All I want for Christmas ... is an Intel firmware patch

Subject: General Tech | November 24, 2017 - 01:22 PM |
Tagged: Intel, 7th generation core, 6th generation core, 8th generation core, apollo lake, xeon, security

The issue with Intel's processors is widespread and a fix will not be available for some time yet.  The flaws in their security features are present in 6-8th gen Core chips, as well as a variety of Xeons, Celerons and Apollo Lake CPUs which accounts for a wide variety of systems, from gaming machines to NAS devices.  All suffer from the vulnerability which allows compromised code to run a system invisibly, as it will be executed below the OS on the actual chip.  From what The Register gleaned from various manufacturers, only Dell will release a patch before 2018 and even that will only offer a solution for a very limited number of machines.  The end of 2017 is going to be a little too interesting for many sysadmins.

Capture.PNG

"As Intel admitted on Monday, multiple flaws in its Management Engine, Server Platform Services, and Trusted Execution Engine make it possible to run code that operating systems – and therefore sysadmins and users – just can't see."

Here is some more Tech News from around the web:

Tech Talk

Source: The Register

Intel Announces New CPUs Integrating AMD Radeon Graphics

Subject: Processors | November 6, 2017 - 02:00 PM |
Tagged: radeon, Polaris, mobile, kaby lake, interposer, Intel, HBM2, gaming, EMIB, apple, amd, 8th generation core

In what is probably considered one of the worst kept secrets in the industry, Intel has announced a new CPU line for the mobile market that integrates AMD’s Radeon graphics.  For the past year or so rumors of such a partnership were freely flowing, but now we finally get confirmation as to how this will be implemented and marketed.

Intel’s record on designing GPUs has been rather pedestrian.  While they have kept up with the competition, a slew of small issues and incompatibilities have plagued each generation.  Performance is also an issue when trying to compete with AMD’s APUs as well as discrete mobile graphics offerings from both AMD and NVIDIA.  Software and driver support is another area where Intel has been unable to compete due largely to economics and the competitions’ decades of experience in this area.

intel-8th-gen-cpu-discrete-graphics-2.jpg

There are many significant issues that have been solved in one fell swoop.  Intel has partnered with AMD’s Semi-Custom Group to develop a modern and competent GPU that can be closely connected to the Intel CPU all the while utilizing HBM2 memory to improve overall performance.  The packaging of this product utilizes Intel’s EMIB (Embedded Multi-die Interconnect Bridge) tech.

EMIB is an interposer-like technology that integrates silicon bridges into the PCB instead of relying upon a large interposer.  This allows a bit more flexibility in layout of the chips as well as lowers the Z height of the package as there is not a large interposer sitting between the chips and the PCB.  Just as interposer technology allows the use of chips from different process technologies to work seamlessly together, EMIB provides that same flexibility.

The GPU looks to be based on the Polaris architecture which is a slight step back from AMD’s cutting edge Vega architecture.  Polaris does not implement the Infinity Fabric component that Vega does.  It is more conventional in terms of data communication.  It is a step beyond what AMD has provided for Sony and Microsoft, who each utilize a semi-custom design for the latest console chips.  AMD is able to integrate the HBM2 controller that is featured in Vega.  Using HBM2 provides a tremendous amount of bandwidth along with power savings as compared to traditional GDDR-5 memory modules.  It also saves dramatically on PCB space allowing for smaller form factors.

intel_tech_manu_embedded_multi_die_interconnect_bridge-100715607-orig.jpg

EMIB provides nearly all of the advantages of the interposer while keeping the optimal z-height of the standard PCB substrate.

Intel did have to do quite a bit of extra work on the power side of the equation.  AMD utilizes their latest Infinity Fabric for fine grained power control in their upcoming Raven Ridge based Ryzen APUs.  Intel had to modify their current hardware to be able to do much the same work with 3rd party silicon.  This is no easy task as the CPU needs to monitor and continually adjust for GPU usage in a variety of scenarios.  This type of work takes time and a lot of testing to fine tune as well as the inevitable hardware revisions to get thing to work correctly.  This then needs to be balanced by the GPU driver stack which also tends to take control of power usage in mobile scenarios.

This combination of EMIB, Intel Kaby Lake CPU, HBM2, and a current AMD GPU make this a very interesting combination for the mobile and small form factor markets.  The EMIB form factor provides very fast interconnect speeds and a smaller footprint due to the integration of HBM2 memory.  The mature AMD Radeon software stack for both Windows and macOS environments provides Intel with another feature in which to sell their parts in areas where previously they were not considered.  The 8th Gen Kaby Lake CPU provides the very latest CPU design on the new 14nm++ process for greater performance and better power efficiency.

