance or when working with large video and photo files. Enable Intel® Extreme Memory Profile with ease using a single option in the BIOS to gain performance and create a perfectly stable system.

Twin Turbo M.2 with M.2 shield & U.2
Enjoy a blazing fast system boot up and insanely quick loading of applications and games with MSI motherboards. Twin Turbo M.2 delivers PCI-E Gen3 x4 performance with transfer speeds up to 64 Gb/s for the latest SSDs. It also supports the all-new Intel® Optane™ technology. M.2 Shield (patent pending) is a thermal solution, which keeps the M.2 or Optane™ device safe and cool to prevent damage and thermal throttling. M.2 GENIE makes setting up RAID easy by taking less steps, using any M.2 or PCI-E SSD (even when used in a mixed configuration). The Z270 GAMING M6 AC supports the latest storage interface, U.2 as well.

Audio Boost 4 with Nahimic 2
With Audio Boost, powered by Nahimic, MSI motherboards deliver the highest sound quality through the use of premium quality audio components and an isolated audio PCB. An added audio cover and golden audio connectors ensure the purest audio signal.

VR Ready & VR Boost
VR Boost is a smart chip that ensures a clean and strong signal to a VR optimized USB port located on the back, to reduce motion sickness caused by a bad signal. The One-Click to VR option in the MSI Gaming App gets your PC primed for VR use in just a single click by setting your components to max. performance and preventing other applications from impacting your VR experience negatively.

Intel Wi-Fi AC with Antennas
Optimize your gaming rig to deliver game networking traffic over LAN for the best possible online gaming experience, while using WiFi for other online applications. This next-generation Intel® Wi-Fi / Bluetooth solution uses smart MU-MIMO technology, delivering AC speeds up to 867Mbps. Perfect for streaming and gaming at the same time.

Includes free Phanteks RGB LED strip
This RGB LED strip helps to transform and synchronize colors in your case to any liking. Simply connect the plug & play strip to the Mystic Light Extension pin header located on MSI motherboards, without the need of external power, and set a color and choose an LED effect to match it with your motherboard and other peripherals RGB LEDs. Use the included double sided 3M tape to place the strip firmly wherever you want inside (or even outside) your chassis.

Source: MSI
Author:
Subject: Processors
Manufacturer: AMD

The right angle

While many in the media and enthusiast communities are still trying to fully grasp the importance and impact of the recent AMD Ryzen 7 processor release, I have been trying to complete my review of the 1700X and 1700 processors, in between testing the upcoming GeForce GTX 1080 Ti and preparing for more hardware to show up at the offices very soon. There is still much to learn and understand about the first new architecture from AMD in nearly a decade, including analysis of the memory hierarchy, power consumption, overclocking, gaming performance, etc.

During my Ryzen 7 1700 testing, I went through some overclocking evaluation and thought the results might be worth sharing earlier than later. This quick article is just a preview of what we are working on so don’t expect to find the answers to Ryzen power management here, only a recounting of how I was able to get stellar performance from the lowest priced Ryzen part on the market today.

The system specifications for this overclocking test were identical to our original Ryzen 7 processor review.

Test System Setup
CPU AMD Ryzen 7 1800X
AMD Ryzen 7 1700X
AMD Ryzen 7 1700
Intel Core i7-7700K
Intel Core i5-7600K
Intel Core i7-6700K
Intel Core i7-6950X
Intel Core i7-6900K
Intel Core i7-6800K
Motherboard ASUS Crosshair VI Hero (Ryzen)
ASUS Prime Z270-A (Kaby Lake, Skylake)
ASUS X99-Deluxe II (Broadwell-E)
Memory 16GB DDR4-2400
Storage Corsair Force GS 240 SSD
Sound Card On-board
Graphics Card NVIDIA GeForce GTX 1080 8GB
Graphics Drivers NVIDIA 378.49
Power Supply Corsair HX1000
Operating System Windows 10 Pro x64

Of note is that I am still utilizing the Noctua U12S cooler that AMD provided for our initial testing – all of the overclocking and temperature reporting in this story is air cooled.