This is one of those rare instances where such cooperation between intense rivals actually improves the situation for both.  AMD gets a financial shot in the arm by signing a large and important customer for their Semi-Custom division.  The royalty income from this partnership should be more consistent as compared to the console manufacturers due to the seasonality of the console product.  This will have a very material effect on AMD’s bottom line for years to come.  Intel gets a solid silicon solution with higher performance than they can offer, as well as aforementioned mature software stack for multiple OS.  Finally throw in the HBM2 memory support for better power efficiency and a smaller form factor, and it is a clear win for all parties involved.

intel-8th-gen-cpu-discrete-graphics.jpg

The PCB savings plus faster interconnects will allow these chips to power smaller form factors with better performance and battery life.

One of the unknowns here is what process node the GPU portion will be manufactured on.  We do not know which foundry Intel will use, or if they will stay in-house.  Currently TSMC manufactures the latest console SoCs while GLOBALFOUNDRIES handles the latest GPUS from AMD.  Initially one would expect Intel to build the GPU in house, but the current rumor is that AMD will work to produce the chips with one of their traditional foundry partners.  Once the chip is manufactured then it is sent to Intel to be integrated into their product.

Apple is one of the obvious candidates for this particular form factor and combination of parts.  Apple has a long history with Intel on the CPU side and AMD on the GPU side.  This product provides all of the solutions Apple needs to manufacture high performance products in smaller form factors.  Gaming laptops also get a boost from such a combination that will offer relatively high performance with minimal power increases as well as the smaller form factor.

core-radeon-leak.png

The potential (leaked) performance of the 8th Gen Intel CPU with Radeon Graphics.

The data above could very well be wrong about the potential performance of this combination.  What we see is pretty compelling though.  The Intel/AMD product performs like a higher end CPU with discrete GPU combo.  It is faster than a NVIDIA GTX 1050 Ti and trails the GTX 1060.  It also is significantly faster than a desktop AMD RX 560 part.  We can also see that it is going to be much faster than the flagship 15 watt TDP AMD Ryzen 7 2700U.  We do not yet know how it compares to the rumored 65 watt TDP Raven Ridge based APUs from AMD that will likely be released next year.  What will be fascinating here is how much power the new Intel combination will draw as compared to the discrete solutions utilizing NVIDIA graphics.

To reiterate, this is Intel as a customer for AMD’s Semi-Custom group rather than a licensing agreement between the two companies.  They are working hand in hand in developing this solution and then both profiting from it.  AMD getting royalties from every Intel package sold that features this technology will have a very positive effect on earnings.  Intel gets a cutting edge and competent graphics solution along with the improved software and driver support such a package includes.

Update: We have been informed that AMD is producing the chips and selling them directly to Intel for integration into these new SKUs. There are no royalties or licensing, but the Semi-Custom division should still receive the revenue for these specialized products made only for Intel.

Source: Intel

Podcast #474 - Optane 900P, Cord Cutting, 1070 Ti, and more!

Subject: General Tech | November 2, 2017 - 12:11 PM |
Tagged: Volta, video, podcast, PCI-e 4, nvidia, msi, Microsoft Andromeda, Memristors, Mali-D71, Intel Optane, gtx 1070 ti, cord cutting, arm, aegis 3, 8th generation core

PC Perspective Podcast #474 - 11/02/17

Join us for discussion on Optane 900P, Cord Cutting, 1070 Ti, and more!

You can subscribe to us through iTunes and you can still access it directly through the RSS page HERE.

The URL for the podcast is: http://pcper.com/podcast - Share with your friends!

Hosts: Ryan Shrout, Josh Walrath, Jeremy Hellstrom, Allyn Malventano,

Peanut Gallery: Ken Addison, Alex Lustenberg

Program length: 1:32:19

Podcast topics of discussion:
  1. Week in Review:
  2. News items of interest:
  3. Hardware/Software Picks of the Week
    1. 1:17:00 Ryan: Intel 900P Optane SSD
    2. 1:26:45 Allyn: Sony RX10 Mk IV. Pricey, but damn good.
  4. Closing/outro

Source:
Author:
Manufacturer: Intel

Overview and CPU Performance

When Intel announced their quad-core mobile 8th Generation Core processors in August, I was immediately interested. As a user who gravitates towards "Ultrabook" form-factor notebooks, it seemed like a no-brainer—gaining two additional CPU cores with no power draw increase.

badge.jpg

However, the hardware reviewer in me was skeptical. Could this "Kaby Lake Refresh" CPU provide the headroom to fit two more physical cores on a die while maintaining the same 15W TDP? Would this mean that the processor fans would have to run out of control? What about battery life?

Now that we have our hands on our first two notebooks with the i7-8550U in, it's time to take a more in-depth look at Intel's first mobile offerings of the 8th Generation Core family.

IMG_4938.JPG

Click here to continue reading our look at performance with Intel 8th Generation mobile processors!

IFA 2017: Acer announces passively-cooled Switch 7 Black Edition

Subject: Mobile | August 30, 2017 - 12:19 PM |
Tagged: switch 7 black edition, Surface Pro, IFA 2017, ifa, acer, 8th generation core

Today at IFA 2017, Acer's keynote was full of new products arriving in the coming year. The most remarkable product of the bunch is their Switch 7 Black Edition 2-in-1.

switch7-be.jpg

While the Switch 7 Black Edition may not look different than other 2-in-1 devices like Microsoft's Surface Pro initially, there are some surprises underneath the hood.

8thgen-i7.png

First is Acer's innovative cooling solution which they are calling "LiquidLoop." Essentially this is a heatpipe system which circulates through the chassis to cool both the Quad-Core 8th Generation Core processor, as well as a dedicated GPU in the form of the NVIDIA Geforce MX150.

liquidloop.png

Omitting the use of any fans in the chassis, Acer claims they can properly cool both the 15W processor and the 25W GPU with this heatpipe system.

As for the GPU, the Geforce MX150 is the Pascal-based successor to the 940MX, which saw popularity in many of these thin and light form-factor devices. While it won't play the latest titles at native resolution, you should expect to be able to play less demanding titles and older games at modest image quality settings. Personally, the idea of a passively cooled computer that can play Rocket League on the go excites me.

Beyond the innovative thermal design, Acer has some more tricks up their sleeve with the Switch 7 Black Edition. 

autostand.png

Acer AutoStand is a kickstand system designed to operate with one hand, like a traditional notebook hinge. This could be a huge benefit to Acer over the more cumbersome competitors like the Surface Pro where you have to hold the tablet in place as you deploy the kickstand.

windowshello.png

The Switch 7 Black Edition supports Windows Hello through the use of a fingerprint sensor embedded underneath the glass of the screen bezel. This sensor also supports Power on Authentication (POA) so that a single press will turn on the device and log into Windows Instantly.

These features combined with the 12.5-in 2256x1504 IPS display make the Switch 7 Black Edition an attractive alternative to 2-in-1 devices like the Surface Pro. 

All of these cool features come with a steep price tag though. The Acer Switch 7 Black Edition is expected to ship in December in North America for prices starting at $1,699.

Source: Acer

IFA 2017: Dell announces refreshed Quad-Core XPS 13 Notebook

Subject: Mobile, Shows and Expos | August 28, 2017 - 10:20 PM |
Tagged: ifa, IFA 2017, dell, XPS 13, 8th generation core, i7-8550U, i5-8250U

As expected, this year's IFA trade show in Berlin is proving busy for notebook manufacturers. Hot on the heels of Intel's announcement of 15W 8th Generation quad-core processors in the Kaby-Lake refresh family earlier in the month, we are starting to see some announcements of actual products utilizing these new processors.

Not to be left behind, Dell has officially announced the refreshed version of their well-received XPS 13 notebook. 

xps13.png

It appears that there has been little physical change to the XPS 13 centered around these new processor options. Customers will still find 2 USB-A Ports upgraded to USB 3.1 Gen 2, a Thundebolt 3 Port, full-size SD card slot, a standard headphone jack, and a power connector (although charging over Thunderbolt 3 is supported). There's no indication yet as to the Thunderbolt 3 implementation, but we hope Dell has gone with the full PCIe x4 bandwidth instead of x2 as found on the current XPS 13.

Same as the current XPS 13, customers will be able to choose from a 1080p non-touch display or a 3200x1800 touchscreen, up to 16GB of RAM, and SSD options including SATA and NVMe.

badge.jpg

Battery size remains at 60Wh, which Dell claims has a MobileMark battery life score of 22 hours on the 1080p display model and 12 hours with the 3200x1800 QHD+ Touchscreen option.

Expect a longer rollout than usual with these new 8th generation parts from Dell, with the highest end i7-8550U to be available starting September 12th, and the i5 parts coming later in October. We have no current indications of pricing, but I would expect it to fall along the current XPS 13 models, in which the i7 model starts at $1349 along with 8GB of RAM, a 256GB NVMe SSD, and the 1080p display.