DSC02643.jpg

First, let’s start with the motherboard. All of this testing was done on the ASUS Crosshair VI Hero with the latest 5704 BIOS installed. As I began to discover the different overclocking capabilities (BCLK adjustment, multipliers, voltage) I came across one of the ASUS presets. These presets offer pre-defined collections of settings that ASUS feels will offer simple overclocking capabilities. An option for higher BCLK existed but the one that caught my eye was straight forward – 4.0 GHz.

asusbios.jpg

With the Ryzen 1700 installed, I thought I would give it a shot. Keep in mind that this processor has a base clock of 3.0 GHz, a rated maximum boost clock of 3.7 GHz, and is the only 65-watt TDP variant of the three Ryzen 7 processors released last week. Because of that, I didn’t expect the overclocking capability for it to match what the 1700X and 1800X could offer. Based on previous processor experience, when a chip is binned at a lower power draw than the rest of a family it will often have properties that make it disadvantageous for running at HIGHER power. Based on my results here, that doesn’t seem to the case.

4.0.PNG

By simply enabling that option in the ASUS UEFI and rebooting, our Ryzen 1700 processor was running at 4.0 GHz on all cores! For this piece, I won’t be going into the drudge and debate on what settings ASUS changed to get to this setting or if the voltages are overly aggressive – the point is that it just works out of the box.

Continue reading our look at overclocking the new Ryzen 7 1700 processor!

Two CPUs of plump juicy Ryzens

Subject: Processors | March 8, 2017 - 02:43 PM |
Tagged: Ryzen 1700X, Ryzen 1700, amd

With suggested prices of $330 for the Ryzen 1700 and $400 for the 1700X, a lot of users are more curious about the performance of these two chips, especially with some sites reporting almost equal performance when these chips are overclocked.  [H]ard|OCP tested both of these chips at the same clock speeds to see what performance differences there are between the two.  As it turns out the only test which resulted in delta of 1% or more was WinRAR, all other tests showed a minuscule difference between the X and the plain old 1700.  They are going to follow these findings up with more tests, once they source some CPUs from retail outlets to see if there are any differences there.

"So there has been a lot of talk about what Ryzen CPU do you buy? The way I think is that you want to buy the least expensive one that will give you the best performance. That is exactly what we expect to find out here today. Is the Ryzen 1700 for $330 as good as the $400 1700X, or even the $500 1800X? "

Here are some more Processor articles from around the web:

Processors

Source: [H]ard|OCP

Type A positive; CRYORIG's free conversion kits for AM4

Subject: Cases and Cooling | March 7, 2017 - 01:50 PM |
Tagged: ryzen, CRYORIG, amd, AM4

If you own a CRYORIG cooler, apart from the M9i, you can head to this page to request a free upgrade kit to support AM4 motherboards.  Depending on the cooler you purchased you will need to choose from one of four different kits and CRYORIG will send it off to you for free, no shipping or other fees required.

modles.PNG

You will need to produce either a product registration number or proof of purchase of your CRYORIG product as well as proof of purchase of an AMD Ryzen or AM4 motherboard.  The upgrade kits will ship out later this month and sometime in the latter half of the year CRYORIG will release four new coolers which natively support AM4, as well as previous AM3(+) boards.

ryzensupport.jpg

07.03.17 Taipei, Taiwan – With the much-anticipated release of the AMD Ryzen, CRYORIG prepares to launch a full line of AMD Ryzen dedicated coolers as well as simple upgrade kits for existing AMD compatible CRYORIG cooling products. Beginning from Type A to Type D, there will be a total of 4 different AM4 upgrade kits depending on the corresponding CRYORIG product. Natively supporting Ryzen dedicated version models will begin to release later in Q2 2017 and will consist of the full CRYORIG cooling portfolio.

CRYORIG’s four AM4 upgrade kits will be released beginning in late March and will be completely free of charge (including shipping) for existing users to apply for. Users will only need to provide a proof of purchase of the CRYORIG product (or product registration number), and a proof of purchase of an AMD Ryzen or AM4 CPU or Motherboard. Just fill out and supply all necessary info at www.cryorig.com/getam4.php, the kit will be sent directly to the provided address. Distributors and select channels will also have these kits available.

Beginning in Q2 2017, CRYORIG will start shipping dedicated Ryzen ready versions of CRYORIG’s full product line. Exact release dates will vary from model to model. The Ryzen Supported sticker will be found on all dedicated Ryzen ready coolers for easy identification, and indicates that no additional kits are required for Ryzen support.

 

Source: CRYORIG

AMD Prepares Zen-Based "Naples" Server SoC For Q2 Launch

Subject: Processors | March 7, 2017 - 09:02 AM |
Tagged: SoC, server, ryzen, opteron, Naples, HPC, amd

Over the summer, AMD introduced its Naples platform which is the server-focused implementation of the Zen microarchitecture in a SoC (System On a Chip) package. The company showed off a prototype dual socket Naples system and bits of information leaked onto the Internet, but for the most part news has been quiet on this front (whereas there were quite a few leaks of Ryzen which is AMD's desktop implementation of Zen).

The wait seems to be finally over, and AMD appears ready to talk more about Naples which will reportedly launch in the second quarter of this year (Q2'17) with full availability of processors and motherboards from OEMs and channel partners (e.g. system integrators) happening in the second half of 2017. Per AMD, "Naples" processors are SoCs with 32 cores and 64 threads that support 8 memory channels and a (theoretical) maximum of 2TB DDR4-2667. (Using the 16GB DIMMs available today, Naples support 256GB of DDR4 per socket.) Further, the Naples SoC features 64 PCI-E 3.0 lanes. Rumors also indicated that the SoC included support for sixteen 10GbE interfaces, but AMD has yet to confirm this or the number of SATA/SAS ports offered. AMD did say that Naples has an optimized cache structure for HPC compute and "dedicated security hardware" though it did not go into specifics. (The security hardware may be similar to the ARM TrustZone technology it has used in the past.) 

AMD Naples.jpg

Naples will be offered in single and dual socket designs with dual socket systems offering up 64 cores, 128 threads, 32 DDR4 DIMMs (512 GB using 16 GB modules) on 16 total memory channels with 21.3 GB/s per channel bandwidth (170.7 GB/s per SoC), 128 PCI-E 3.0 lanes, and an AMD Infinity Fabric interconnect between the two processor sockets.

AMD claims that its Naples platform offers up to 45% more cores, 122% more memory bandwidth, and 60% more I/O than its competition. For its internal comparison, AMD chose the Intel Xeon E5-2699A V4 which is the processor with highest core count that is intended for dual socket systems (there are E7s with more cores but those are in 4P systems). The Intel Xeon E5-2699A V4 system is a 14nm 22 core (44 thread) processor clocked at 2.4 GHz base to 3.6 GHz turbo with 55MB cache. It supports four channels of DDR4-2400 for a maximum bandwidth of 76.8 GB/s (19.2 GB/s per channel) as well as 40 PCI-E 3.0 lanes. A dual socket system with two of those Xeons features 44 cores, 88 threads, and a theoretical maximum of 1.54 TB of ECC RAM.

AMD's reference platform with two 32 core Naples SoCs and 512 GB DDR4 2400 MHz was purportedly 2.5x faster at the seismic analysis workload than the dual Xeon E5-2699A V4 OEM system with 1866 MHz DDR4. Curiously, when AMD compared a Naples reference platform with 44 cores enabled and running 1866 MHz memory to a similarly configured Intel system the Naples platform was twice as fast. It seems that the increased number of memory channels and memory bandwidth are really helping the Naples platform pull ahead in this workload.

AMD Naples and Radeon Instinct.png

The company also intends Naples to power machine learning and AI projects with servers that feature Naples processors and Radeon Instinct graphics processors.

AMD further claims that its Naples platform is more balanced and suited to cloud computing and scientific and HPC workloads than the competition. Specifically, Forrest Norrod the Senior Vice president and General Manager of AMD's Enterprise, Embedded, and Semi-Custom Business Unit stated:

“’Naples’ represents a completely new approach to supporting the massive processing requirements of the modern datacenter. This groundbreaking system-on-chip delivers the unique high-performance features required to address highly virtualized environments, massive data sets and new, emerging workloads.”