Source: Dell
Author:
Manufacturer: Intel

A surprise twist from Intel

Any expectations I had of a slower and less turbulent late summer and fall for the technology and hardware segments is getting shattered today with the beginning stages of Intel’s 8th Generation Core Processors. If you happen to think that this 8th generation is coming hot on the heels of the 7th generation that only just released to the consumer desktop market in January of this year, you’d be on the same page as me. If you are curious how Intel plans to balance Kaby Lake, Coffee Lake, and Cannon Lake, all releasing in similar time frames and still use terms like “generation,” then again, we are on the same page.

badge.jpg

Today Intel launches the 15-watt version of its 8th Generation Core Processors, based on a refresh of the Kaby Lake CPU design. This not a new architecture nor is this is not a new process node, though Intel does talk about slight changes in design and manufacturing that make it possible. The U-series processors that make up the majority of the thin and light and 2-in-1 designs for consumers and businesses are getting a significant upgrade in performance with this release. The Core i7 and Core i5 processors being announced will all be quad-core, HyperThreaded designs, moving us away from the world of dual-core processors in the 7th generation. Doubling core and thread count, while remaining inside the 15-watt thermal envelope for designs, is an incredible move and will strengthen Intel’s claim to this very important and very profitable segment.

Let’s look at the specifications table first. After all, we’re all geeks here.

  Core i7-8650U Core i7-8550U Core i5-8350U Core i5-8250U Core i7-7600U Core i7-7500U
Architecture Kaby Lake Refresh Kaby Lake Refresh Kaby Lake Refresh Kaby Lake Refresh Kaby Lake Kaby Lake
Process Tech 14nm+ 14nm+ 14nm+ 14nm+ 14nm+ 14nm+
Socket BGA1356 BGA1356 BGA1356 BGA1356 BGA1356 BGA1356
Cores/Threads 4/8 4/8 4/8 4/8 2/4 2/4
Base Clock 1.9 GHz 1.8 GHz 1.7 GHz 1.6 GHz 2.8 GHz 2.7 GHz
Max Turbo Clock 4.2 GHz 4.0 GHz 3.8 GHz 3.6 GHz 3.9 GHz 3.5 GHz
Memory Tech DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3 DDR4/LPDDR3
Memory Speeds 2400/2133 2400/2133 2400/2133 2400/2133 2133/1866 2133/1866
Cache (L4 Cache) 8MB 8MB 6MB 6MB 4MB 4MB
System Bus DMI3 - 8.0 GT/s DMI3 - 8.0 GT/s DMI2 - 6.4 GT/s DMI2 - 5.0 GT/s DMI2 - 5.0 GT/s DMI2 - 5.0 GT/s
Graphics UHD Graphics 620 UHD Graphics 620 UHD Graphics 620 UHD Graphics 620 HD Graphics 620 HD Graphics 620
Max Graphics Clock 1.15 GHz 1.15 GHz 1.1 GHz 1.1 GHz 1.15 GHz 1.05 GHz
TDP 15W 15W 15W 15W 15W 15W
MSRP $409 $409 $297 $297 $393 $393

The only differences between the Core i7 and Core i5 designs will be in cache size (Core i5 has 6MB, Core i7 has 8MB) and the clock speeds of the processors. All of them feature four true Kaby Lake cores with HyperThreading enabled to support 8 simultaneous threads in a notebook. Dual channel memory capable of speeds of 2400 MHz in DDR4 and 2133 MHz in LPDDR3 remain. The integrated graphics portion offers the same performance as the 7th generation designs, though the branding has moved from Intel HD Graphics to Intel UHD Graphics. Because Ultra.

8th Gen Intel Core U-series front.jpg

But take a gander at the clock speeds. The base clock on the four new CPUs range from 1.6 GHz to 1.9 GHz, with 100 MHz steps as you go up the SKU ladder. Those are low frequencies for modern processors, no doubt, but Intel has always been very conservative when it comes to setting specs for base frequency. This is the speed that Intel guarantees the processors will run at when the CPU is fully loaded using a 15-watt TDP cooling design. Keeping in mind that we moved from dual-core to quad-core processors, it makes sense that these base frequencies would drop. Intel doesn’t expect users in thin and light machines to utilize all 8 threads for very long, or very often, and instead focuses on shorter use cases for multi-threaded workloads (photo manipulation) that might run at 3.x GHz. If this period of time is short enough, the cooling solution will be able to “catch up” and keep the core within a reasonable range.