There is no word on pricing yet, but it should be competitive with Intel's offerings (the E5-2699A V4 is $4,938). AMD will reportedly be talking data center strategy and its upcoming products during the Open Compute Summit later this week, so hopefully there will be more information released at those presentations.

(My opinions follow)

This is one area where AMD needs to come out strong with support from motherboard manufacturers, system integrators, OEM partners, and OS and software validation to succeed. Intel is not likely to take AMD encroaching on its lucrative server market share lightly, and AMD is going to have a long road ahead of it to regain the market share it once had in this area, but it does have a decent architecture on its hands to build off of with Zen and if it can secure partner support Intel is certainly going to have competition here that it has not had to face in a long time. Intel and AMD competing over the data center market is a good thing, and as both companies bring new technology to market it will trickle down into the consumer level hardware. Naples' success in the data center could mean a profitable AMD with R&D money to push Zen as far as it can – so hopefully they can pull it off.

What are your thoughts on the Naples SoC and AMD's push into the server market?

Also read:

Source: AMD

AMD Releases Radeon Software Crimson ReLive 17.3.1

Subject: Graphics Cards | March 6, 2017 - 09:08 PM |
Tagged: amd, graphics drivers

Just prior to the release of Tom Clancy’s Ghost Recon Wildlands, AMD has released another graphics driver with specific optimizations. Radeon Software Crimson ReLive Edition 17.3.1 is support to provide up to a 6% performance improvement (on an RX 480) in that title. It also adds a CrossFire profile under DirectX 11. Note that there’s a known issue with 3- and 4-GPU systems, which will apparently make the game crash back to desktop on launch.

amd-2016-crimson-relive-logo.png

Beyond this, the new graphics driver also fixes several issues, many of which involve flickering textures, objects, or mouse pointers. It also solves an issue where installing the driver could cause a failed reboot.

If you have an AMD GPU, then you can pick up the driver from their website.

Source: AMD

BIOSTAR Shows Mini-ITX AM4 Motherboard for AMD Ryzen

Subject: Motherboards | March 4, 2017 - 11:32 AM |
Tagged: X370GTN, x370, small form factor, SFF, ryzen, racing, motherboard, mITX, mini-itx, B350GTN, b350, amd, AM4

The first images of a mini-ITX AM4 motherboard are here, courtesy of BIOSTAR (via ComputerBase). Part of their second-generation RACING-series of gaming motherboards, BIOSTAR is now the first company to show an AMD Ryzen-capable mini-ITX option with their X370GTN.

x370gtn_motherboard_1.jpg

Image credit: ComputerBase

There had been mention of an upcoming mITX board for AMD Ryzen CPUs from BIOSTAR, with a (rather low-key) mention of such a product in a recent company press release (“the exciting new RACING X370GTN in the mini-ITX form factor will also be available”), and these images from the company's RACING event are now circulating along with the specs of two different mITX offerings.

x370gtn_motherboard_2.jpg

Image credit: ComputerBase

There will in fact be two mini-ITX motherboards, with both X370 (shown) and the lower-end B350 chipsets (with the RACING B350GTN). ComputerBase provided slides with specifications (via Zolkorn, Thai language) who covered the BIOSTAR event:

x370gtn.jpg

Image credit: Zolkorn via ComputerBase

b350gtn.jpg

Image credit: Zolkorn via ComputerBase

BIOSTAR has not announced availability or pricing of their mini-ITX Ryzen boards yet, but given the pent-up demand for mini-ITX solutions for enthusiast AMD processors (with AM3 conspicuously absent from mITX), this is great news for small form-factor enthusiasts.

Source: ComputerBase

PSA: AMD XFR Enabled On All Ryzen CPUs, X SKUs Have Wider Range

Subject: Processors | March 4, 2017 - 06:00 AM |
Tagged: xfr, turbo, sensemi, ryzen, overclocking, amd

Following the leaks and official news and reviews of AMD's Ryzen processors there were a few readers asking for clarity on the eXtended Frequency Range (XFR) technology and whether or not it is enabled on all Ryzen CPUs or only the X models. After quite a bit of digging through forums and contradictory articles, I believe I have the facts in hand to answer those questions. In short, XFR is supported on all Ryzen processors (at least all the Ryzen 7 CPUs released so far) including the non-X Ryzen 7 1700; however the X SKUs get a bigger boost from XFR than the non-X model(s).

Specifically, the Ryzen 7 1700X and Ryzen 7 1800X when paired with a high end air or water cooler is able to boost up to an additional 100 MHz over the 4 GHz advertised boost clock while the Ryzen 7 1700 is limited to an XFR boost of up to 50 MHz so long as there is thermal headroom. Interestingly, the Extended Frequency Range boosts are done in 25 MHz increments (and likely achieved by adjusting the multiplier by 0.25x).

AMD XFR.jpg

How does this all work though? Well, with Ryzen AMD introduced a new suite of technologies it calls "SenseMI" which, despite the questionable name (heh), puts a lot of intelligence into the processor and builds on the paths AMD started down with Carrizo and Excavator designs. The five main technologies are Pure Power, Precision Boost, Extended Frequency Range (XFR), Neural Net Prediction, and Smart Prefetch. The first three are important when talking about XFR.

With Ryzen AMD has embedded a number of sensors throughout the chip that accurately measure temperatures, clock speeds, and voltages within 1°C, 1mA, 1mW, 1mV and it has connected all the sensors together using its Infinity Fabric. Pure Power lets AMD make localized adaptive adjustments to optimize power usage without negatively affecting performance. Precision Boost is AMD's equivalent to Intel's Turbo Boost and it is built on top of Pure Power's sensor network. Precision Boost enables a Ryzen CPU to dynamically clock up beyond the base clock speed across all cores or clock even further across two cores. Lightly threaded workloads will benefit from the latter while workloads using any more than two threads will get the all core boost, so there is not a lot of granularity in number of cores vs allowed boost but there does not really need to be and the Precision Boost is more granular than Intel's Turbo Boost in clock speed bumps of 25MHz increments versus 100 MHz increments up to the maximum allowed Precision Boost clock. As an example, the Ryzen 7 1800X has a base clock of 3.6 GHz and so long as there is thermal headroom it can adjust the clock speed up by 25 MHz steps to 3.7 GHz across all eight cores or up to as much as 4.0 GHz on two cores.

From there XFR allows the processor to clock beyond the 2 core Precision Boost (XFR only works to increase the boost of the two core turbo not the all core turbo) and as temperatures decrease the allowed XFR increases. While initial reports and slides from AMD suggested XFR would scale with the cooler (air, water, LN2, LHe) with no upper limit aside from temperature and other sensor input, it appears AMD has taken a step back and limited X series Ryzen 7 chips to a maximum XFR boost of 100 MHz over the two core Precision Boost and non-X series Ryzen 7 processors to a maximum XFR boost of 50 MHz over the maximum boosted two core clock speed. The Ryzen 7 1700 will have two extra steps above its two core boost so while the chip has a base clock of 3.0 GHz, Precision Boost can take all eight cores to 3.1GHz or two cores to 3.7 GHz. Further, so long as temperatures are still in check XFR can take those two boosted cores to 3.75 GHz.

AMD Ryzen 1800X XFR Boost.jpg

XFR will be a setting that you are able to toggle on and off via a motherboard setting, and some motherboards may have the feature turned on by default. Unfortunately, if you choose to manually overclock you will lose XFR functionality (and boost). Further, Precision Boost and XFR are connected and you are not able to turn off one but not the other (you either get both or nothing). Note that if you overclock using AMD's "Ryzen Master" software utility, it will also disable Precision Boost and XFR, but the lower power C-states will stay enabled which may be desirable if you want the power bill and room to cool down when not gaming or creating content.

I would expect as yields and the binning processes improve for Ryzen AMD may lift or extend the XFR limits either with a product refresh (not sure if a micro-code update would be possible) or maybe only in the upcoming hexa-core and quad core Ryzen 5 and Ryzen 3 processors that have less cores and more headroom for overclocking. That is merely speculation however. Ryzen 5 and Ryzen 3 should support XFR on both X and non-X models, but it is too early to know or say what the XFR boost will be.