Continue reading about the new 8th Generation Intel Core Processors!!

Intel to Reveal 8th-Generation Core Processor Lineup on August 21

Subject: Processors | August 8, 2017 - 12:04 PM |
Tagged: processor, Intel, cpu, Core, coffee lake, 8th generation core

Intel has announced a live event on August 21 to reveal the new 8th-generation Core processor family. The Facebook Live stream will be available on both Intel's Facebook page or simply by visiting the Intel Newsroom, and it begins at 8:00 PDT (11:00 EDT) on 8/21.

8th-gen-2x1.jpg

What exactly is being discussed? Intel provides these bullet points for the event which is to take place just before the upcoming national solar eclipse:

  • Don’t be caught in the dark. Learn how the 8th Gen Intel Core processor family will offer blazing fast performance.
  • Hear directly from Gregory Bryant, senior vice president of the Client Computing Group at Intel, and others about the details on the latest processor family and what it can help you do.
  • Discover how immersive experiences will bring you from spectator to participant with 8th Gen Intel Core processor capabilities.
  • Don’t just take our word for it. See the power of 8th Gen Intel Core technology come to life in the hands of a VR creator and imaging technologist.
  • Get a sneak peek at some of the amazing system designs based on 8th Gen Intel Core processors.
  • Start planning for what new 8th Gen Intel Core processor-based device to purchase in the holiday season and even before.
  • Don’t worry, you won’t miss the solar eclipse. Tune in before it descends upon Oregon and the West Coast and then makes its way across the U.S.
  • See how the 8th Gen Intel Core processor is designed for today and what comes next.

We will cover the event which will provide official details on the rumored Coffee Lake CPU lineup. Stay tuned!

Source: Intel

Computex 2017: Intel 8th Gen Core Processors 30% Faster than 7th Gen

Subject: Processors | May 30, 2017 - 03:00 AM |
Tagged: Intel, computex 2017, computex, coffee lake, 8th generation core

During it's keynote at Computex today, Intel announced the high performane Skylake-X and Kaby Lake-X platforms with CPU core counts as high as 18 (!!) but also gave a brief mention of its upcoming Coffee Lake product, the 8th Generation Core product family.

To quote directly from the Intel press information:

"As we move toward the next generation of computing, Intel also shared its commitment to deliver 8th generational Intel® Core™ processor-based devices by the holiday season, boasting more than 30 percent improvement in performance versus the 7th Gen Intel® Core™ processor."

That is quite the claim, but let's dive into the details.

Based on SYSmark* 2014 v1.5 (Windows Desktop Application Performance). Comparing 7th Gen i7-7500U, PL1=15W TDP, 2C4T, Turbo up to 3.5GHz, Memory: 2x4GB DDR4-2133, vs. Estimates for 8th Gen Core i7: PL1=15W TDP, 4C8T, Turbo up to 4 GHz, Memory: 2x4GB DDR4-2400, Storage: Intel® SSD, Windows* 10 RS2. Power policy assumptions: AC mode. Note: Kaby Lake U42 performance estimates are Pre-Silicon and are subject to change. Pre-Si projections have +/- 7% margin of error.

In a more readable format:

  8th Gen
Core i7
7th Gen
Core i7-7500U
Code name Coffee Lake Kaby Lake
Process Tech 14nm Double Plus Good 14nm+
Cores/Threads 4/8 2/4
Base Clock ? 2.7 GHz
Turbo Clock 4.0 GHz 3.5 GHz
TDP 15 watt 15 watt
Memory 8GB 8GB
Memory Clock 2400 MHz 2133 MHz

The 30% performance claim comes from both a doubling of core and thread count (2- to 4-cores) but also a 500 MHz higher peak Turbo Clock, going from Kaby Lake to Coffee Lake. The testing was done using SYSmark 2014 v1.5, a benchmark that is very burst-centric and is comparable to common productivity tasks. Even with a 15% increase in peak clock speed and a 2x core/thread count, Intel is still able to maintain a 15 watt TDP with this CPU.

intelcoffeelake.jpg

While we might at first expect much larger performance gains with those clock and core count differences, keep in mind that SYSmark as a test has never scaled in such a way. We don't yet know what other considerations might be in place for the 8th Generation Core processor platforms, and how they might affect performance for single of multi-threaded applications.

Intel has given us very little information today on the Coffee Lake designs, but it seems we'll know all about this platform before the end of the year.

Source: Intel