XFR is neat though not as big of a deal as I originally thought it to be without limits, and as many expected manual overclocking is still going to be the way to go. This is not all bad news though, because it means that the much cheaper Ryzen 7 1700 just got a lot more attractive. You give up a 50 MHz XFR boost that you can't use anyway because you are going to manually overclock and you gamble a bit on getting a decently binned chip that can hit R7 1800X clock speeds, but you save $170 that you can put towards a better motherboard or a better graphics card (or a second one for CrossFire - even on B350).

I am still waiting on our overclocking results as well as Kyle's overclocking results when it comes to the Ryzen 7 1700, but several other sites are reporting success at hitting at least 4.0 GHz (though not many results over 4.0 or 4.1 GHz which isn't unexpected since these are not the highest binned chips and yields are still young so bins are more real/based on silicon and not just for product segmentation but most can hit the higher speeds at x power, v voltage, and n temperature et al). For example, Legit Reviews reports that they were able to hit manually overclock a R7 1700 to 4.0 GHz on all cores at 1.3875 volts. They were able to keep the non-X Ryzen chip stable with those settings on both aftermarket air and AIO water coolers.

prec_boost.png

AMD's Ryzen Master overclocking software lets you OC and setup CPU and memory profiles from your OS.

More on overclocking: Tom's Hardware has posted that, according to AMD, the safe voltage ceiling for overclocking is 1.35V if you want the CPU to last, but that up to 1.45V CPU voltage is "sustainable". Further, note that is is recommended not to set the SOC Voltage higher than 1.2 volts. Also, much like Intel's platform, it is possible to adjust the base clock (BCLCK) but you may run into stability problems with the rest of the system if you push this too far outside expected specifications (PC Gamer claims you can set this up to 140 MHz though so AM4/Ryzen may be more forgiving in this area than Intel. Edit: The highest figure I've seen so far is 106.4 MHz being stable before the rest of the system gets too far out of spec and becomes unstable. The main benefit to adjusting this is to support overclocked RAM above 3200 MHz so unless you need that your overclocking efforts are probably better spent adjusting the multiplier. /edit). Finally, when manually overclocking you will be able to turn off SMT and/or turn off cores in 2s (e.g. disable 2 cores or disable 4 cores, you can't disable in single numbers but groups of two).

Hopefully this helps to clear up the XFR confusion. If you do not need guaranteed clocks with a bonus XFR boost for a stable workstation build, saving money and going with the Ryzen 7 1700 and manually overclocking it to at least attempt to reach R7 1700X or 1800X speeds seems like the way to go for enthusiasts that are considering making the jump to AM4 especially if you enjoy tinkering with things like overclocking. There's nothing wrong with going with the higher priced and binned chips if you want to go that route, but don't do it for XFR in my opinion.

What are your thoughts? Are you planning to overclock your Ryzen CPU or do you think the Precision Boost and XFR is enough?

Source: Ars Technica

Ryzen shine! It is time for your AMD roundup

Subject: Processors | March 2, 2017 - 03:08 PM |
Tagged: Ryzen 1700X, Zen, x370, video, ryzen, amd

Having started your journey with Ryan's quick overview of the performance of the 1800X and anxiously awaiting our further coverage now that we have both the parts and the time to test them you might want to take a peek at some other coverage. [H]ard|OCP tested the processor which many may be looking at due to the more affordable pricing, the Ryzen 1700X.  Their test system is based on a Gigabyte A370-Gaming 5 with 16GB of Corsair Vengeance DDR4-3600 which ran at 2933MHz during testing; Kyle reached out to vendors who assured him an update will make 3GHz reachable will arrive soon.  Part of their testing focused on VR performance, so make sure to check out the full article.

1488169187kcPgB2ioTd_1_2.jpg

"Saying that we have waited for a long time for a "real" CPU out of AMD would be a gross misunderstatement, but today AMD looks to remedy that. We are now offered up a new CPU that carries the branding name of Ryzen. Has AMD risen from the CPU graveyard? You be the judge after looking at the data."

Here are some more Processor articles from around the web:

Processors

 

Source: [H]ard|OCP